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ABSTRACT

This paper presents a novel algorithm to extract the drum track
of a polyphonic music signal, based on a harmonic / noise de-
composition. This algorithm is causal and does not require prior
knowledge or learning. The input signal is split into several fre-
quency bands in which the signal is separated in a deterministic
and a stochastic part. The stochastic part can be efficiently used
to detect drum events and to resynthesize a drum track. Possible
applications include drum transcription, remixing, and indepen-
dent processing of the rhythmic and melodic components of music
signals. Results obtained from real recordings of popular music
are presented, as well as a perceptual evaluation of the quality of
remixed signals.

1. INTRODUCTION

The automatic extraction of drum tracks from polyphonic music
signals has many possible applications, both in the field of digital
audio effects and audio indexing: beat tracking, automatic tran-
scription of rhythmic parts, style identification, rhythm driven au-
dio effects, remixing or DJing. However, it is not clear how this ex-
traction should be performed, and many solutions have been pro-
posed. The approaches to this problem can be roughly classified in
two categories: transcription-based and sound-separation based.

Automatic rhythmic transcription aims at obtaining a detailed
transcription (such as a music score) of the drum track of a music
piece. The extraction of the drum signal itself is not required for
the transcription. However, in order to achieve efficient results,
most of the transcription systems try to obtain information about
the timbre of each drum instrument used in the music piece - since
in many cases an adapted machine learning or template match-
ing algorithm will perform better than a generic one. Thus, by-
products of the transcription, such as templates or adapted models,
are often available, and can be used for the resynthesis. Zils et
al. introduced in [1] an algorithm operating in the time domain
that extracts a rhythmic transcription as well as short adapted tem-
plates, which can be combined to resynthesize the drum track of
the original signal. A similar approach was used by Yoshii in [2]
using time-frequency templates. In [3], Sandvold et al. used a ma-
chine learning approach to detect occurrences of drum instruments
in polyphonic music signals. This study suggests that automati-
cally ranking the detected occurrences according to a confidence
score could identify the most representative of them - hence, ex-
tract good candidates for template-based synthesis.

Source separation aims at extracting individual sound sources
from music recordings, using information gathered from different
sensors - for example the two channels of a stereo recording [4] or
microphone arrays. A growing number of works recently focused

on single source audio separation [5]. While source separation is
not geared toward drum track extraction, the separation algorithms
generally manage to isolate the drums as one or several distinct
sources. It is worth to mention that while it is possible to auto-
matically identify the drums among the different sources proposed
by the separation algorithm, many source separation algorithms re-
quire manual tuning, and the number of sources has to be known in
advance. Hence, they are not always suitable for fully-automated
processing. Other separation approaches, like those developed by
FitzGerald [6] are using prior knowledge about the timbre of drum
instruments to initialize separation algorithms, and can be thus
used in an unsupervised way.

In this paper, we introduce a novel approach to this problem, in
which a band-wise harmonic/noise decomposition is used to local-
ize and separate drum sources. The proposed system has several
characteristics which make it stand apart previous works. Firstly,
it does not require a prior learning phase. Secondly, it can pro-
cess a wide range of music signals with the same set of param-
eters. Thirdly, it can operate causally - allowing our system to
work as an audio effect. Finally, no information is lost in the anal-
ysis/synthesis stage, enabling the remixing or substraction of the
extracted drum track. This paper is organized as follows: section
2 presents the overall principle of the algorithm, and details each
of its components. Following a section 3 presenting the evaluation
results, section 4 suggests some conclusions.

2. DESCRIPTION OF THE ALGORITHM

The principle of our algorithm is to use a band-wise harmonic/noise
decomposition to obtain the stochastic part of the signal in differ-
ent frequency bands.

Our method is motivated by two observations:

1. In popular music, in which drums are overly present, the
stochastic part of the signal is mostly contributed by the
drum sounds. Other stochastic components, such as note
attacks, can usually be discarded using a simple threshold-
ing approach.

2. Unpitched percussive sounds, for example those produced
by the bass drum, the snare drum or the cymbals, have a
strong non-harmonic component.

