
On Bayesian Inference, Maximum Entropy and
Support Vector Machines Methods

Mihai Costache∗, Marie Liénou∗ and Mihai Datcu†,∗

∗GET-Télécom Paris - 46 rue Barrault, 75013 Paris, France
†German Aerospace Center DLR - Oberpfaffenhofen, D-82234 Wessling, Germany

Abstract. The analysis of discrimination, feature and model selection conduct to the discussion
of the relationships between Support Vector Machine (SVM),Bayesian and Maximum Entropy
(MaxEnt) formalisms. MaxEnt discrimination can be seen as aparticular case of Bayesian inference,
which at its turn can be seen as a regularization approach applicable to SVM. Probability measures
can be attached to each feature vector, thus feature selection can be described by a discriminative
model over the feature space. Further the probabilistic SVMallows to define a posterior probability
model for a classifier. In addition, the similarities with the kernels based on Kullback-Leibler
divergence can be deduced, thus returning with MaxEnt similarity.
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INTRODUCTION

The analysis of discrimination, feature and model selection -conduct to the discussion of
the relationships between different classification formalisms based on machine learning
methods, such as Support Vector Machine (SVM), Bayesian andMaximum Entropy
(MaxEnt) inference. Therefore, each of the methods can be linked with the others in a
particular manner and is characterised by similarities andparticularities.

The present article illustrates these connections with an incursion in the history of
the classification formalisms, taking into consideration the evolution from the original
simple linear classifier, the Perceptron, up to the Maximum Entropy formalism.

Each classification method is using a decision functionf whose parameters are de-
termined in the training stage and then used for classification purposes. Comparison
between different formalisms will take into considerationthe similarities and particular-
ities concerning the two steps. In order to keep it as clear and simple as possible, one
will define the learning problem in the case of the binary classification. Thus the task is
to find the decision functionf which, based on independent observationsD, assigns an
instancex of the dataD to one of the two classes denoted byy∈ {+1,-1}.

The general form of the decision functionf is given by:

f (x) = sgn(g(x)) and g(x) = (w·x+b) (1)

where ‘·’ represents the dot product andw andb are the parameters to be determined.
The sign off(x) is used to classify the input datax into two classes. The considered
formalisms have different approaches. We will be interested in the relations between
each of them and under what conditions a formalism can be seenas a particular case of
another.
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This paper is organised as follows: the next section describes the Perceptron, SVM
and Radial Basis Function (RBF) formalisms, then the third section is dedicated to
the Bayesian approach and its connections with the already introduced SVM and RBF
methods. Section four is introducing the MaxEnt formalism which can be seen as a
particular case of Bayesian approach, and its relations with SVM by means of kernel
function. In the last section, are discussed practical aspects of SVM and Bayesian
methods in Information Retrieval (IR).

SUPPORT VECTOR MACHINES

The SVM principle has his roots in the well known Perceptron formalism. The Per-
ceptron is one of the first binary linear classifiers and represents the simplest kind of
feedfoward Neural Networks. The principle is simple: an input vectorx is transposed
into an output value of the decision functionf(x) given by Eq. 1. The problem to solve in
order to perform classification is to determine the weight vectorw and the scalarb start-
ing from a training sequence. Different algorithms can be employed for this purpose:
Stochastic Gradient Descent, Mean Square Error and Cross-Entropy [3].

The SVM formalism

In the last years, much attention was devoted to the powerfulkernel-based learning
SVM formalism. The kernel-based machine learning algorithms are used for data which
are not linearly separable. For this reason a functionΦ(x) maps the data into a new
highly dimensional space where the classification task is linear. The main idea in the
SVM formalism is, based on the training set, to trace two surfaces that best delimitate the
examples in two classes so that the area between them, calledmargin area, be maximised
with minimum of training error. The instances which are on the two delimitation surfaces
are called Support Vectors (SV) and they are used in the classification step. Having the
decision functionf as f (x) = sgn(w·Φ(x)+b), one can express the condition of perfect
classification, taking into consideration the observed data used for training step, as

yi((w·Φ(xi)+b) ≥ 1 i = 1, · · · ,n (2)

with yi representing the labels of the instances. In order to meet such conditions, one
has to minimise the expected risk, thus||w||2, as stated in [4]. As the margin area is
given by 2

||w|| , the problem is translated into a margin area maximisation.Introducing the
Lagrange multipliersαi , i = 1, · · · ,n for each of the conditions in Eq. 2, one obtains:

