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ABSTRACT

We consider the problem of tracking the minor or princi-
pal subspace of a positive Hermitian covariance matrix. We
first propose a fast and numerically robust implementation
of Oja algorithm (FOOja: Fast Orthogonal Oja). The lat-
ter is said fast in the sense that its computational cost is of
orderO(np) flops per iteration wheren is the size of the
observation vector andp < n is the number of minor or
principal eigenvectors we need to estimate. FOOja guar-
antees the orthogonality of the weight matrix at each iter-
ation. Moreover, this algorithm is analyzed and compared
with two other fast algorithms (OOjaH and FDPM) with re-
spect to their numerical stability. Simulation results high-
lights the relatively good stability behavior of FOOja.

1. INTRODUCTION

Principal and Minor subspace (PSA and MSA) analysis, are
two important problems that are frequently encountered in
many information processing fields such as: telecommu-
nication, adaptive filtering, direction of arrivals estimation,
antenna array processing, etc. Many subspace tracking al-
gorithms exist in the literature that can be classified ac-
cording to their computational complexity. Since usually
p << n, schemes requiringO(n2) or O(n2p) operations
will be classified as high complexity; algorithms with com-
plexity O(np2) as medium complexity, finally algorithmic
schemes requiring onlyO(np) operations are said of low
complexity. The wide range of the computational complex-
ity is due to the fact that some algorithms update the com-
plete eigenstructure, with or without the explicit computa-
tion of the sample correlation matrix, whereas other ones
track only the desired principal or minor subspace. For
example, the parallel method proposed by Moonen et al
[1], which updates the SVD by interlacedQR triangular-
ization and Jacobi rotations, requiresO(n2) operations. The
gradient (Oja) type algorithms track either the principal or
the minor subspace. They demandO(np) operations for
the gradient-ascent or gradient-descent step and additional
O(np2) operations for the orthogonalization of the eigen-
vector estimates.
The great majority of articles addressing the problem of

subspace tracking focuses on the signal subspace. The lit-
erature intended for the noise (minor) subspace is unfortu-
nately very limited. In our case, we focus mainly on the
minor subspace analysis.
Besides the computational cost, the algorithm numerical sta-
bility is of crucial importance. In [2], the authors claimed
that their FDPM algorithm is the only minor subspace track-
ing algorithm of complexityO(np) that is absolutely stable.
Hence, we propose a new algorithm referred to as FOOja for
(Fast Orthogonal Oja) that behaves better than FDPM and
the Householder Oja (OOjaH) in terms of tracking perfor-
mance & stability.

2. MINOR SUBSPACE EXTRACTION

Let r(k) be a sequence ofn × 1 random vectors with co-
variance matrixC = E[r(k)rH(k)]. Consider the problem
of extracting the minor subspace spanned by the sequence,
of dimensionp < n, assumed to be the span of thep minor
eigenvectors of the covariance matrix. To tackle this prob-
lem, several subspace extraction algorithms have been pro-
posed in the literature [3]-[4]. Here we recall briefly two of
the most efficient MSA algorithms of orderO(np), namely
the OOjaH and the FDPM, that are used later for perfor-
mance comparison.

2.1. Orthogonal Oja

The minor subspace extraction algorithm by Oja et al. [5]
can be expressed as

W(i) = W(i − 1) − β(r(i)yH(i) − z(i)yH(i))

= W(i − 1) − βp(i)yH(i) (1)

WhereW(i) ∈ Cn×p is the minor subspace estimate,
y(i)

△
= WH(i − 1)r(i), z(i) △

= W(i − 1)y(i), p(i)
△
= r(i)

− z(i), andβ > 0 is a learning parameter. Reversing the
sign of the adaptive gain, that is replacing−β in (1) by+β,
yields a principal subspace extraction algorithm. Equation
(1) represents the updating of the weight matrixW(i) at
the i-th iteration. For MSA, Oja is known to diverge. Re-
cently, an orthogonalization step of the weight matrix has
been introduced to the Oja algorithm in order to have more



stability. The new algorithm is called OOjaH [6] (H stands
for Householder) and is summarized in Table 1.