Detection signals for 3 categories of instruments of the drum
kit (bass drum, snare drum, and cymbals) can be easily computed
from this decomposition. The drum track can thus be reconstructed
by reweighting the stochastic signals in each band.

The general overview of the drum track extraction system is
presented in figure 1. It consists in:
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Figure 1:Overview of the drum track extraction system.

• An optional pre-processing stage, aiming at extracting a
monaural signalx(t) with an enhanced rhythmic content
from a stereo signal.

• A filter-bank , decomposing the signalx(t) into eight non-
overlapping subbandsxk(t), k = 1..8.

• A noise subspace projection stage, extracting the stochas-
tic part of each subband signalek(t).

• A drum event detection stage, extracting masksαl(t) for
three basic categories of drum instruments (l = 0..2).

• A drum resynthesis stage, reweighting the stochastic sig-
nals in each band with weightswk(t) computed from the
masksαl(t).

2.1. Pre-processing of stereo signals

In the case of signals of popular music, we observed that in a rather
large number of cases, a signal with an enhanced percussive con-
tent could be obtained by simply mixing the left and right channels
of the recording with appropriate gains. This can be accounted by
the fact that the so-called ”panoramic” mix is widely used in pop-
ular music recordings.

Thus, our approach consists in selecting gainsγ1 andγ2 max-
imizing an impulsiveness measure I of the remixed signal. This
impulsiveness measure should favour signals with a sharp and con-
trasted envelope, which is typical of drum tracks. Assuming that
γ1 6= 0, the problem is equivalent to findingβ maximizingsβ(t) =
I(L(t) + βR(t)), whereβ = γ2

γ1
.

The impulsiveness measure I is computed as follows: firstly,
we obtain an envelope signals′(t) by half-wave rectifying, deci-
mating, low-pass filtering, and differentiatings(t). Then we com-
pute a contrast factor on this envelope:

I(s) =

∑T
t=1 s′(t)

T T

√∏T
t=1 s′(t)

The output of our pre-processing stage is finallyx(t) = sβ∗(t)
whereβ∗ = argmaxI(sβ(t)).

We also considered using the opposite of the kurtosis ofs(t)
as an impulsiveness measure. The value ofβ∗ obtained by both
approaches were comparable.

2.2. Filter bank

The use of a filter bank is essential for three reasons. Firstly, each
drum instrument has its own characteristic frequency band: it is
thus easier to detect drum events in each sub-band signal. Sec-
ondly, the noise subspace projection stage performs better when
such a decomposition is used, especially with octave-band filter
banks. This can be explained by the fact that noise in each nar-
row frequency band can be considered as white - while it is not
always the case on the whole frequency range. Moreover, tracking
a fixed number of sinusoids per octave is well adapted to mix-
tures of harmonic signals. Finally, a polyphase implementation of
the filter bank [7], in which the signal in each frequency-band is
downsampled, reduces the amount of data to process, and thus the
computational cost of the noise subspace projection.

The filter bank used in our system has a dyadic structure, also
known as octave-band filter bank, which consists in splitting the
source signal in two equal bands (the signal in each band being
downsampled by a factor of 2), and then iterating the process on
the lower band, untilM = 8 components are obtained - each re-
sulting frequency band being one octave large. This filter bank was
implemented using a 100th order FIR filter as a prototype.

It is worth to mention that this filter bank allows a perfect re-
construction of the signal, a property which is not important in
transcription or descriptor extraction applications, but which is es-
sential for the resynthesis of the drum track, and for remixing ap-
plications.

2.3. Noise subspace projection

The noise subspace projection stage is based on theExponention-
ally Damped Sinusoidal(EDS) model [8]. According to this model,
the signal can be decomposed in aharmonicpart, modelled as
a sum of sinusoids with an exponential decay; and anoisepart
defined as the difference between the original signal and the har-
monic part.

