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ABSTRACT

The efficiency of most pitch estimation methods falls if the analyzed
frame becomes short and for a wide fundamental frequency (F0)
search range. The herein proposed method is designed to address
the pitch estimation task within such adverse circumstances: a60 ms
target frame length and a full71/4-octaves range. TheF0 estimation
method includes the joint use of a periodicity analysis and of a spec-
tral matching process. The parametric approach allows to take into
account the inharmonic model of piano sounds. Evaluation results
and a comparison with other estimators lead to discuss and make a
link between the methods, their behaviors and typical errors.

Index Terms— audio processing, pitch estimation

1. INTRODUCTION

Numerous methods dedicated to fundamental frequency (F0) esti-
mation of periodic signals try to capture the temporal or spectral
replication properties by maximizing a function of either domain. So
doing, they measure a degree of internal resemblance in the wave-
form (ACF [1, 2], AMDF [3, 4], cepstrum [5]) or in the spectrum [6].
When confronting to real world melodic musical sounds, these tech-
niques have to face deviations from theoretical context as for in-
stance the noise, both stationary and non stationary, which often is
an inseparable companion of the frequency content, the latter being
in a number of cases departing from exactly uniform (harmonic) dis-
tribution.

Developpement and applications of the quoted methods often
deal with an extension to subband processing [2, 7], to an optimiza-
tion of the main function [4, 7] or to the joint use of both time and
frequency domains [8]. Typical errors that usually occur give a gen-
eral idea of the difficulties theF0 estimation task must cope with.
Temporal or spectral methods tend to make sub-octave or octave
errors respectively. Both of them suffer from the largeF0 search
range (e.g.27-4200 Hz for the piano), from non-regular spectral en-
velopes and inharmonic deviation of the frequency components must
be taken into account [6, 9]. In addition, a short analysis frame pre-
vents spectral methods from resolving components for lowF0 values
whereas the uniformely-distributed discrete time scale used by tem-
poral methods makes the estimation fail above someF0 limit.

The newF0 estimation algorithm here described aims at enhanc-
ing F0 estimation results in the case of a short analysis window and
largeF0 search range. Piano sounds will be focused on since they
present all the listed difficulties and usually cause one of the worst
estimation error rates per instrument (e.g. see [8]). The pitch of a
harmonic or quasi-harmonic sound is an attribute that only depends
on the sinusoidal components of the signal. Thus a pitch estimator

only requires the parameters of those components such as frequency,
amplitude, damping factor and initial phase. So far, the other part of
the sound, including the ambient noise, transients, etc. has not been
used in the pitch estimation task, as far as the authors know. There-
fore, the preliminary task in the pitch estimation method of this paper
consists in extracting the parameters of components. The pitch esti-
mator then includes a spectral function and a temporal function. The
parametric approach allows to take into account the inharmonicity
of sounds both in time and frequency domains and to optimize the
precision of theF0 numeric estimation.

The pitch estimation system is described in section 2. Evalution
results and comparisons with other algorithms are then detailed in
section 3 and conclusions are finally outlined in section 4.

2. PITCH ESTIMATION SYSTEM

2.1. High Resolution analysis

TheNa-length analyzed waveform is modeled by:

s(t) =

K
∑

k=1

αkzt
k + w(t) (1)

defined for t ∈ J0, Na − 1K and composed of a sum ofK
exponentially-modulated sinusoidsαkzt

k, k ∈ J1, KK with complex
amplitudesαk = AkeiΦk ∈ C

∗, (Ak being the real, positive am-
plitude andΦk the initial phase), and distinct poleszk = edk+i2πfk

(fk being the frequency anddk the damping factor), plus an addi-
tive colored noisew(t). This section details how the signal is pre-
processed, how poleszk are then estimated via the ESPRIT (Esti-
mation of Signal Parameters via Rotational Invariance Techniques)
algorithm [10], and how amplitudesαk are finally extracted.

Preprocessing.A two-step preprocessing stage is applied to the
signal sampled at32 kHz:

1. The cubic computational cost of the ESPRIT algorithm is
reduced when the number of poles to be estimated is low.
This is achieved by using a filter bank. The signal is splitted
into D = 32 subbands with width500-Hz by using cosine-
modulated filters [11].