y(i) = WH(i − 1)r(i)
z(i) = W(i − 1)y(i)
p(i) = r(i) − z(i)
φ(i) = 1√

1+β2‖p(i)‖2‖y(i)‖2

τ(i) =
φ(i)−1

‖y(i)‖2

p̄(i) = −τ(i)z(i)/β + φ(i)p(i)
u(i) = p̄(i)/ ‖p̄(i)‖
v(i) = WH(i − 1)u(i)
W(i) = W(i − 1) − 2u(i)vH(i).

Table 1. The OOjaH.

2.2. FDPM algorithm

the Fast Data Projection Method (FDPM) is a recently pro-
posed fast algorithm supposed to be the most efficient minor
subspace tracking algorithm of complexityO(np) [2]. It is
summarized in Table 2 (e1 = [1 0 . . . 0]

H ).

y(i) = WH(i − 1)r(i)

T(i) = W(i − 1) − β

‖r(i)‖2 r(i)yH(i)

a(i) = y(i) − ‖y(i)‖ e1

Z(i) = T(i) − 2
‖a‖2 [T(i)a(i)]aH(i)

D =
�
diag

�
ZH(i)Z(i)

��−1
2

W(i) = Z(i)D(i)

Table 2. The FDPM.

3. FAST ORTHOGONAL OJA

In this paper, we propose an alternative approximate ortho-
normalization procedure for Oja. The resulting algorithm is
numerically ’more stable’ as will be shown by simulations.
Our algorithm consists of (1) plus a fast orthonormalization
procedure of the weight matrix at each iteration:

T(i) = W(i − 1) ± βp(i)yH(i)

W(i) = orthonormal{T(i)} (2)

Let us rewrite (2) in the following form:

W(i) = T(i)H(i). (3)

Where the matrixH(i) performs an orthogonalization pro-
cedure. One way to find possible structures ofH(i) is to
consider the productWH(i)W(i). Therefore, forming
WH(i)W(i), assuming thatWH(i−1)W(i−1) is orthonor-
mal i.e.(WH(i − 1)W(i − 1) = I), we get:

W
H(i)W(i) = H

H(i)
�
I + β

2


p2



y(i)yH(i)
�
H(i) (4)

The OOjaH algorithm proposes to use asH(i) the inverse
square root of the matrixI + β2



p2


y(i)yH(i) [6]. How-

ever, such an approach diverges slowly from orthonormality

in the case of noise subspace tracking. In our algorithm, we
are going to proceed differently. Following the same spirit
as in [2], we seek a matrixH(i) in order to make the product
in (4) a diagonal matrix and not exactly equal to the identity.
In other words we look for a matrixH(i) that orthogonal-
izesT(i) and not directly orthonormalizes it.
To find H(i) we use Householder reflection properties [7]
that can be resumed in the following lemma
Lemma : Let v ∈ Rn be a nonzero vector. Ann× n matrix
H of the form

H = I −
2

vHv
vv

H

is called Householder reflection. If a vectorx is multiplied
byH, then it is reflected in the hyperplan span{v}⊥ .

Applying this lemma in order to haveH(i)y(i) multiple of
e1, we obtain:

H(i) = I −
2

aH(i)a(i)
a(i)aH(i) (5)

with a(i) = y(i) − ‖y(i)‖ e1. It is easy to verify that House-
holder matrices are hermitian and orthogonal. The product
in (4) becomes the following diagonal matrix:

W
H(i)W(i) = I + β

2


p2



 ‖y(i)‖2
e1e

H
1 . (6)

Finally we normalize (3), in order to have an orthonormal
matrix. The FOOja is summarized in Table 3. The FOOja
is numerically more stable than OOjaH and FDPM and has
the best performance among minor subspace tracking algo-
rithms having a computational cost of orderO(np) as illus-
trated by the simulation results.

y(i) = WH(i − 1)r(i)
z(i) = W(i − 1)y(i)
p(i) = r(i) − z(i)
T(i) = W(i − 1) − βp(i)yH(i)
a(i) = y(i) − ‖y(i)‖ e1

Z(i) = T(i) − 2
‖a‖2 [T(i)a(i)]aH(i)

D =
�
diag

�
ZH(i)Z(i)

��−1
2

W(i) = Z(i)D(i)

Table 3. The FOOja.

