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ABSTRACT only requires the parameters of those components such as frequency
. ) L . amplitude, damping factor and initial phase. So far, the other part of
The efficiency of most pitch estimation methods falls if the analyzedpe sound, including the ambient noise, transients, etc. has not been
frame becomes short and for a wide fundamental frequeAby ( ysed in the pitch estimation task, as far as the authors know. There-
search range. The herein proposed method is designed to addrégg, the preliminary task in the pitch estimation method of this paper
the pitch estimation task within such adverse circumstancé®n@  consists in extracting the parameters of components. The pitch esti-
target frame length and a fullf /,-octaves range. The) estimation  mator then includes a spectral function and a temporal function. The
method includes the joint use of a periodicity analysis and of & speGsarametric approach allows to take into account the inharmonicity
tral matching process. The parametric approach allows to take intg sounds both in time and frequency domains and to optimize the
account the inharmonic model of piano sounds. Evaluation resu"ﬁrecision of theF, numeric estimation.
and a comparison with other estimators lead to discuss and make a The pitch estimation system is described in section 2. Evalution

link between the methods, their behaviors and typical errors. results and comparisons with other algorithms are then detailed in
Index Terms— audio processing, pitch estimation sectiori 3 and conclusions are finally outlined in section 4.
1. INTRODUCTION 2. PITCH ESTIMATION SYSTEM

Numerous methods dedicated to fundamental frequefigy gsti-  2-1. High Resolution analysis
mat!on .of perlodlq signals try t.o. capture the temporal or SPeCtrall'heNa-length analyzed waveform is modeled by:
replication properties by maximizing a function of either domain. So
doing, they measure a degree of internal resemblance in the wave- K
form (ACF [1, 2], AMDF [3, 4], cepstrum [5]) or in the spectrum [6]. st) = Z ozt 4+ w(t) (1)
When confronting to real world melodic musical sounds, these tech- —
nigues have to face deviations from theoretical context as for in-
stance the noise, both stationary and non stationary, which often igefined fort € [0, N, — 1] and composed of a sum ok
an inseparable companion of the frequency content, the latter beingkponentially-modulated sinusoids 2}, k € [1, K] with complex
in a number of cases departing from exactly uniform (harmonic) disamplitudesa, = Are’®* € C*, (Ax being the real, positive am-
tribution. plitude and®,, the initial phase), and distinct poles = e?x+27 /&
Developpement and applications of the quoted methods ofte(if,, being the frequency and, the damping factor), plus an addi-
deal with an extension to subband processing [2, 7], to an optimizaive colored noisev(t). This section details how the signal is pre-
tion of the main function [4, 7] or to the joint use of both time and processed, how poles, are then estimated via the ESPRIT (Esti-
frequency domains [8]. Typical errors that usually occur givera ge mation of Signal Parameters via Rotational Invariance Techniques)
eral idea of the difficulties théy estimation task must cope with. algorithm [10], and how amplitudes;, are finally extracted.
Temporal or spectral methods tend to make sub-octave or octave Preprocessing A two-step preprocessing stage is applied to the
errors respectively. Both of them suffer from the lage search  signal sampled &2 kHz:
range €.9.27-4200 Hz for the piano), from non-regular spectral en- . . . .
velopes and inharmonic deviation of the frequency components must 1. The cubic computational cost of the ESPRIT. algorlthm IS
be taken into account [6, 9]. In addition, a short analysis frame pre- red_ut_:ed When the ””f.“ber (.)f poles to be e_stlmat_ed IS low.
vents spectral methods from resolving components forAipwalues .Th'S is achieved by using a fllt.er bank. The 5|gnal IS sphtted
whereas the uniformely-distributed discrete time scale used by tem- into D = 32. subbands with widtf500-Hz by using cosine-
poral methods makes the estimation fail above s@inkmit. modulated filters [11].
The newF}, estimation algorithm here described aims atenhanc- 2. Components of piano sounds are particularly well represented

ing Fy estimation results in the case of a short analysis window and by the exponential sinusoidal plus noise model introduced
large Fy search range. Piano sounds will be focused on since they in (1). However, the ESPRIT algorithm only applies to the re-
present all the listed difficulties and usually cause one of the worst strictive case of white noise. Thus, the second preprocessing
estimation error rates per instrumestd. see|[8]). The pitch of a step consists in whitening the noise in each subband thanks

harmonic or quasi-harmonic sound is an attribute that only depends to an AR filter estimated on the smoothed spectrum of the
on the sinusoidal components of the signal. Thus a pitch estimator signal.



