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Abstract. The analysis of discrimination, feature and model selactionduct to the discussion

of the relationships between Support Vector Machine (SVBgyesian and Maximum Entropy

(MaxEnt) formalisms. MaxEnt discrimination can be seenparéicular case of Bayesian inference,
which at its turn can be seen as a regularization approaditable to SVM. Probability measures

can be attached to each feature vector, thus feature sglexdn be described by a discriminative
model over the feature space. Further the probabilistic @tivs to define a posterior probability

model for a classifier. In addition, the similarities withetlkernels based on Kullback-Leibler
divergence can be deduced, thus returning with MaxEnt aiityl
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INTRODUCTION

The analysis of discrimination, feature and model selecttonduct to the discussion of
the relationships between different classification forams based on machine learning
methods, such as Support Vector Machine (SVM), BayesianMaximum Entropy
(MaxEnt) inference. Therefore, each of the methods cannedi with the others in a
particular manner and is characterised by similarities@articularities.

The present article illustrates these connections withnaarsion in the history of
the classification formalisms, taking into consideratiba &volution from the original
simple linear classifier, the Perceptron, up to the Maximuntidpy formalism.

Each classification method is using a decision funcfiovhose parameters are de-
termined in the training stage and then used for classifiogburposes. Comparison
between different formalisms will take into consideratiba similarities and particular-
ities concerning the two steps. In order to keep it as cledrsample as possible, one
will define the learning problem in the case of the binary sifesation. Thus the task is
to find the decision functioh which, based on independent observatibngssigns an
instancex of the dataD to one of the two classes denotedyby {+1,-1}.

The general form of the decision functibrms given by:

f(x) =sgrig(x)) and gx) = (w-x-+b) (1)

where *’ represents the dot product amdandb are the parameters to be determined.
The sign off(x) is used to classify the input datainto two classes. The considered
formalisms have different approaches. We will be intekstethe relations between
each of them and under what conditions a formalism can beasearparticular case of
another.
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This paper is organised as follows: the next section dessiibe Perceptron, SVM
and Radial Basis Function (RBF) formalisms, then the thedtisn is dedicated to
the Bayesian approach and its connections with the alreadyduced SVM and RBF
methods. Section four is introducing the MaxEnt formalismick can be seen as a
particular case of Bayesian approach, and its relations $MM by means of kernel
function. In the last section, are discussed practical d@spef SVM and Bayesian
methods in Information Retrieval (IR).

SUPPORT VECTOR MACHINES

The SVM principle has his roots in the well known Perceptronrfalism. The Per-
ceptron is one of the first binary linear classifiers and regmés the simplest kind of
feedfoward Neural Networks. The principle is simple: anuinpectorx is transposed
into an output value of the decision functit{r) given by Eq. 1. The problem to solve in
order to perform classification is to determine the weigltteew and the scaldb start-
ing from a training sequence. Different algorithms can beleyed for this purpose:
Stochastic Gradient Descent, Mean Square Error and Craisegy [3].

The SVM formalism

In the last years, much attention was devoted to the powkselulel-based learning
SVM formalism. The kernel-based machine learning algorgtare used for data which
are not linearly separable. For this reason a functgr) maps the data into a new
highly dimensional space where the classification tasknisali. The main idea in the
SVM formalism is, based on the training set, to trace twoasg$ that best delimitate the
examples in two classes so that the area between them, callgih area, be maximised
with minimum of training error. The instances which are aatilio delimitation surfaces
are called Support Vectors (SV) and they are used in theifit@égon step. Having the
decision functiorf as f(x) = sgnw- ®(x) +b), one can express the condition of perfect
classification, taking into consideration the observed daed for training step, as

Vi((w-®d(x)+b)>1 i=1---,n (2)
with y; representing the labels of the instances. In order to mex#t sonditions, one

has to minimise the expected risk, thihxs||?, as stated in [4]. As the margin area is
given byH—VZ\M, the problem is translated into a margin area maximisablmroducing the