2. Components of piano sounds are particularly well represented
by the exponential sinusoidal plus noise model introduced
in (1). However, the ESPRIT algorithm only applies to the re-
strictive case of white noise. Thus, the second preprocessing
step consists in whitening the noise in each subband thanks
to an AR filter estimated on the smoothed spectrum of the
signal.



ESPRIT algorithm. The signal in each preprocessed subband
is a sum of exponentially-modulated sinusoids plus white noise. As-
suming the number of poles is known, the ESPRIT algorithm [10]
gives an estimation of those poles. The method is based on a sub-
space projection on the so-called signal subspace and benefits from
the rotationnal invariance property of this signal subspace.

Estimation of the number of poles.In the current application,
the number of poles in each subband is not known a priori and thus
must be estimated. The ESTER [12] algorithm establishes a cri-
terion J(p) that provides an estimation of the number of poles as
argmaxp∈P (J(p) > δJ), P being the set of candidates for the num-
ber of poles andδJ a threshold tuned toδJ = 10 in the current
study. Using this method, the number of poles is either correctly es-
timated, or slightly over-estimated. As shown in [12], the latter case
is not disturbing for the ESPRIT analysis, and weak amplitudes are
estimated for the spurious poles.

Estimation of amplitudes. Once the poles extracted, ampli-
tudes are estimated by a least squares algorithm applied to the sub-
band signal. The effects of the preprocessing stage on the ampli-
tudes in each subband are corrected by inverse filtering the various
preprocessing steps – whitening, filter bank and pre-emphasis filter
series –, leading to the estimation of the amplitudesαk, k ∈ J1, KK.

2.2. Pitch estimation

A temporal method and a spectral method are first introduced. Al-
though each one could account for a pitch estimator, they are jointly
used in the same manner as in [8] to obtain the whole, more efficient
estimator detailed in the last part.

2.2.1. Temporal method

Periodicity is often analyzed by assuming the signal is an obser-
vation of a real, wide-sense stationnary (WSS) processy and by
estimating its autocovariance functionRy(τ) = E [y(t)y(t + τ)].
When the signal is periodic, the maxima ofRy(τ) are located atτ =
0 and at every multiple of the period. Let us consider a real, WSS
processy composed ofK undamped sinusoids with frequenciesνk,
real amplitudes2ak, initial phasesϕk, which are assumed to be in-
dependant and uniformely distributed along[0, 2π[. The autocovari-
ance function ofy is Ry(τ) =

∑K

k=1
2a2

k cos (2πνkτ) + δ(τ)σ2
wy

.
Therefore we can define a temporal functionR(τ) for pitch estima-
tion from the parameters estimated by the high resolution analysis:

R(τ) =

K
∑

k=1

pk cos (2πfkτ) (2)

pk =

{

|αk|2 if |zk| = 1
|αk|2

Na

1−|zk|2Na

1−|zk|2
otherwise

(3)

whereτ > 0, fk = arg(zk)
2π

is the normalized frequency of compo-
nentk, and the instantaneous powerpk is an estimate of coefficient
2a2

k over the analysis frame.
In the case of a slightly inharmonic sound, the frequency devi-

ation weakens or even removes the maxima ofR(τ) at the multi-
ples of the period. The inharmonicity law [13] for a piano tone of
fundamental frequencyf0 causes partialh not to be located at fre-
quencyhf0 but athf0

√

1 + β(h2 − 1), β being the inharmonicity
coefficient of the note. As illustrated in fig. 1, this frequency stretch-
ing may be inversed by remapping the set of estimated frequencies
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Fig. 1. At any givenF0, the frequenciesfk are remapped togf0,k,
leading to a harmonic distribution for the actualF0. One theoretical
partial over 5 is represented withf0 = 27.5Hz andβ = 2.54e − 4.