Different approaches are possible for the extraction of the si-
nusoids. We chose a subspace-based technique which overcomes
the resolution limit of the Fourier analysis. According to this ap-
proach, windows of lengthL are extracted from the original signal.
A vector is defined for each window. TheL-dimensional space
containing this vector is split in a space of dimensionp = 2n
containing the signal part, and a space of dimensionL − p con-
taining the noise; wheren is the number of tracked sinusoids.
An interesting property of such approaches is that the estimation
and substraction of sinusoids is not even required. IfUS(t) is
an orthonormal basis spanning the signal subspace, a noise vec-
tor e(t) can be obtained by applying the noise subspace projector
IL − US(t)US(t)T to the vectorx(t). An entire signal can be
processed using an overlap-add method. In our case we use an
overlap of3L/4 and a Hanning window.

Several algorithms are available to track the signal subspace
basisUS(t). We used the classical EVD algorithm ([8]) with
a FFT implementation of matricial products, the complexity of
which isO(p2L log L) but other subspace trackers can also be
used.
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The window size used in our system is 46ms. Shorter window
sizes resulted in a very instable tracking, as most of the subspace
trackers perform better when p is much smaller than L. With longer
window sizes, only very stable components are tracked: unwanted
information such as glissandi or short notes appear in the noise
subspace.

The number of sinusoids in each frequency band was manu-
ally adjusted. Two sinusoids are used forx1(t) (lowest frequency
band, in which only the bass is playing), five forx2(t), ten for
x3(t) and x4(t); and eight for the other bands. However, it is
worth to mention that the number of sinusoids in each band could
be automatically selected by appropriate methods [9] but this ap-
proach was not tested in this paper.

A noise signalek(t) is thus obtained for each sub-band. Be-
cause of the multirate implementation of the filter bank, these sig-
nals need to be resynchronized in time, by upsamling them and by
applying a synthesis filter. This results in eightêk(t) signals.

2.4. Drum event detection

A global noise signal can be reconstructed by summing the sub-
band noise signalsek(t). However, this signal is not a good candi-
date for a drumtrack, as it contains not only drums and percussive
signals, but also the attacks of the notes from other instruments. It
can be observed that these attacks have a lower level, and that the
percussive signals are localized in well-defined frequency bands.
This suggests an approach in which the amplitude of each noise
signal is modulated by time-varying masking signals, correspond-
ing to the contributions of various drum instruments.

We define three basic categories of drum instruments,bass
drum, snare drumand cymbals. For each of these instruments
(i = 0..2), a detection signal is computed from the sub-band noise
signals:

di(t) =
∑

k

akiêk(t)

The coefficientsaki are chosen so that very characteristic fre-
quency sub-bands will be used for each instrument. For example,
for the detection of the bass drum, we combine the noise signal in
the first two sub-bands, for the snare drums, the noise signals in the
next two sub-bands, and the last sub-band is used for the detection
of the cymbals.

A downsampled and half-wave rectified version ofdi(t) is
then computed and is notedd′

i(t). Occurrences of each drum in-
struments are detected by comparingd′

i(t) to a threshold. An oc-
currence is detected wheneverd′

i(t) > 2σd′i(t)
, whereσ is the

standard deviation. The duration of each occurrence of a drum in-
strument is also estimated fromd′

i(t). This allows the definition
of a maskαi(t), which is equal to one over the duration of each
occurrence of the instrumenti, and zero otherwise (refer to figure
2 for signal examples).

2.5. Synthesis

Subsequently, each sub-band noise signal is modulated according
to modulation coefficientswk(t). These coefficients are computed
from the masksαi(t) with the following rule:

wk(t) = max
i

rkiαi(t)

The contribution coefficientsrki are chosen to reflect the fact
that each drum instrument has a characteristic frequency band. For

Figure 2:From left to right: detection signaldi(t), modified detec-
tion signald′

i(t), and maskαi(t), computed for bass-drum (first
line), snare-drum (second line) and cymbals (third line).

example, when we have detected that only a cymbal is playing,
we cancel the sub-band noise signals corresponding to the low-
est frequency bands. The coefficientsrki are different from the
coefficientsaki: while the aki are only selecting a typical and
exclusive frequency band associated to each instrument, in order
to provide a precise detection signal, therki also includes other
frequency band to improve the quality of the synthesis. More
precisely, the first 6 frequency bands are used for the bass drum
(rk0 = [1, 1, 1, 1, 1, 1, 0, 0]), all but the first band are used for the
snare drum (rk1 = [0, 1, 1, 1, 1, 1, 1, 1]) and the last four bands are
kept for cymbals (rk1 = [0, 0, 0, 0, 1, 1, 1, 1]). The overlapping of
drum instruments is handled by using a max rule.