W(α) =
1
2
||w||2−

n

∑
i

αi(yi(w·Φ(xi)+b)−1). (3)

Minimising Eq. 3 with respect tow and b and maximising it with respect to the
Lagrangian multipliers gives∑i=n

i=1αiyi = 0 and w = ∑n
i=1αiyiΦ(xi). In this way, the

problem changes to a quadratic optimisation one:

max
α

( n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiα jyiy j(Φ(xi) ·Φ(x j))
)

(4)
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subject toαi ≥ 0, i = 1, · · · ,n and∑n
i=1 αiyi = 0. The dot product from Eq. 4 is replaced

with a kernel functionK:

K(xi,x j) =< Φ(xi),Φ(x j) > (5)

In this way, the decision task in the new vectorial space can be solved with no need
of knowledge over the mapping functionΦ(x). Having solved the dual optimisation
problem given by Eq. 4, the Lagrange multipliersαi , i = 1, · · · ,n are obtained and used
to compute the decision function as follows:

f (x) = sgn(g(x)) and g(x) = (
n

∑
i=1

yiαiK(x,xi)+b). (6)

Taking into consideration that the real case data are noisy,and in order to prevent
overfitting, slack variables are introduced to relax the hard margins constraints in Eq. 2,
which becomesyi((w·Φ(xi)+b) > 1− εi , εi ≤ 0, i = 1, · · · ,n.

Based on the above observations, one can state that the Perceptron is equivalent to the
linear SVM, with the only difference appearing for the training procedure. Indeed, in the
case of Perceptron, the instances are linearly separable and only one separation surface
is determined while in the SVM approach, two separation surfaces are needed.

Based on the Perceptron, more complex methods have been derived, such as Neural
Networks. There are many types of Neural Networks, each of them with its own partic-
ularities. Among them, the particular case of RBF is considered in this paper.

Radial Basis Function

A special case of the Neural Networks is the Radial Basis Function (RBF). It consists
of a classifier for which the decision functionf can be written as follows:

f (x) = sgn(g(x)) and g(x) = (
n

∑
i=1

wi ·exp(−
||x−xi ||

2

ci
)+b) (7)

with xi representing the centre andci the variance of the Gaussian functions.
The RBF can be seen as a set of Gaussian functions which, through a weighting

process, gives an evaluation of the class to which the instancex belongs.
The connection with a special case of SVM methods can be done easily. In Eq. 6,

if the type of the employed kernel is Gaussian, then the equivalence between SVM
with Gaussian kernel and RBF is evident. In the case of the SVMwith Gaussian
kernel, the SVs represent in the original space, centres of Gaussian distributions. So
the output of the method consists in a linear combination of Gaussian functions as in the
case of RBF. The problem is to determine first the Gaussian components and second,
the corresponding weights. As shown in [6], the centres of the Gaussian functions
determined by SVM and by RBF formalisms correspond.

BAYESIAN APPROACH

This section describes the Bayesian approach and the connections which can be estab-
lished with SVM and Neural Network methods.
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Bayesian formalism

The Bayesian formalism is suitable for modelling high complexity data. The problems
that usually arise when interpreting the data are to choose the correct model and to
determine the right parameters of the model. Bayesian framework fits very well for
accomplishing these two tasks by means of two level of inference.

The first level is assuming that the model which best suits theobserved dataD
is known. The problem is to find the set of parametersw which corresponds to the
considered modelM. Using Bayes rule one can write:

p(w|D,M) =
p(D|w,M)p(w|M)

p(D|M)
(8)

Infering the model’s parameters of the data implies making assumptions on:

• the likelihood functionp(D|w,M) - how the data are generated for the assumed
model

• thea priori informationp(w|M) - representing the prior belief of how parameters
are best representing the correct model before any observation is done.