Remarks:
• As we can observe in (6), only the first column vector of

W(i) needs to be normalized. However a theoretical sta-
bility analysis for FOOja and FDPM algorithms proves that
such approach makes the algorithm numerically instable as
shown in Fig. 3. We observed in our experiments that nor-
malizing all the column vectors ofW(i) leads to better sta-
bility behavior (see Figures 1 and 2). For principal subspace
analysis it is not necessary to normalize all the column vec-
tor of W(i) which reduces slightly the computational cost.

• The updating equations of FDPM and FOOja in Tables 2
and 3 are for the real case. In the complex case, we need to
replacea(i) in Tables 2 and 3 by

a(i) = y(i) − ‖y(i)‖ e
j(angle(eH

1 y(i)))e1



whereangle(x) represents the phase argument of a com-
plexx.

• We should note that FDPM and FOOja have a main ad-
vantage compared to other MSA algorithms, in the sense
that the weight matrix retrieves its orthogonality when lost
thanks to the particular orthogonalization scheme that is
used in these two algorithms (see Fig. 2).

4. STABILITY ANALYSIS

4.1. Numerical stability of FOOja

Here we analyze the numerical stability of FOOja algorithm
when the first column vector ofW(i) is normalized. To
examine the numerical stability we focus on the deviation
of the algorithm from orthonormality. Let us first consider
the matrixWH(i)W(i) which, in the ideal case should be
equal to the identity. Using the equations of Table 2, and
after some straightforward manipulations we get:

W
H(i)W(i) = D(i)[H(i)WH(i − 1)W(i − 1)H(i)

+ρ ‖y‖2
e1e

H
1 + β(H(i)WH(i − 1)W(i − 1)y(i)yH(i)H(i)

+H(i)y(i)yH(i)WH(i − 1)W(i − 1)H(i))]D(i)

whereρ = −2β + β2 ‖p(i)‖2.
Let ε(i) be the deviation from orthonormality due to numer-
ical rounding errors i.e.WH(i)W(i) = I + ε(i), we obtain

ε(i) = D(i)[H(i)ε(i − 1)H(i) + I + β
2 ‖p(i)‖2 ‖y‖2

e1e
H
1

+β(H(i)ε(i − 1)Ω(i)H(i)

+H(i)Ω(i)ε(i − 1)H(i))]D(i) − I. (7)

WhereΩ(i)
△
= y(i)yH(i). SinceD

�
I + β2 ‖p(i)‖2 ‖y‖2

e1e
H
1

�
D = I, we finally obtain

ε(i) = D(i)H(i)[ε(i − 1) + β(ε(i − 1)Ω(i) + Ω(i)ε(i − 1))]

H(i)D(i)

which leads to

vec(ε(i)) = M(i)vec(ε(i − 1)) + b(i). (8)

With

M(i) = DH(i) ⊗ DH(i)(Ip2 + β(Ω(i) ⊗ Ip + Ip ⊗ Ω(i)))

b(i) represents the instantaneous error due of the normal-
ization step, i.e.D(i)

�
I + β2 ‖p(i)‖2 ‖y‖2

e1e
H
1

�
D(i) = I+

B(i), whereb(i) = vec(B(i)) andvec(.) represents the col-
umn vectorization operator.
Clearly, matrixM(i) has eigenvalues larger than1 (this can
be seen using a first order approximation with respect toβ).
Hence, the deviation from orthonormality does increase at
each iteration.
Remark: When analyzing the principal subspace, we ob-
tain the same form as in (8) but with an opposite sign ofβ.
In this case all eigenvalues ofM(i) are smaller than1 and
hence FOOja algorithm is absolutely stable for PSA.

