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ABSTRACT

In this paper, we propose new adaptive algorithms for the ex-
traction and tracking of the least (minor) eigenvectors of a pos-
itive Hermitian covariance matrix. The proposed algorithm is
said fast in the sense that its computational cost is of order
O(np) flops per iteration where n is the size of the observa-
tion vector and p < n is the number of minor eigenvectors we
need to estimate.
This algorithm is based on a stochastic gradient technique and a
fast orthogonalization procedure that guarantees the algorithm
stability and the orthogonality of the weight matrix at each it-
eration. Despite its low computational cost, the proposed algo-
rithm is quite efficient as shown by simulation experiments and
performs better than other existing methods of higher compu-
tational complexity.

I. INTRODUCTION

Principal and minor component analysis (PCA and MCA),
which are part of the more general principal and minor sub-
space (PSA and MSA) analysis, are two important problems
that are frequently encountered in many information process-
ing fields including communications.
Indeed, Fast estimation and tracking of the principal or minor
subspace has been used, for example, in code division multiple
access (CDMA) communication where many multiuser detec-
tion algorithms are actually subspace-based [1], in the mobile
positioning [2], for blind channel equalization [3], etc.
From the computational point of view, we may distinguish be-
tween methods requiring O(n2p), O(n2), O(np2), or O(np)
operations per update. The wide range of the computational
complexity is due to the fact that some algorithms update the
complete eigenstructure, with or without the explicit compu-
tation of the sample correlation matrix, whereas other ones
track only the desired principal or minor subspace [4]. The
class of fast subspace tracking methods includes the gradi-
ent type algorithms which demand O(np) operations for the
gradient-ascent or gradient-descent step and (in the MCA case)
additional O(np2) operations for the orthogonalization of the
eigenvector estimates.
In this paper, we propose first an algorithm based on a stochas-
tic gradient technique for tracking minor components. This
new algorithm is referred to as MCA-OFRANSH (MCA-
Orthogonal Fast Rayleigh’s quotient-based Adaptive Noise
Subspace using Householder) which applies a fast orthogo-
nalization technique to the (MCA-FRANS) by conserving the

same order O(np) of the computational complexity. This or-
thogonalization results in a better numerical stability and esti-
mation accuracy. Finally, we propose an appropriate step-size
normalization in order to increase the convergence rate. Simu-
lation results are presented to assess the performance of MCA-
OFRANSH showing, in particular, that our algorithm reaches
the performance of Pastd [5] which requires O(np2) flops per
iteration.

II. ORTHOGONAL MCA-FRANS

Consider the problem of estimating the p < n minor (principal)
eigenvectors of the covariance matrix C. For that, we minimize
(maximize) the scalar function [6]

J(W) = tr(LWHCW). (1)

where L is a p × p positive diagonal matrix containing ele-
ments with different weights i.e. L = diag(l1, . . . , lp) with
l1 > l2 · · · > lp > 0 and the weight matrix W ∈ Cn×p is
an orthogonal matrix of the eigenvectors estimates. This min-
imization can be achieved by using the gradient-descent tech-
nique1, that is

W(i) = W(i − 1) − β∆J(i − 1) (2)

where β is a positive valued variable step size and the gradient
is given by (up to a scalar constant)

∆J(i) ∝ CWL. (3)

Note that, the PCA is treated similarly by changing β into −β.
Now injecting (3) into (2) and replacing C by its instantaneous
estimate at time instant i leads to

W(i) = W(i − 1) − βx(i)zH(i) (4)

where z(i) = Ly(i) and y(i) = WH(i − 1)x(i). The new al-
gorithm is called MCA-FRANS (FRANS is a subspace track-
ing algorithm based on a similar minimization function [7]).
The algorithm is numerically unstable unless orthogonalization
of the weight matrix is performed at each step. To this end, we
use the following orthogonalization method :

W(i) := W(i)(WH(i)W(i))−1/2. (5)

1The gradient is calculated as if the entries of W are free, i.e. we relax in a
first step the orthogonality constraint on W.
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The fast computation of (5) is obtained thanks to Lemma 1 [8].