ESPRIT algorithm. The signal in each preprocessed subband
is a sum of exponentially-modulated sinusoids plus white noise. As- 2500
suming the number of poles is known, the ESPRIT algorithm [10] 2000
gives an estimation of those poles. The method is based on a sub-

space projection on the so-called signal subspace and benefits from  x_ 1500
the rotationnal invariance property of this signal subspace. 1000
Estimation of the number of poles.In the current application,
the number of poles in each subband is not known a priori and thus 500
must be estimated. The ESTER [12] algorithm establishes a cri- 0
terion J(p) that provides an estimation of the number of poles as 0 1000 2000 3000 4000
argmax . (J(p) > d.7), P being the set of candidates for the num- f

ber of poles and; a threshold tuned t6; = 10 in the current
study. Using this method, the number of poles is either correctly essig 1. At any givenFy, the frequencieg are remapped t97, k.,
timated, or slightly over-estimated. As shown in [12], the latter casgeading to a harmonic distribution for the actugl. One theoretical

is not disturbing for the ESPRIT analysis, and weak amplitudes arBartial over 5 is represented wifly = 27.5Hz andg = 2.54¢ — 4.
estimated for the spurious poles.

Estimation of amplitudes. Once the poles extracted, ampli-

tudes are estimated by a least squares algorithm applied to the su, ke M. KT to a set of frequenci kel KT
band signal. The effects of the preprocessing stage on the ampl ook € [1 K} g &850k k € [1, KT}:

tudes in each subband are corrected by inverse filtering the various f @
preprocessing steps — whitening, filter bank and pre-emphasis filter 9fo.k 4
series —, leading to the estimation of the amplitudgsk € [1, K]. \/1 + 8 (fo) (h* (fo, fi) = 1)

whereg (fo) is an approximative inharmonicity coefficient for fun-
2.2. Pitch estimation damental frequency, averaged from the results presented in [13,
pp. 365]. The assumed partial orde( fo, fi) associated to fre-

A temporal method and a spectral method are first introduced. Alauencyfk is extracted from the inharmonicity law:

though each one could account for a pitch estimator, they are jointl
used in the same manner as in [8] to obtain the whole, more efficient

estimator detailed in the last part. \/(1 — B(f0))* +48 (fo) % —1+8(fo)
W (fo. f) = -
26 (fo)

Periodicity is often analyzed by assuming the signal is an obser- As the remapping process causes the remapped frequencies
vation of a real, wide-sense stationnary (WSS) progesad by 970k of the partials to be perfect multiples of the actual fundamen-

estimating its autocovariance functid®, (1) = E [y(t)y(t + 7)]. tal frequencyfo, we replacefy by g1 , in (2) to obtain a temporal
When the signal is periodic, the maximal®f () are located at =  function Rinn(7) for piano tones which is maximum for= -
0 and at every multiple of the period. Let us consider a real, WSS
procesgy composed o’ undamped sinusoids with frequencias K
real amplitudeay, initial phasesp, which are assumed to be in- Rinn(7) = Zpk cos (27rgl’k7') (6)
dependant and uniformely distributed aldfg2«[. The autocovari- k=1 ’
ance function ofy is Ry (1) = 25:1 243 cos (2mugT) + 5(7‘)0ij.
Therefore we can define a temporal functi(r) for pitch estima- 222, Spectral method
tion from the parameters estimated by the high resolution analysis:
A parametric amplitude spectrum is designed from the estimates of

®)
2.2.1. Temporal method

K frequenciesf, and energie€,, of componentsk € [1, K]. ltis
R(r) = Zpk cos (27 fxT) ) composed of a sum dk gaussian curves centered fip with con-
1 stant standard deviatian, weighted by the square root of the com-
2 . ponent energies as average amplitudes:
) { o =1 .
T lowlZ 12262 otherwise K 2
Na  1—|z[2 VE, _U=fr)
= 202

S(f) kz e Y]

wherer > 0, fi = % is the normalized frequency of compo-
negtk, an(rj] the |n|stc-_mtfaneous power is an estimate of coefficient o <ot t0 fomin/4 Where fomin is the lower bound of thé, search
2a;, over the analysis frame. _ _range in order to prevent overlap between successive partials.