At the second level which is the model selection level, the Bayes rule is used to infer the
model which best suits the observed data. The equation describing this level is given by
the posteriori belief :

p(M|D) =
p(D|M)p(M)

p(D)
(9)

where the quantityp(D|M), called the model likelihood or the evidence, is calculatedby
integrating over the space of model’s parametersw asp(D|M)=

∫

p(D|w,M)p(w|M)dw.
The good model is the one with the highest posterior belief value. Considering the real
case data with noise and the fact that the noise is normal distributed∝ N(0,σ2)(as it
will be considered for the rest of this paper) the consideredmodel will map the instance
x into an outputy with the probability given byp(y|w,x,M) = ( 1

2πσ2 )
1/2exp(− 1

2σ2 (y−

g(x,w))2).
The likelihood expression is obtained byp(D|w,M) = ∏n

i=1 p(yi |w,xi,M). Taking into
account the Bayes rule, the posterior distribution is proportional to:

p(w|D,M) ∝ p(D|w,M)p(w|M) (10)

An estimation ofw using the posterior distribution can be done by employing the Maxi-
mum a Posteriori (MAP) estimator. Maximising the expression in Eq. 10 is equivalent to
minimising its negative logarithm, thus obtaining the following optimisation problem:

minw

(

1
2σ2 ∑n

i=1 |yi −g(xi)|
2 + Ω(w)

)

with Ω(w) = 1
2||w||

2 representing the regular-

ization component.

Bayesian versus SVM

A very nice connection can be established between SVM and Bayesian formalisms.
This is due to the fact that probability measures can be attached to the SVs, thus
allowing posterior probability measure as the output of theclassification task [1, 13].
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Moreover the classification task is done by solving a functional which is regularised. The
choice of the regularization parameter and the kernel type can be done via the Bayesian
perspective. Based on the infered models and parameters, the probabilistic class output
can be generated.

In the case of probabilistic binary classification, the likelihood evaluation is given by:

p(y|g) =
1

1+exp(−y·g)
. (11)

The loss function defined asl = −ln(p(y|g)) indicates the loss in the classification
process. In order to make the inference e.g. kernel type and parameters, a Bayesian
framework is considered as described below. As before,g is considered to be the result
of random variables in a zero-mean Gaussian stochastic process. Thus it is described by
the covariance matrixΣ. As presented in [1], the infered parameters are collected in a
vectorw which gives the prior probability as in:

p(g|w) =
1
Zg

exp(−
1
2

gTΣg) (12)

with g = [g(x1),g(x2), · · · ,g(xn)], the covariance matrixΣ andZg = (2π)
n
2 |Σ|

1
2 . Intro-

ducing the loss function in the likelihood, one can obtainp(D|g,w) = ∏n
i=1 p(yi |g(xi)).

Using the last two equations in Bayes formula, the posteriorprobability can be written as
follows p(g|D,w) ∝ exp(1

2gTΣg+∑n
i=1 l(yi ·g(xi))). By maximising it, the MAP estima-

tor is obtained. The maximisation problem is equivalent with minimising the exponential
factor as given below:

min
g

(1
2

gTΣg+
n

∑
i=1

l(yi ·g(xi))
)

(13)

It can be seen that the optimisation problem in Eq. 13 is similar with the one presented
in the case of SVM expressed by Eq. 3. In a similar manner, Lagrange multipliers and
slack variables are introduced and the dual problem is solved.

In order to inferw, the posterior probabilityp(D|w)is maximised. As this expression
is not known, using Bayes rule one can solve the problem by maximising the likelihood
functionp(D|w) = 1

Zg

∫

exp(−S(g))dgwith S(g) = 1
2gTΣ−1g+∑n

i=1 l(yi ·g(xi)).

As mentioned before, only the SVs will be used in the estimation ofw instead of allgi
determined coefficients. The classification can be done via probabilistic class prediction
by computingp(y|D,w) as presented in [1].

One important difference is that while the Bayesian is usingall the training data to
infer the model, the SVM is using only the determined SVs for the same purpose.

Bayesian versus RBF

RBF represents a special case of Neural Networks with the decision function having

the expressionf = sgn(g(x))with g(x) = ∑n
i=1wi ·exp(− ||x−xi ||

2

ci
)+b.