Lemma 1: 1- Let R be a d-rank hermitian matrix spanned by
the column vectors p1, . . . ,pd, then the eigendecomposition of
R is given by R = EDEH , where D = diag(λ1 . . . λd) and
E = [e1 . . . ed] are computed by

E = PT

P �= [p1 . . .pd]
M = (PHP)−1PHRP = TDT−1

2- Let N = I + EDEH where E is orthonormal. Then, an
inverse square root of N is given by

N− 1
2 = I + ED

′
EH

where

D
′
= diag(

1√
1 + λ1

− 1 . . .
1√

1 + λd

− 1)

By applying Lemma 1 to WH(i)W(i) (see appendix for de-
tails), we get the Orthogonal version of MCA-FRANS summa-
rized in Table 1. Note that the computational cost of MCA-
OFRANS is approximately 4np + O(n).

y(i) = WH(i − 1)x(i)
z(i) = Ly(i)
R = −βy(i)zH(i) + z(i)yH(i)[−βIp + β2

∥∥x2(i)
∥∥ L]

P = [z(i) y(i)]
M = (PHP)−1PHRP

eig(M) = Tdiag(λ1, λ2)T−1

E = [e1 e2] = PT
Σ = diag( 1

‖e1‖ , 1
‖e2‖ )

E
′

= EΣ
�
=

[
e
′
1e

′
2

]
T

′
= TΣ

τ1 = 1√
1+λ1

− 1 τ2 = 1√
1+λ2

− 1

T
′−1 =

[
t11 t12
t21 t22

]
p = τ1W(i)e

′
1 − βt11(1 + τ1)x(i)

q = τ2W(i)e
′
2 − βt21(1 + τ2)x(i)

W(i) = W(i − 1) + pe
′H
1 + qe

′H
2 .

Table 1: The MCA-OFRANS.

III. MCA-OFRANS USING HOUSEHOLDER TRANSFORM

In terms of orthogonality errors, the MCA-OFRANS algorithm
guarantees the orthogonality of the minor subspace at each it-
eration. This insures much more stability to the algorithm
compared to its original version. However, this improvement
doesn’t mean absolute stability and the algorithm remains sen-
sitive to numerical rounding errors. This can be shown by the-
oretical derivation using a similar analysis to that in [9] and is
illustrated here by the simulation example of Figure 1. To mit-
igate the effect of rounding errors, we propose to use the nu-
merically well-behaved Householder orthogonal matrices [10].
To this end, we have proved the following result:

Lemma 2: The updating equation of the weight matrix given
by Table 1, can be reformulated as:

W(i) = H1(i)H2(i)W(i − 1) (6)

Where H1(i) and H2(i) are the Householder transforms given
by

H1(i)
�
= I − 2u(i)uH(i).

H2(i)
�
= I − 2v(i)vH(i).

Where u(i) (resp. v(i)) is the principal left singular eigenvec-
tor of R �= W(i) − W(i − 1) (resp. of Z = H1(i)W(i) −
W(i − 1)).

The fast computation of u(i) and v(i) of order O(n) is given
in Table 2 (see appendix for details).
Hence, MCA-OFRANSH (H stands for Householder) algo-
rithm can be obtained by adding the equations of Table 2 to
the previous table excluding the updating equation of the mi-
nor subspace weight matrix. In Table 2, we used the notation
Z(:, 1) to denote the first column vector of Z, w1(i − 1) to
denote the first column vector of W(i − 1) and e

′∗
1 to denote

the complex conjugate of e
′
1. The overall computational cost

of MCA-OFRANSH is 6np + O(n).