In the case of a slightly inharmonic sound, the frequency devi- ", spectral estimatd (f) relies on maximizing a scalar prod-

altlon vaer?kens_o(; evin r_ehmoves the Taxmd%()f%) at the multi- uct between the parametric amplitude spectrum and theoretical har-
ples of the period. The inharmonicity law [13] for a piano tone o monic unitary patterns of;, candidates:

fundamental frequency causes partiat not to be located at fre-

quencyh fo but ath fo+/1 + B(h? — 1), 8 being the inharmonicity Hy

coefficient of the note. As illustrated in fig. 1, this frequency stretch- U(f) = Z wynS (hf) (8)
ing may be inversed by remapping the set of estimated frequencies — '



where Hy is the maximum number of partials possible for funda-
mental frequency and{wy », h € [1, H¢]} is the pattern associ-

ated tof. The choice of the pattern is based on an approximative 3’?19
logarithmic spectral decrease of components. The glage linear N
regression betwedng(/E}) and f is extracted and weightsy 5, =2 B E e
are then defined as: & : k EEERE
10
a ~ x10°
wherew, = (thfl eQth) is a normalizing term such that 4= , —

ZhHil wjzﬂh =L e |

The spectral estimator is then adapted to piano tones by selecting D.E 2r
the values of the spectrum on a inharmonic stretched scale instead of \
a harmonic scale: oL

Hy
Un(f) = S wgs (hV/IT BN D) (0) 10f55
h=1

Finally, the estimator efficiency can be improved by ignoring all
frequencies and weights below a cut-off frequency @ Hz since
the impedance at the piano bridge [13] causes a significant devia-
tion of low frequencies from the inharmonicity law and the highest
weigthswy, 5, of patterns are allocated to those frequencies.

2.2.3. Pitch estimator

As mentioned in the introduction, sub-harmonic and harmonic er-

ror trends are opposed in temporal and spectral methods. A way to
benefit from this phenomenon is described in [8]. It consists in mul-

tiplying a temporal and a spectral function on a comnfigrscale in f(H2)
order to preserve common peaks from both functions and to remove

or attenuate other peaks (seelfig. 2). Thus, the pitch is estimated by

maximizing the product of the method&n (+) andUinn(f):

Rinn(1/) Ujpy M

Fig. 2. From top to bottom, on a logarithmic frequency scale: para-
metric spectrum, spectral estimation functibkn(f), remapped
fo = argmay (Rmh () Uinh (f)) (11) temporal estimation functio®inn (%) joint pitch estimation func-

f tion. Functions result from th€0 ms analysis of a D3 piano note.

Thanks to the analytic expressions (6) and (18 () and

Uinn(f) can be directly evaluated for afyvalue. As thel distrib-  values logarithmically distributed betwegbmin = 26.73 Hz and
ution of an equal-tempered musical scale is logarithmicfthecale £, .. = 4310 Hz. The estimation is performed after the analysis of
support is set taVy points logarithmically spaced in thi-search 3 single60 ms or93 ms frame:60 ms is quite a challenging frame
range. This unconstrained choice is a key advantage of the methashgth since it is below twice the period of lowest notes whilens
since the logarithmic distribution is not offered by many methods s a well spread duration for this kind of evaluation. Each estimated
(see [4, 8]). Actually, temporal methods have a linearly distributedr;, is associated to the closest note in the equal tempered scale with
time scale, which results in a lack of precision in high frequency anth4 tuned to440 Hz. Errors are then defined as incorrect note estima-
too much resolution in low frequency, whereas Fourier-based spegons. The method is compared to two estimators. The first one is as
tral methods have a linedt, distribution. In those cases, the esti- similar to our estimator as possible, replacing the ESPRIT analysis
mation function must often be interpolated to achieve the requiredtage by a classical analysis: the ACF is estimated from the signal