Lagrange multipliersi, i = 1,--- ,nfor each of the conditions in Eq. 2, one obtains:
1 n
W(a)=QIIWIIZ—Zai(yi(W-¢(Xa>+b>—l>~ 3)
|

Minimising Eq. 3 with respect tav and b and maximising it with respect to the
Lagrangian multipliers giveS{—1aiyi =0 and w= 3" ; aiyi®(x). In this way, the
problem changes to a quadratic optimisation one:

n

max(.;“i—%i aiaiyy; (©(4) - ©(x)))) @

a i i,]=1
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subject toa; > 0,i=1,---,nandy ; aiyi = 0. The dot product from Eq. 4 is replaced
with a kernel functiorK:

K(Xivxj):< CD(X@),CD(XJ')> (5)

In this way, the decision task in the new vectorial space aassdived with no need
of knowledge over the mapping functieh(x). Having solved the dual optimisation
problem given by Eq. 4, the Lagrange multipliersi = 1,--- ,n are obtained and used
to compute the decision function as follows:

f(x) =sgng(x)) and dx) = Ziy'o" (X:%) +b). (6)

Taking into consideration that the real case data are naigy,in order to prevent
overfitting, slack variables are introduced to relax thelmargins constraints in Eq. 2,
which becomeg;(w- ®(x)+b) >1—¢g, &<0,i=1---,n

Based on the above observations, one can state that theo®erncis equivalent to the
linear SVM, with the only difference appearing for the tiamprocedure. Indeed, in the
case of Perceptron, the instances are linearly separathlerdy one separation surface
is determined while in the SVM approach, two separationes@s are needed.

Based on the Perceptron, more complex methods have beeediesuch as Neural
Networks. There are many types of Neural Networks, eacheshtvith its own partic-
ularities. Among them, the particular case of RBF is congidén this paper.

Radial Basis Function
A special case of the Neural Networks is the Radial Basis tam¢RBF). It consists
of a classifier for which the decision functiértan be written as follows:

2
f() = sgrg(x) and gx) = ZW exp- P20 )

with X; representing the centre agdhe variance of the Gaussian functions.

The RBF can be seen as a set of Gaussian functions which gthr@wveighting
process, gives an evaluation of the class to which the instabelongs.

The connection with a special case of SVM methods can be dasit/.eln Eq. 6,
if the type of the employed kernel is Gaussian, then the adpivce between SVM
with Gaussian kernel and RBF is evident. In the case of the SMM Gaussian
kernel, the SVs represent in the original space, centresapis§dan distributions. So
the output of the method consists in a linear combinationai<sian functions as in the
case of RBF. The problem is to determine first the Gaussiarpoaents and second,
the corresponding weights. As shown in [6], the centres ef @aussian functions
determined by SVM and by RBF formalisms correspond.

BAYESIAN APPROACH

This section describes the Bayesian approach and the doymsewhich can be estab-
lished with SVM and Neural Network methods.
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Bayesian for malism

The Bayesian formalism is suitable for modelling high coextly data. The problems
that usually arise when interpreting the data are to chooesecorrect model and to
determine the right parameters of the model. Bayesian framefits very well for
accomplishing these two tasks by means of two level of imfeze

The first level is assuming that the model which best suitsaieerved datd
is known. The problem is to find the set of parameters/hich corresponds to the
considered modé¥l. Using Bayes rule one can write:

p(Dlw, M)p(wiM)
p(DM) (8)

p(w[D,M) =

Infering the model’s parameters of the data implies makssymptions on:

» the likelihood functionp(D|w,M) - how the data are generated for the assumed
model

- thea priori information p(w|M) - representing the prior belief of how parameters
are best representing the correct model before any obssrvatdone.