In a similar manner, taking into account the connections between SVM and RBF,
and the Bayesian representation of the SVM formalism, one can obtain a description of
the RBF in Bayesian terms. It is possible to express the posterior distribution under the
assumption of Gaussian noise in the same way as in the case of SVM:
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log p(w|D) = −
n

∑
i=1

(yi −g(xi))−
1
2

wTw (14)

Training RBF from Bayesian point of view is equivalent to theproblem of infering the
parameters involved ing(x). However there are cases in RBF applications where the
Gaussian parametersci are considered constants and thus there is no need to infer them.

MAXIMUM ENTROPY

Maximum entropy can be seen as a special case of Bayesian formalism and as well can
be derived from SVM by introducing a special case of kernel function.

MaxEnt versus Bayesian

The MaxEnt formalism introduced in [8, 12] and [10] is a method used to infer
an unknown probability density function subject to a set of constraints. Noa priori
knowledge of the density functions is made. As previous, by denoting the data by
vectorsxi , finding the probability density functionq∗ which best describes the data
with the imposed constraints, comes to finding among the constraints complying density
function, the one with the highest entropy:

H(q) = −
n

∑
i=1

q(xi)log(q(xi)) (15)

The constraints imposed to the unknown probability densityfunction are given as a
set of expectations. The number of the imposed constraints is denoted bym:

∫

βkq
∗(x)dx= β ∗

k (16)

with k = 1· · ·m, βk andβ ∗
k represent a set of known functions and a set of known

constants respectively. The normalising condition is given by
∫

q(x)dx= 1.
Now considering the Lagrangian multipliers determined by the constraint equations,

the solution obtained is given byq(x) = p(x)Z−1exp−αβ with andZ = exp(µ) andµ
given byµ = log(

∫

p(x)exp(−∑m
k=1 αkβk))dx.

This is similar to the solution obtained in the case of SVM with a modified kernel
function. Using the entropy concentration theorem [11], itcan be checked that the
possible distributions are concentrated strongly near themaximum value of entropy.
Considering a random experiment withN trials and each i-th result occurringNi =
N ·ϕi times, 1≤ i ≤ n, considering all possiblenN outputs, the number which yields a
particular set of frequenciesϕi called the multiplicity factor is given byW(ϕ1, · · · ,ϕn) =

N!
(Nϕ1!)···(Nϕn!) . Using the Stirling approximation in the case ofN → ∞, it is obtained:

N−1log(W) → H (17)

Considering two sets of frequenciesϕi andϕ ′

i one obtains the qualitative expression
of the entropy concentration theorem

W

W′ ∼ A ·exp(N(H −H
′
)) (18)
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It will be shown that the MaxEnt estimator is a particular case of the Bayesian in-
ference case. One important aspect of the MaxEnt formalism is that it is not taking
into account the noise present in the data. This is differentfrom the Bayesian ap-
proach where the noise is taken into account and moreover itsdistribution is known
and considered Gaussian. In order to incorporate the noise into MaxEnt formalism,
the expression of constraints given in Eq. 16 is changed, by introducing the error
vector ek =

∫

βk(x)q∗(x)dx− β ∗
k with k = 1, · · ·m. Considering the noise as having

a normal distribution,ek ∼ N(0,σk), the following quadratic form is definedQ =
1
2 ∑m

k=1 σ−2
k (

∫

βk(x)q∗(x)dx−βk)
2. Taking into account thea priori informationI and

the dataD, the posterior probability of entropyH, employing Bayesian formalism is
proportional to:

p(solution|D, I) ∝ exp(NH−Q) (19)

In Eq. 18 the prior probability is represented by the termexp(NH)while the likelihood
by exp(-Q). In the situation when the considered noise is absent (Q=0) the solution is
similar with the one given by the MaxEnt formalism in Eq. 17. So it is shown that the
MaxEnt formalism is included in the Bayesian one as a particular case. In the same
way, the Bayesian results given by Eq. 19 can be interpreted as MaxEnt formalism. It
can be pointed out that in a variational problem, a new constraint does not change the
MaxEnt solution if it is already complying with the MaxEnt constraint. Equation 19
finds a maximum entropyH for which the noise is at a levelQ0. This can be regarded as
a maximisation problem of entropyH with the constraint that the noise is maintained at
the same levelQ0. Thus Bayesian formalism can be seen as a MaxEnt with constraints
concerning the noise component.

MaxEnt versus SVM

Another interesting link can be established between the SVMand MaxEnt for-
malisms.