precision and may still suffer from this. by the formular(r) = NIZZT DET-! [\DFT [5”2] the faCtOYN]:iT
being a correction of the bias; the spectral estim&ie fo) is com-
3. EVALUATION puted by replacing the parametric spectrum by the the modulus of

the DFT of the signal, using a zero-padding&N; points;r(7) is
The algorithm has been evaluated on isolated piano tones from varirapped to the frequency scale by interpolation as described in [8];
ous sources3168 notes from the three pianos of RWC database [14]the pitch is finally estimated by maximizing the product between the
270 notes from the five pianos of PROSONUS database2iidd  spectral function and the remapped). The second method is the
notes from a Yamaha upright piano of a private database. All record¥IN algorithm [4] which is considered as a very efficient monopitch
ings include several takes of all tB8 notes of piano range (except estimator. We used the code available on the authors’ website.
PROSONUS in which notes are spaced by fourth) with different  Evaluation results are reported in fig. 3. At the target window
loudness. RWC samples also offer various play modes (normal, statength of 60 ms, the global error rate of our estimator is around
cato, with pedal). Thé search scale is composed®f = 8192 4.4% which is at least twice better than the other estimators. This



Octave—averaged error rates (analysis on 60 ms)

7or —— Parametric fO estimator (mean: 4.4%) ,
- - -Non-parametric fO estimator (mean: 15.5%) !

- - YIN estimator (mean: 11.0%)

(2]
o
T

~

error rate (%)

[ N w Iy a
o [=] (=] (=] o
™=

o

Octave-averaged error rates (analysis on 93 ms)

701 —— Parametric fO estimator (mean: 2.4%) B
ol - - -Non-parametric fO estimator (mean: 3.0%) /
- - YIN estimator (mean: 11.0%) l/
g 50 I : I’
]
s 40 '—'
— 1
o 30 i
@ 7
20F !
!
10 A
0 A
30 40 50 60 70 90 100
MIDI

high frequency and from sensibility to inharmonicity.

4. CONCLUSIONS

The F, estimator designed in this paper allows to address typical
error trends in a short frame analysis and a widerange context.

It is based on a preliminary extraction of the parameters of compo-
nents and on the design of temporal and spectral parametric function.
Satisfying performances have been obtained and a large part was al-
located to the discussion on typical errors and the way to avoid them.

(1]

(2]

(3]

[4]

Fig. 3. Octave-averaged error rates per note with two different frame [5]

lengths, for the parametrig, estimator and two other methods: a
similar but non-parametric algorithm and the YIN estimator

is due to a low error rate on a large rangel in the Fy range

[6]

65 — 2000 Hz) and slowly increasing values at the very bass and tre- [7]
ble limits. In comparison, the non-ESPRIT based estimator achieves

a 1.1% error rate in the rang@40 — 2000 Hz. Its low efficiency
outside this range shows how tlig estimation is improved by the

high resolution analysis and the handling of parametric, analytic for-

mulas. The YIN algorithm has very slightly lower efficiency in the

(8]

medium range than our estimator and similar results in the bass range

(for the first octave both curves should be at the same level, but o

estimator results seems to be worse since they include the lowe

ur

four note error rates that cannot be estimated by the YIN algorithm

with a 60 ms window length). In the high range, the YIN algorithm
shows a quite high error rate, which is a typical behavior of tem
poral methods. Global results are improved with3ams analysis

{10]

length. Nevetheless, the high resolution analysis does not enhance
significatively the pitch estimation even if its error rate remains the

lowest.
Typical errors should also be discussed, in 8ems analysis

(11]

case. As expected, usual errors are under-estimations of high f@s2]

and over-estimations of low fOs. Around% of errors made by

each algorithm are octave and suboctave errors. In the case of our

algorithm, the remaining error intervals are of all kinds, with only
5% that are half-tone errors whereas this rate readbés for the

(13]

other two algorithms. The YIN algorithm tends to make a high pro-

portion of sub-harmonic errord§% are sub-octave% are sub-
nineteenth). Thus, even if our algorithm makes a reduced number

&4

harmonic/subharmonic errors, they remain difficult to avoid. Half-
tone error rates show the efficiency of our method while the other
algorithms suffer from a lack of precision of temporal estimators in
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