At the second level which is the model selection level, thgeBaule is used to infer the
model which best suits the observed data. The equationidegrthis level is given by

the posteriori belief :
p(D[M)p(M)
MD) = ——F—~= 9
PMID) = ==5) ©)
where the quantitp(D|M), called the model likelihood or the evidence, is calculdted
integrating over the space of model’s parameteasp(D|M) = [ p(D|w, M) p(w|M)dw
The good model is the one with the highest posterior belikferaConsidering the real
case data with noise and the fact that the noise is normaltuittd 0 N(0, 02)(as it
will be considered for the rest of this paper) the considenedel will map the instance
x into an output with the probability given byp(y|w,x, M) = (55 )/ 2ex— 55, (y —
g(x,w))?).
The likelihood expression is obtained pyD|w, M) = i, p(Vi|w, X, M). Taking into
account the Bayes rule, the posterior distribution is propoal to:

p(w[D,M) O p(D|w, M) p(w|M) (10)

An estimation ofw using the posterior distribution can be done by employimg\axi-
mum a Posteriori (MAP) estimator. Maximising the expressioEq. 10 is equivalent to
minimising its negative logarithm, thus obtaining the d@ling optimisation problem:

Miny <2%2 SN lyi— g(xi)\2+Q(W)) with Q(w) = 3||w||2 representing the regular-
ization component.

Bayesian versus SVM

A very nice connection can be established between SVM anéd®ay formalisms.
This is due to the fact that probability measures can be fathdto the SVs, thus
allowing posterior probability measure as the output of ¢laessification task [1, 13].
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Moreover the classification task is done by solving a fumalavhich is regularised. The
choice of the regularization parameter and the kernel tgpebe done via the Bayesian
perspective. Based on the infered models and parametergrdbabilistic class output
can be generated.

In the case of probabilistic binary classific?tion, thelitkeod evaluation is given by:

p(y|g) 1+ exd—y 0" (11)

The loss function defined ds= —In(p(y|g)) indicates the loss in the classification
process. In order to make the inference e.g. kernel type amahyeters, a Bayesian
framework is considered as described below. As befpre considered to be the result
of random variables in a zero-mean Gaussian stochastieggso€hus it is described by
the covariance matriX. As presented in [1], the infered parameters are collected i
vectorw which gives the prior probability as in:

1 1
p(glw) = Zexp(—égTZg) (12)

with g = [g(X1),9(X2),---,9(X)], the covariance matriX andZg = (Zn)g\zﬁ. Intro-
ducing the loss function in the likelihood, one can obta(B®|g,w) = 1L, P(Yi|g(Xi)).
Using the last two equations in Bayes formula, the post@robability can be written as
follows p(g|D,w) O exr_(%gTZg—i— S, 1(yi-9(x))). By maximising it, the MAP estima-
tor is obtained. The maximisation problem is equivalenbwiinimising the exponential

factor as given below: 1 n
: 4T . Al
min (29 Zg+i;|(y| Q(N))) (13)

It can be seen that the optimisation problem in Eq. 13 is aimwith the one presented
in the case of SVM expressed by Eg. 3. In a similar manner,dragg multipliers and
slack variables are introduced and the dual problem is dolve

In order to inferw, the posterior probabilitp(D|w)is maximised. As this expression
is not known, using Bayes rule one can solve the problem byrmamg the likelihood
function p(Djw) = £ | exp(—S(g))dgwith S(g) = 397 = 1g+ 374 1(yi-g(x))-

As mentioned before only the SVs will be used in the estlmmrfw instead of alb;
determined coefficients. The classification can be doneralbgbilistic class prediction
by computingp(y|D,w) as presented in [1].

One important difference is that while the Bayesian is usilhghe training data to
infer the model, the SVM is using only the determined SVs fiar $ame purpose.

Bayesian versus RBF

RBF represents a special case of Neural Networks with thisidedunction having

the expressioh= sgn(g(x))with g(x) = 3., Wi - exp(— I X'” )+ b.

In a similar manner, taking into account the connectlonsvben SVM and RBF,
and the Bayesian representation of the SVM formalism, oneob#ain a description of
the RBF in Bayesian terms. It is possible to express the poststribution under the
assumption of Gaussian noise in the same way as in the cas&bf S
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n

09 pwiD) =~ § (v~ x) ~ pw'w (14

Training RBF from Bayesian point of view is equivalent to reblem of infering the
parameters involved ig(x). However there are cases in RBF applications where the
Gaussian parametegsare considered constants and thus there is no need to iefar th

MAXIMUM ENTROPY

Maximum entropy can be seen as a special case of Bayesiaalismand as well can
be derived from SVM by introducing a special case of kernetfion.