{fk, k ∈ J1, KK} to a set of frequencies{gf0,k, k ∈ J1, KK}:

gf0,k =
fk

√

1 + β (f0) (h2 (f0, fk) − 1)
(4)

whereβ (f0) is an approximative inharmonicity coefficient for fun-
damental frequencyf0 averaged from the results presented in [13,
pp. 365]. The assumed partial orderh (f0, fk) associated to fre-
quencyfk is extracted from the inharmonicity law:

h2 (f0, fk) =

√

(1 − β (f0))
2 + 4β (f0)

f2

k

f2

0

− 1 + β (f0)

2β (f0)
(5)

As the remapping process causes the remapped frequencies
gf0,k of the partials to be perfect multiples of the actual fundamen-
tal frequencyf0, we replacefk by g 1

τ
,k in (2) to obtain a temporal

functionRinh(τ) for piano tones which is maximum forτ = 1
f0

:

Rinh(τ) =

K
∑

k=1

pk cos
(

2πg 1

τ
,kτ

)

(6)

2.2.2. Spectral method

A parametric amplitude spectrum is designed from the estimates of
frequenciesfk and energiesEk of componentsk ∈ J1, KK. It is
composed of a sum ofK gaussian curves centered infk with con-
stant standard deviationσ, weighted by the square root of the com-
ponent energies as average amplitudes:

S(f) =

K
∑

k=1

√
Ek√
2πσ

e
−

(f−fk)2

2σ2 (7)

σ is set tof0min/4 wheref0min is the lower bound of theF0 search
range in order to prevent overlap between successive partials.

Our spectral estimatorU(f) relies on maximizing a scalar prod-
uct between the parametric amplitude spectrum and theoretical har-
monic unitary patterns ofF0 candidates:

U(f) =

Hf
∑

h=1

wf,hS (hf) (8)



whereHf is the maximum number of partials possible for funda-
mental frequencyf and{wf,h, h ∈ J1, Hf K} is the pattern associ-
ated tof . The choice of the pattern is based on an approximative
logarithmic spectral decrease of components. The slopep of a linear
regression betweenlog(

√
Ek) andfk is extracted and weightswf,h

are then defined as:

wf,h = w0e
phf (9)

wherew0 =
(

∑Hf

h=1 e2phf

)− 1

2

is a normalizing term such that
∑Hf

h=1 w2
f,h = 1.

The spectral estimator is then adapted to piano tones by selecting
the values of the spectrum on a inharmonic stretched scale instead of
a harmonic scale:

Uinh(f) =

Hf
∑

h=1

wf,hS
(

hf
√

1 + β(f) (h2 − 1)
)

(10)

Finally, the estimator efficiency can be improved by ignoring all
frequencies and weights below a cut-off frequency of100 Hz since
the impedance at the piano bridge [13] causes a significant devia-
tion of low frequencies from the inharmonicity law and the highest
weigthswf,h of patterns are allocated to those frequencies.

2.2.3. Pitch estimator

As mentioned in the introduction, sub-harmonic and harmonic er-
ror trends are opposed in temporal and spectral methods. A way to
benefit from this phenomenon is described in [8]. It consists in mul-
tiplying a temporal and a spectral function on a commonF0 scale in
order to preserve common peaks from both functions and to remove
or attenuate other peaks (see fig. 2). Thus, the pitch is estimated by
maximizing the product of the methodsRinh

(

1
f

)

andUinh(f):

f̂0 = argmaxf

(

Rinh

(

1

f

)

Uinh (f)

)

(11)

Thanks to the analytic expressions (6) and (10),Rinh

(

1
f

)

and
Uinh(f) can be directly evaluated for anyf value. As theF0 distrib-
ution of an equal-tempered musical scale is logarithmic, theF0-scale
support is set toNf points logarithmically spaced in theF0-search
range. This unconstrained choice is a key advantage of the method
since the logarithmicF0 distribution is not offered by many methods
(see [4, 8]). Actually, temporal methods have a linearly distributed
time scale, which results in a lack of precision in high frequency and
too much resolution in low frequency, whereas Fourier-based spec-
tral methods have a linearF0 distribution. In those cases, the esti-
mation function must often be interpolated to achieve the required
precision and may still suffer from this.