4.2. Numerical stability of FDPM

Using a similar analysis as for FOOja algorithm, we get for
the FDPM:

vec(ε(i)) = Q(i)vec(ε(i − 1)) + b(i) (9)

whereQ(i) = D(i)H(i) ⊗ D(i)H(i) and
D(i) = diag( 1r

1−(2β−β2)
‖y(i)‖2

‖r(i)‖2

, 1, . . . , 1). We can see clearly

that 1r
1−(2β−β2)

‖y(i)‖2

‖r(i)‖2

is larger than1. Therefore we demon-

strate that this method is not stable at least when normaliz-
ing just the first column ofW(i).

4.3. Numerical stability of OOjaH

Using equations of Table 1, we formWH(i)W(i) and after
some manipulations we get:

W
H(i)W(i) = W

H(i−1)W(i−1)+4
�
‖u(i)‖2 − 1

�
v(i)vH(i)

The deviation from orthonormality can be written:

ε(i) = ε(i − 1) + 4
�
‖u(i)‖2 − 1

�
v(i)vH(i) (10)

We remark that the principal source causing the deviation
from orthonormality is the instantaneous error of normal-
ization of p̄(i) i.e. u(i) = p̄(i)

‖p̄(i)‖
. The simulations (figure

1 and 2) illustrate the effect of this instantaneous numerical
error on the deviation from orthonormality.

5. SIMULATIONS

To assess the performance of our algorithms, we calculate
the ensemble average of the performance factorsρ(i) =
1
r0

Pr0
r=1

tr(WH (i)E1E
H

1 W(i))

tr(WH (i)E2E
H

2 W(i))
andη(i) = 1

r0

Pr0
r=1 ‖W

H
r (i)

Wr(i)−I‖2
F where the number of algorithm runs isr0 = 50,

r indicates that the associated variable depends on the par-
ticular run.‖.‖F denotes the Frobenius norm, andE2 (resp.
E1) is the matrix of thep (resp.n−p) minor (resp. principal)
eigenvectors. The first performance indexρ measures the
averaged estimation accuracy of the minor subspace while
the second performance indexη measures the orthogonal-
ity of the weight matrix (for PSA, we replace inρ, E1 by
E2 and vis versa). In the simulation experiment, we have
considered aniid sequence ofn-dimensional (withn = 10)
random vectorsx(i). The random sequence is generated us-
ing a zero mean Gaussian-distribution with positive definite
covariance matrixC that is generated randomly at each run.
The minor subspace dimension is equal top = 4. The used
step size isβ = 0.7 for the step-size normalized version of
FDPM, FOOja and OOjaH (withγ = 0.65, [8]).
In Fig.1, we compare the different algorithms (MS-OOjaH,
MS-FOOja and MS-FDPM). As we can see, MS-FOOja be-
haves slightly better than MS-FDPM and MS-OOjaH.
In Fig.2 we introduce a complete deviation from orthonor-
mality at the2000 iteration. We observe that OOjaH di-
verges from orthonormality and becomes instable while FOOja



and FDPM remain stable and converge quickly to orthonor-
mality thanks to the orthogonalization step at each iteration.
In figure 3, we show by simulation the divergence from
orthogonality (i.e. W(i) becomes singular) that we have
proved when analyzing the numerical stability of the MS-
FOOja and MS-FDPM algorithms if the first column vec-
tor of W(i) is only normalized. However, for PSA, these
algorithms are absolutely stable as shown by the stability
analysis and illustrated by Fig. 4.
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Fig. 1. Performance of MS-FOOja, MS-OOjaH and MS-FDPM
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Fig. 2. Complete deviation from orthonormality
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Fig. 3. Divergence of FOOja and FDPM when only normalizing
the first column vector ofW(i)
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