Q = [p q]

Λ =

[
λ11 λ12

λ21 λ11

]
�
=[

‖e′
1‖2‖p‖2 + e

′H
1 e

′
2q

Hp e
′H
2 e

′
1‖p‖2 + ‖e′

2‖2qHp

‖e′
1‖2pHq + e

′H
1 e

′
2‖q‖2 e

′H
2 e

′
1p

Hq + ‖e′
2‖2‖q‖2

]

Q2
�
= [λ11p + λ12q λ21p + λ22q]

Rq = (QHQ)−1QHQ2

eig(Rq) = T1diag(λq1 , λq2 )T−1
1

H = [h1 h2] = QT1

u = h1
‖h1‖

Z(:, 1) = 2u(uHpe
′∗
1 (1) + uHpe

′∗
2 (1) + uHw1(i − 1))

−pe
′∗
1 (1) − qe

′∗
2 (1)

v =
Z(:,1)

‖Z(:,1)‖
W(i) = (I − 2uuH)(I − 2vvH)W(i − 1)

Table 2: The MCA-OFRANSH.

The MCA-OFRANSH becomes numerically very stable, as
illustrated by our simulation results.

IV. NORMALIZATION OF THE STEP SIZE

We present here a normalized version of the new gradient-
descent based algorithm in order to have a faster convergence.
To this end, we inject (2) into (1) and using a variable step-size
β(i), we can write

J(i) = tr(L(WH(i − 1) − β(i − 1)∆H
J (i − 1))C

(W(i − 1) − β(i − 1)∆J(i − 1)))

= J(i − 1) − 2β(i − 1)tr
(
WH(i − 1)C∆J(i − 1)L

)
+β2(i − 1)tr

(
L∆H

J (i − 1)C∆J(i − 1)
)

. (7)

This means that J(i) is a quadratic function of β(i− 1) which
has a global minimum. Hence, the optimal step-size can be



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

found by setting ∂J(i)
∂β(i−1) to zero

βopt(i − 1) =
tr

(
WH(i − 1)C∆J(i − 1)L

)
tr (L∆H

J (i − 1)C∆J(i − 1))
. (8)

By replacing ∆J(i−1) and C by their instantaneous estimates,
we obtain finally

βopt(i) =
tr

(
L2y(i)yH(i)

)
‖x(i)‖2

tr (L3y(i)yH(i))

=
‖z(i)‖2

I

‖x(i)‖2 ‖z(i)‖2
L

(9)

where ‖z‖2
L

�= zHLz.

A. Convergence analysis
Using equations (7) and (8) we get,

J(i) = J(i − 1) − 2
tr2

(
LWH(i − 1)C∆J (i − 1)

)
tr

(
L∆H

J (i − 1)C∆J (i − 1)
) +

tr2
(
LWH(i − 1)C∆J (i − 1)

)
tr

(
L∆H

J (i − 1)C∆J (i − 1)
)

⇒ J(i) − J(i − 1) = − tr2
(
LWH(i − 1)C∆J (i − 1)

)
tr

(
L∆H

J (i − 1)C∆J (i − 1)
) .

We can easily notice that

tr2
(
LWH(i − 1)C∆J (i − 1)

)
≥ 0,∀ W,C. (10)

and, assuming C to be strictly positive definite, we have

tr
(
L∆H

J (i − 1)C∆J (i − 1)
)

> 0,∀∆J (i − 1) �= 0. (11)

Therefore

J(i) − J(i − 1) = −ε(i) where ε ≥ 0. (12)

The mean square error (MSE) will decrease at each iteration
(minimization) by a decrement of ε(i−1). Therefore, the larger
the decrement, the faster the convergence is. Since J(β) has a
global minimum, the step-size βopt(i) will lead to the maxi-
mum decrement ε(i) at each iteration. Note that the MSE will
decrease even if we replace C and the gradient by their corre-
sponding estimates. Finally, we can write

β̂opt = β
‖z(i)‖2

I

‖x(i)‖2 ‖z(i)‖2
L + γ

(13)

where β and γ are two positive constants (0 < β and γ < 1)
which help improve the numerical stability of the algorithm
[11].