3. EVALUATION

The algorithm has been evaluated on isolated piano tones from vari-
ous sources:3168 notes from the three pianos of RWC database [14],
270 notes from the five pianos of PROSONUS database and264
notes from a Yamaha upright piano of a private database. All record-
ings include several takes of all the88 notes of piano range (except
PROSONUS in which notes are spaced by fourth) with different
loudness. RWC samples also offer various play modes (normal, stac-
cato, with pedal). TheF0 search scale is composed ofNf = 8192
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Fig. 2. From top to bottom, on a logarithmic frequency scale: para-
metric spectrum, spectral estimation functionUinh(f), remapped
temporal estimation functionRinh

(
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, joint pitch estimation func-
tion. Functions result from the60 ms analysis of a D3 piano note.

values logarithmically distributed betweenf0min = 26.73 Hz and
f0max = 4310 Hz. The estimation is performed after the analysis of
a single60 ms or93 ms frame:60 ms is quite a challenging frame
length since it is below twice the period of lowest notes while93 ms
is a well spread duration for this kind of evaluation. Each estimated
F0 is associated to the closest note in the equal tempered scale with
A4 tuned to440 Hz. Errors are then defined as incorrect note estima-
tions. The method is compared to two estimators. The first one is as
similar to our estimator as possible, replacing the ESPRIT analysis
stage by a classical analysis: the ACF is estimated from the signal
by the formular(τ) = Na

Na−τ
DFT−1

[

|DFT [s]|2
]

, the factor Na

Na−τ

being a correction of the bias; the spectral estimatorUinh(f0) is com-
puted by replacing the parametric spectrum by the the modulus of
the DFT of the signal, using a zero-padding on8Nf points;r(τ) is
mapped to the frequency scale by interpolation as described in [8];
the pitch is finally estimated by maximizing the product between the
spectral function and the remappedr(τ). The second method is the
YIN algorithm [4] which is considered as a very efficient monopitch
estimator. We used the code available on the authors’ website.

Evaluation results are reported in fig. 3. At the target window
length of 60 ms, the global error rate of our estimator is around
4.4% which is at least twice better than the other estimators. This
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Fig. 3. Octave-averaged error rates per note with two different frame
lengths, for the parametricF0 estimator and two other methods: a
similar but non-parametric algorithm and the YIN estimator

is due to a low error rate on a large range (1.1% in the F0 range
65−2000 Hz) and slowly increasing values at the very bass and tre-
ble limits. In comparison, the non-ESPRIT based estimator achieves
a 1.1% error rate in the range240 − 2000 Hz. Its low efficiency
outside this range shows how theF0 estimation is improved by the
high resolution analysis and the handling of parametric, analytic for-
mulas. The YIN algorithm has very slightly lower efficiency in the
medium range than our estimator and similar results in the bass range
(for the first octave both curves should be at the same level, but our
estimator results seems to be worse since they include the lowest
four note error rates that cannot be estimated by the YIN algorithm
with a 60 ms window length). In the high range, the YIN algorithm
shows a quite high error rate, which is a typical behavior of tem-
poral methods. Global results are improved with a93 ms analysis
length. Nevetheless, the high resolution analysis does not enhance
significatively the pitch estimation even if its error rate remains the
lowest.

Typical errors should also be discussed, in the60 ms analysis
case. As expected, usual errors are under-estimations of high f0s
and over-estimations of low f0s. Around18% of errors made by
each algorithm are octave and suboctave errors. In the case of our
algorithm, the remaining error intervals are of all kinds, with only
5% that are half-tone errors whereas this rate reaches10% for the
other two algorithms. The YIN algorithm tends to make a high pro-
portion of sub-harmonic errors (13% are sub-octaves,8% are sub-
nineteenth). Thus, even if our algorithm makes a reduced number of
harmonic/subharmonic errors, they remain difficult to avoid. Half-
tone error rates show the efficiency of our method while the other
algorithms suffer from a lack of precision of temporal estimators in

high frequency and from sensibility to inharmonicity.

4. CONCLUSIONS

The F0 estimator designed in this paper allows to address typical
error trends in a short frame analysis and a wideF0-range context.
It is based on a preliminary extraction of the parameters of compo-
nents and on the design of temporal and spectral parametric function.
Satisfying performances have been obtained and a large part was al-
located to the discussion on typical errors and the way to avoid them.
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