Instead of using classical kernel function as in SVM, one canconstruct a new mapping
procedure where the computation of the kernel function is done by employing a distance
measure in the space of probability density functions [5]. This means that for each
instance the probability density function is computed and then used in the classification
process. As in the previous section, the transition from theclassical kernel functions
to the one which is based on probability density functions isdescribed byK(xi ,x j) →
K(p(x|wi), p(x|w j)), with wi representing as before the model’s parameters andp(x|w)
can be assumed to be single full covariance Gaussian model asshown in [5].

As the feature space where the kernel function is computed isa statistical one, one
can compute a distance: the Kullback-Leibler (KL) symmetric divergence in order
to compare the two distributions. The expression is given byKL(p(x|wi), p(x|w j)) =
∫ ∞
−∞ p(x|wi)log(

p(x|wi)
p(x|w j)

)dx+
∫ ∞
−∞ p(x|w j)log(

p(x|w j)
p(x|wi)

)dx. Now in the expression of the
Gaussian kernel, if the Euclidean distance is replaced withthe new statistical one,

one obtainsK(xi ,x j) = exp(−
KL(p(x|wi),p(x|w j))

2γ2 ). The obtained Kernel is a valid one [5]
because the kernel matrix is a positive definite matrix and thus complies with the Mercer
condition for kernels. Taking into consideration the optimisation problem presented in
the case of SVM with Gaussian kernel by replacing the kernel with the new one, one
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obtains an optimisation problem similar to the one presented in the case of MaxEnt
formalism.

DISCUSSIONS

The presented formalisms have a wide range of applications in image understanding sys-
tems. They are employed for classification, feature selection purposes and for Relevance
Feedback (RF) problem in Content Based Image Retrieval System (CBIR).

SVM methods have been used in different RF systems with good results in discrim-
inating relevant images within the database [7, 14]. In the same time, Bayesian RF al-
gorithms have been proposed in [15]. RF algorithms are employed in CBIR retrieval
systems in order to enhance the retrieval capabilities by human - machine interaction.
The user is involved in the retrieval process by annotating the retrieved documents as
relevant or irrelevant in order to increase the retrieval precision.

For comparison purposes, two data sets are considered as described below. The first
one is obtained from gray level data of a SPOT5 scene. Each pixel in the image is
described by three features corresponding to the three bands used (Red, Green and near
Infrared). Overall, a total number of 200 points are used forrepresenting two classes:
water and forest. The second set corresponds to cropped SPOT5 scenes into small images
with a dimension of 64x64 pixels. A total number of 200 small images representing
classes of sea and city is obtained, with 100 images per class. The texture features of
Quadrature Mirror Filters (QMF) (8) and Haralick matrix of co-occurrence (78) are used
to describe the information within an image thus giving a 86-feature vector.

For each case, the data set was divided into two parts: one with 40 examples (20
examples per class) used for training procedure and the other with the rest of data used
for retrieval purposes. Precision-Recall curves are considered as a good tool to evaluate
the properties of a retrieval system. Let us denote the retrieved images byA and the
relevant ones byB. The precisionP is defined as the fraction of retrieved images which
are relevant and the recallRas the fraction of relevant images which have been retrieved:
P = |A

⋂

B|
|A| and R= |A

⋂

B|
|B| .

Figure 1 illustrates the Precision - Recall curves in the case of the previous described
data when SVM based RF and Bayesian based RF are employed. On the left hand side
of the picture, the curves are traced when using the first dataset; and on the right hand
side similar curves are ploted for the second data set.

From these results, it can be seen that the dimensionality ofthe feature vector does not
influence the retrieval capabilities when employing SVM based RF. On the other hand,
Bayesian based RF is affected by the high demensionality andin the case of 86-feature
vector the retrieval capabilities are not so performant.

One major disadvantage of Bayesian methods over SVM methodsused in RF is
that for high dimensional data, Bayesian approach is not performing well, while SVM
provides good results for highly dimensional data.
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Figure 1. Precision - Recall curves for the case of 3 dimensional feature space (left hand side) and the
case of 86 texture features (right hand side). The Bayes discriminant performs better for small dimensional
data while SVM is not greatly influenced by the dimensionality of the data.
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