MaxEnt ver sus Bayesian

The MaxEnt formalism introduced in [8, 12] and [10] is a methased to infer
an unknown probability density function subject to a set onstraints. Noa priori
knowledge of the density functions is made. As previous, bgating the data by
vectorsx;, finding the probability density functiog® which best describes the data
with the imposed constraints, comes to finding among thetainss complying density
function, the one with the highest entropy:

H(@) =~ 5. a(x)log(a(x) (15)

The constraints imposed to the unknown probability derfsition are given as a
set of expectations. The number of the imposed constramisnoted byn:

| B ()ax= B¢ (16)

with k=1---m, B and B¢ represent a set of known functions and a set of known
constants respectively. The normalising condition is gibg [ q(x)dx= 1.

Now considering the Lagrangian multipliers determinedhmy ¢onstraint equations,
the solution obtained is given lyx) = p(x)Z~texp % with andZ = exp(u) and u
given by = log( f p(x)exp(— 1 ; aiB))dx

This is similar to the solution obtained in the case of SVMhaat modified kernel
function. Using the entropy concentration theorem [11]cah be checked that the
possible distributions are concentrated strongly neamtagimum value of entropy.
Considering a random experiment with trials and each i-th result occurring =
N - ¢; times, 1< i < n, considering all possibleN outputs, the number which yields a
particular set of frequencidg called the multiplicity factor is given bW (¢, -+, ¢n) =
(NWL, Using the Stirling approximation in the caseMf— , it is obtained:

1!)--(N¢n!)
N~tog(W) —H (17)

Considering two sets of frequencig¢sand ¢i’ one obtains the qualitative expression
of the entropy concentration theorem

\%NA-exr_(N(H—H/)) (18)
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It will be shown that the MaxEnt estimator is a particularead the Bayesian in-
ference case. One important aspect of the MaxEnt formalsthat it is not taking
into account the noise present in the data. This is diffefeorh the Bayesian ap-
proach where the noise is taken into account and moreoveisitsbution is known
and considered Gaussian. In order to incorporate the notseMaxEnt formalism,
the expression of constraints given in Eq. 16 is changed,nbpducing the error
vector e = [ Bu(X)g*(x)dx— B¢ with k = 1,---m. Considering the noise as having
a normal distributiong ~ N(0, gi), the following quadratic form is define® =
%z{(“:l a{z(fﬁk(x)q*(x)dx— By)?. Taking into account tha priori information! and
the dataD, the posterior probability of entropyl, employing Bayesian formalism is
proportional to:

p(solutionD,!) 0 expgNH — Q) (19)

In Eq. 18 the prior probability is represented by the tesqp(NH)while the likelihood
by exp(-Q) In the situation when the considered noise is abggr0] the solution is
similar with the one given by the MaxEnt formalism in Eqg. 16.i6is shown that the
MaxEnt formalism is included in the Bayesian one as a pdeiccase. In the same
way, the Bayesian results given by Eq. 19 can be interpresedaxEnt formalism. It
can be pointed out that in a variational problem, a new cairgtdoes not change the
MaxEnt solution if it is already complying with the MaxEnt restraint. Equation 19
finds a maximum entropM for which the noise is at a lev€)y. This can be regarded as
a maximisation problem of entrogy with the constraint that the noise is maintained at
the same leve)g. Thus Bayesian formalism can be seen as a MaxEnt with camstra
concerning the noise component.

MaxEnt versus SVM

Another interesting link can be established between the SAfid MaxEnt for-
malisms.