Finally, we can reconstruct the drum track by modulating each
sub-band signal:

drums(t) =
∑

k

wk(t)êk(t)

A peculiarity of this whole approach is that contrary to meth-
ods based on spectrograms, in which phase information is lost and
must be re-estimated, or template-based methods in which synthe-
sis is performed with an averaged template, no phase information
is lost during the analysis/synthesis process. This property of our
system allows the extracted drum track to be added or subtracted
to the original signals to efficiently enhance or attenuate the drums
in a music signal.

Audio examples of extracted drum tracks and remixes are avail-
able at http://www.tsi.enst.fr/∼gillet/waspaa05drumsdemo.html.
All these examples were obtained on mono signals, since the sole
stereo processing stage could in some cases directly extract the
drum track.

3. EVALUATION

While some measures have been suggested for the evaluation of
audio source separation in [10], their use is not straightforward
when the original monophonic sources are not available. We have
chosen to evaluate our drum signal separation approach by assess-
ing the quality of its remixing capabilities - more precisely by as-
sessing the naturalness quality of new remixed signals in which the
drum track is either attenuated or amplified by 6dB. This leads us
to set up a specific subjective listening test. For this purpose, we
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have selected 10 monophonic test signals of 15 seconds amongst a
database of 55 signals. These test signals gather the best and worst
cases for the algorithm as spotted by the authors. For each signal,
4 pairs of stimuli A-B are built:

• (Orig, mix0.5) and(mix0.5, Orig) whereOrig is the orig-
inal signal andmix0.5 is the remixed signal with an atten-
uated drum track (-6dB)

• (Orig, mix2) and(mix2, Orig) whereOrig is the origi-
nal signal andmix2 is the remixed signal with an amplified
drum track (+6dB)

These 40 pairs of stimuli are shuffled and presented sequen-
tially to the subjects. All subjects were asked to listen to the audio
signals using high quality headphones and were asked to assess
the naturalness of the second signal (signal B) compared to the
first signal (signal A) by using a seven grade scale, ranging from
-3 to +3. Twelve subjects participated in the experiment.

Figure 3: Perceptual quality of test signals for the drum attenuation
(left) and amplification (right) tasks

Results for the drum attenuation (-6 dB) and amplification (+6
dB) tasks are summarized in figure 3. The extremities of each
box indicate the position of the lower and upper quartiles. The
median is marked by a line across the box. It can be seen that the
quality of remixes with an amplified drum track is preserved - in
one example, the remixed signal is even perceived as more natural,
while the algorithm does not succeed in producing natural results
for the drum track attenuation task. This can be accounted by the
fact that the transient part of some instruments, or the consonants
of the vocals are subtracted when they occur at the same time as
drum strokes. This results in an effect that most subjects described
as similar to mp3 compression artifacts.

4. CONCLUSIONS AND FUTURE WORKS

The extraction and the remixing of the drum track of a polyphonic
music signal has many real-world applications. Classical rhythm
transcription or source-separation approaches are not always suit-
able for this task. In this paper, we have presented a novel method
based on a sub-band harmonic / noise decomposition. The stochas-
tic part of this decomposition is used to efficiently detect drum

events and to resynthesize the drum tracks. Resulting signals pre-
serve the rhythmic contents of the original signal, and can be used
for high-quality remixes.

While promising results are obtained, several improvements
are nevertheless possible. First of all, the stereo pre-processing
step presented in 2.1 could be improved by using more advanced
separation algorithms. Actually, the extraction of the drum track
from a stereo pair could be viewed as an optimization problem -
optimizing a quality/percussivity measure on one of the output of
a complex source separation algorithm. Secondly, the robustness
of the noise subspace projection itself could be improved with or-
der selection methods that would automatically select an optimal
number of sinusoids. Finally, efforts have to be made towards a
more complete evaluation. This includes the evaluation of the al-
gorithm as a pre-processing stage for a drum transcription task and
a subjective evaluation test of the quality of extracted drum signals.
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