V. SIMULATIONS

To assess the performance of our algorithm, we calculate
the ensemble average of the performance factors ρ(i) =

1
p.r0

∑r0
r=1 ‖Wr(i)−E2‖2 and η(i) = 1

r0

∑r0
r=1 ‖WH

r (i)Wr(i)−
I‖2, where the number of algorithm runs is set to r0 = 50, r
indicates that the associated variable depends on the particular

run. E2 is the n × p matrix of the p minor eigenvectors and
W(i) represents the n × p matrix of the p estimated principal
eigenvectors.
The first performance index ρ measures the averaged estima-
tion accuracy of the eigenvectors while the second performance
index η measures the orthogonality of the weight matrix. Note
that, as the eigenvectors are estimated up to a phase indetermi-
nacy, we remove this ambiguity (by forcing the first entry of
each eigenvector to be positive) before the comparison in the
performance factor η.
In the simulation experiment, we have considered for (Fig.1,
Fig.2 and Fig.3), an iid sequence of n-dimensional random
vectors x(i) with n = 10. The random sequence is generated
using a zero mean Gaussian-distribution with positive definite
covariance matrix C that is generated randomly at each run.
In Fig.1, we extract the p = 3 minor eigenvectors of C us-
ing the OFRANS and the OFRANSH methods with a step size
β = 0.01. As we can see, OFRANSH is numerically stable.
In Fig.2, we compare the normalized version of MCA-
OFRANSH (variable step-size (13) with: β = 0.5 and γ =
0.4) with its initial version with constant step-size β = 0.01.
Clearly the step-size normalization improves the convergence
rate of the algorithm, but slightly increases the steady state er-
ror.
For Fig.3, we compare the performance of OFRANSH (β =
0.5, γ = 0.4) with the Pastd method with a forgetting factor
α = 0.99. A similar comparison is given in Fig.4 but using
the simulation set-up proposed in [12]. The latter corresponds
to choosing (n = 4, p = 2, β = 0.4, γ = 0.4) and x(i) a
sequence of independent jointly-Gaussian random vectors with
covariance matrix

C =




0.9 0.4 0.7 0.3
0.4 0.3 0.5 0.4
0.7 0.5 1.0 0.6
0.3 0.4 0.6 0.9


 (14)

From the results of Fig.3 and Fig.4, we can see that our algo-
rithm reaches the performance of Pastd algorithm that requires
O(np2) flops per iteration instead of O(np) for our algorithm.

VI. CONCLUSION

In this paper, we present a new algorithm with low computa-
tional complexity of order O(np) for minor component anal-
ysis. The proposed algorithm is based on an existing method
(FRANS in [7]) to which we have introduced a fast orthogo-
nalization of the weight matrix plus an optimal normalization
of the step-size.
The resulting algorithm OFRANSH achieves the MCA with a
performance comparable to that of Pastd, a more expensive al-
gorithm of complexity O(np2).
We should note that η(i) is slowly increasing as shown in sim-
ulation results, it means that the MCA-OFRANSH algorithm
is not absolutely stable, one can guarantee the orthogonality by
applying periodically the Gram-shmidt orthogonalization.

VII. APPENDIX

A. Orthogonalization of FRANS algorithm

To compute (5), we use the updating equation of W(i). Keep-
ing in mind that W(i − 1) is now an orthogonal matrix, we
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Figure 1: Performance of MCA-OFRANS and MCA-
OFRANSH (p = 3, n = 10).

have (we omit the index i for simplicity)

N �= WH(i)W(i)

= I − βyzH − βzyH + β2 ‖x‖2 zzH

= I + R

R is a rank-2 Hermitian matrix and hence one can apply
Lemma 1’s result to obtain its fast eigendecomposition and to
compute the inverse square root of N according to the follow-
ing steps:

P = [z y]

M = (PHP)−1PHRP

M = Tdiag(λ1, λ2)T
−1

E = PT = [e1 e2].