Instead of using classical kernel function as in SVM, oneamarstruct a new mapping
procedure where the computation of the kernel function reedny employing a distance
measure in the space of probability density functions [J]isTmeans that for each
instance the probability density function is computed drehtused in the classification
process. As in the previous section, the transition fromdhssical kernel functions
to the one which is based on probability density functiondescribed by (x;,Xj) —
K(p(x|wi), p(x|w;j)), with w; representing as before the model’'s parameterspgrioy)
can be assumed to be single full covariance Gaussian modiebas in [5].

As the feature space where the kernel function is computedstisttistical one, one
can compute a distance: the Kullback-Leibler (KL) symneettivergence in order
to compare the two distributions. The expression is giverKhyp(x/w;), p(x|w;)) =

=, p(x|wi)log(5((;(|‘\‘l’vv;)))dx+ 1=, p(xiwj)log( E((f(‘|"v‘\',ii)))dx Now in the expression of the

Gaussian kernel, if the Euclidean distance is replaced thiéhnew statistical one,

one obtaind (x;, ;) = exy— KL(p(X'gi;gp(X‘Wi))). The obtained Kernel is a valid one [5]
because the kernel matrix is a positive definite matrix and tomplies with the Mercer
condition for kernels. Taking into consideration the opsiation problem presented in

the case of SVM with Gaussian kernel by replacing the kern#l the new one, one
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obtains an optimisation problem similar to the one preskmethe case of MaxEnt
formalism.

DISCUSSIONS

The presented formalisms have a wide range of applicatioinsage understanding sys-
tems. They are employed for classification, feature selequrposes and for Relevance
Feedback (RF) problem in Content Based Image Retrievae8y&EBIR).

SVM methods have been used in different RF systems with gesults in discrim-
inating relevant images within the database [7, 14]. In tmaestime, Bayesian RF al-
gorithms have been proposed in [15]. RF algorithms are eysglan CBIR retrieval
systems in order to enhance the retrieval capabilities lmgamu- machine interaction.
The user is involved in the retrieval process by annotativegretrieved documents as
relevant or irrelevant in order to increase the retrievatmion.

For comparison purposes, two data sets are considered @sbededsbelow. The first
one is obtained from gray level data of a SPOT5 scene. Eaa pixhe image is
described by three features corresponding to the threeshes®tl (Red, Green and near
Infrared). Overall, a total number of 200 points are usedépresenting two classes:
water and forest. The second set corresponds to cropped®f@iies into small images
with a dimension of 64x64 pixels. A total number of 200 smaibges representing
classes of sea and city is obtained, with 100 images per. classtexture features of
Quadrature Mirror Filters (QMF) (8) and Haralick matrix a-occurrence (78) are used
to describe the information within an image thus giving af@&ture vector.

For each case, the data set was divided into two parts: orre4d@itexamples (20
examples per class) used for training procedure and the wittethe rest of data used
for retrieval purposes. Precision-Recall curves are ciemsd as a good tool to evaluate
the properties of a retrieval system. Let us denote theeketd images by and the
relevant ones bia. The precisiorP is defined as the fraction of retrieved images which
are relevant and the rec&las the fraction of relevant images which have been retrieved

_ |ANB _ |ANB|
P= Al and R= B

Figure 1 illustrates the Precision - Recall curves in the aithe previous described
data when SVM based RF and Bayesian based RF are employelle Gaftthand side
of the picture, the curves are traced when using the firstsittaand on the right hand
side similar curves are ploted for the second data set.

From these results, it can be seen that the dimensionalibedéature vector does not
influence the retrieval capabilities when employing SVMdihRF. On the other hand,
Bayesian based RF is affected by the high demensionalityratid case of 86-feature
vector the retrieval capabilities are not so performant.

One major disadvantage of Bayesian methods over SVM metused in RF is
that for high dimensional data, Bayesian approach is ndopamng well, while SVM
provides good results for highly dimensional data.
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Figurel. Precision - Recall curves for the case of 3 dimensional featpace (left hand side) and the
case of 86 texture features (right hand side). The Bayesmiis@ant performs better for small dimensional
data while SVM is not greatly influenced by the dimensiogaiitthe data.
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