As the eigenvectors T are computed up to scalar factors, one
needs to normalize the columns of E to force it to be unitary,
i.e.

Σ = diag(
1

‖e1‖ ,
1

‖e2‖ )

E
′

= EΣ and T
′
= TΣ.

Now, according to Lemma 1, we have

N
−1
2 = I + E

′
D

′
E

′H (15)

where

D
′

= diag(
1√

1 + λ1

− 1,
1√

1 + λ2

− 1)

= diag(τ1, τ2) (16)
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Figure 2: Performance of MCA-OFRANSH-Norm and MCA-
OFRANSH (p = 3, n = 10).

By substituting (15) into (5) we obtain

W(i) = W(i − 1) + τ1W(i − 1)e
′
1e

′H
1 +

τ2W(i − 1)e
′
2e

′H
2 − βxzH − βτ1xzHe

′
1e

′H
1

−βτ2xzHe
′
2e

′H
2 (17)

Using the orthonormality of E
′

(i.e., E
′HE

′
= I) we obtain

(T
′−1 = E

′HP). Hence, we can write

T
′−H =

[
t11 t12
t21 t22

]H

=
[

zHe
′
1 zHe

′
2

yHe
′
1 yHe

′
2

]
(18)

Also, by developing P = E
′
T

′−1 we get

z = t11e
′
1 + t21e

′
2. (19)

Finally, if we replace the results obtained in (18) and (19) into
(17) we obtain

W(i) = W(i − 1) + pe
′H
1 + qe

′H
2 (20)

Where

p = τ1W(i − 1)e
′
1 − βt11(1 + τ1)x(i) (21)

q = τ2W(i − 1)e
′
2 − βt21(1 + τ2)x(i) (22)

B. Householder

As stated by Lemma 2, u is calculated as the principal left
singular eigenvector of

Q
′
= W(i) − W(i − 1) (23)



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

10
0

10
1

10
2

10
3

10
4

10
−2

10
0

number of iterations

rh
o

 

 
Pastd
MCA−OFRANSH−Norm

10
0

10
1

10
2

10
3

10
4

10
−30

10
−25

number of iterations

et
a

 

 
Pastd
MCA−OFRANSH−Norm

Figure 3: Performance of MCA-OFRANSH and Pastd (p =
3, n = 10).

where Q
′
= QEH = pe

′H
1 + qe

′H
2 .

Equivalently, u can be seen as the principal eigenvector of the
rank 2 Hermitian matrix

R = Q
′
Q

′H

This can be done by using Lemma 1 results as follows:

Q = [p q]
R2 = (QHQ)−1QHRQ = (QHQ)−1QHQ2

where

Q2 = [λ11p + λ12q λ21p + λ22q]

Λ =

[
λ11 λ12

λ21 λ11

]
=[

‖e′
1‖2‖p‖2 + e

′H
1 e

′
2q

Hp e
′H
2 e

′
1‖p‖2 + ‖e′

2‖2qHp

‖e′
1‖2pHq + e

′H
1 e

′
2‖q‖2 e

′H
2 e

′
1p

Hq + ‖e′
2‖2‖q‖2

]
.

The principal eigenvectors of R are given by H = QT1 =
[h1 h2], T1 being the eigenvector matrix of R2, i.e.

eig(R2) = T1diag(λq1 , λq2)T
−1
1 .

Note that both principal eigenvectors of R can do the job,
i.e. one can choose either u = h1

‖h1‖ or u = h2
‖h2‖ .

Now, once u is computed, we can observe that

Z = H1W(i) − W(i − 1) = −2vvHW(i − 1)

is a rank-1 matrix. All column vectors of the previous matrix
are equal to v (up to scalar constant). Hence, it is sufficient to
compute only its first column vector Z(:, 1) and take v as its
normalized version, i.e. v = Z(:,1)

‖Z(:,1)‖ .

This leads to the updating equation in Table 2.
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Figure 4: Performance of MCA-OFRANSH and Pastd (p =
2, n = 4).
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