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ABSTRACT

This paper presents a method which extracts information
from Satellite Image Time Series which are new type of data
set acquired with remote sensing technologies. The method
is based on Multi-Information Bottleneck theory. The prin-
ciple of inference for data clustering and clusters number
selection is presented. Finally, the paper concludes showing
examples presenting an information extraction from Satellite
Image Time Series.

1. INTRODUCTION

Recently, the growing number of satellite image sensors has
led to the acquisition of a huge amount of data. Processing
techniques are needed in order to exploit this very informa-
tive material. Moreover, images of the same scene can be
acquired several times a year because of the increasing num-
ber of satellites. Thus a new type of data sets can be cre-
ated. In order to create Satellite Image Time-Series (SITS),
a registration technique is used on several acquisitions of the
same scene. The high spatial resolution of the sensors give
access to detailed spatial structures, which are extended to
spatio-temporal structures considering the time evolution of
the scene. In order to exploit this huge amount of data, char-
acterization of spatio-temporal patterns is essential. For ex-
ample in a SITS, growth, maturation or harvest of cultures
can be observed. State of the art tools for information extrac-
tion in SITS have been elaborated such as change detection,
monitoring or validation of physical models. However, these
technics are dedicated to specific applications [1]. Conse-
quently in order to exploit the information contained in SITS,
more general analyzing methods are required. Some meth-
ods for low resolution images and uniform sampling have
been studied in [2]. For high resolution and non-uniform
time-sampled SITS, new spatio-temporal analyzing tool is
presented in [3, 4]. It is based on a Bayesian hierarchical
model of information content. The concept was first intro-
duced in [5, 6, 7] for information mining in remote sensing
image archives. In a first stage, the extraction of informa-
tion is data driven. Data is objectively represented. Usu-
ally, unsupervised methods are used to achieve this task. In
a second stage, the extraction is user driven. Data is subjec-
tively represented under the constraints provided by a user.
In fact, the subjective representation is obtained from the ob-
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jective representation by machine learning methods. The ad-
vantage of such a concept is that it is free of the applica-
tion specificity and adapts to the user’s query. Due to the
large amount of information contained in SITS, the quan-
tity of information recquired to represent data is a crucial
point. This paper addresses the problem of representing ob-
jectively and shortly the information contained in SITS by
unsupervised clustering. From a compression point of view,
clustering is equivalent to vector quantization. The method
proposed produces a short length representation able to char-
acterize spatio-temporal structures. In this paper, we propose
a method based on Multivariate Information Bottleneck in
order to estimate the optimal number of clusters and charac-
terize spatio-temporal structures.
In order to detect or recognize spatio-temporal patterns, it
is essential to characterize information in a low-dimensional
space. Features are extracted by fitting parametric models
to data. This task can be viewed as a Bayesian hierarchical
model in two stages. The first level of inference is the model
fitting and the second level is the model selection. Then, an
unsupervised clustering is processed on features space, re-
ducing the complexity for fast retrieval of similar patterns.
As clustering is equivalent to vector quantization, the prob-
lem can be viewed as a Rate-Distortion optimization. There
is a trade-off between the amount of relevant information ex-
tracted (distortion defined with a divergence measure d) and
the complexity of representation (rate expressed with the mu-
tual information I). In order to determine this trade-off, we
propose a criterion based on the Rate-Distortion curve.
The paper is organized as follows. Section 2 introduces
the Information and Multi-Information Bottleneck princi-
ples. Section 3 presents the relevant information that can
be extracted from SITS. In Section 4 we give the Mutli-
Information Bottleneck principle for spatio-temporal struc-
tures characterization. Experiments and discussion are de-
tailed in Section 5. Finally, Section 6 concludes the paper.

2. INFORMATION BOTTLENECK PRINCIPLE

The following sections present the theory of Information and
Multi-Information Bottleneck. In the following sections, up-
percase letters are used for random variables, while lower-
case letters are used for realizations of random variables.

2.1 Information Bottleneck theory

Information Bottleneck emerged from Rate-Distortion the-
ory. The problem is stated as follows: we would like a rel-



evant quantizer X̃ to compress X as much as possible under
the constraint of a distortion measure between X and X̃ . In
contrast, we also want to capture as much of information in X̃
as possible about a third variable Y . In fact, we pass the infor-
mation that X provides about Y through a bottleneck formed
by the compact summary formed by X̃ . The problem is math-
ematically expressed as:

min
p(x̃|x)

I(X̃ ,X)−β I(X̃ ,Y ) (1)

The algorithms for solving the problem are described in [8]
and are mainly inspired from the Blahut-Arimoto algorithm
[9]. They make the assumption of the following Markov
chain : Y ↔ X ↔ X̃ . However, Banerjee demonstrated in
[10], that Information Bottleneck can be viewed as a Rate-
Distortion problem based on the Bregman divergence. He
considered Z = p(Y | X) and Z̃ = p(Y | X̃) as sufficient statis-
tics for X and X̃ , respectively. Z takes values over the set of
conditional distributions {p(Y | x)}, and Z̃ takes values over

the set of conditional distributions {p(Y | x̃)} = Z̃s. There-
fore, the problem equivalent to Bottleneck Information is
written as:

min
Z̃s,p(z̃|z)

I(Z, Z̃)+βEZ,Z̃

[

d(Z, Z̃)
]

(2)

where d is a Bregman Divergence, that corresponds here to
the Kullback Leibler divergence.

d(z, z̃) = ∑
y

p(y | x) log
p(y | x)

p(y | x̃)
(3)

Cover and Thomas gave the solution to this problem for a

fixed Z̃s [11].

p(z̃ | z) =
p(z̃)

N(z,β )
e−βd(z,z̃) (4)

N(z,β ) = ∑
z̃

p(z̃)e−βd(z,z̃) (5)

where N(z,β ) is the partition function. For fixed probabilis-
tic assignments p(z̃ | z), the solution is given by:

z̃ = EZ|z̃ [Z] (6)

= ∑
z

p(z | z̃)z (7)

Using this two properties, Banerjee proposed in [10, 12] an

iterative algorithm to compute Z̃s and p(z̃ | z). This algo-
rithm is used to solve the problem, and to reach a local op-
timum of the functional. Finally, from this optimization the
divergence Dβ and the rate Rβ can be computed with the fol-
lowing formulas:

Dβ = ∑
z,z̃

p(z)p(z̃ | z)d(z, z̃) (8)

Rβ = ∑
z,z̃

p(z)p(z̃ | z) log
p(z̃ | z)

p(z̃)
(9)
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Figure 1: Markov graph representingthe dependencies be-
tween variables. Zi are the conditional probabilites between
the variables X and Zi.

2.2 Multi-Information Bottleneck Theory

The Multi-Information Bottleneck principle generalizes the
principle presented in the previous section and was first in-
troduced in [13]. In this section we take a special case of this
general principle by considering a set of independent vari-
ables {Yi} which contain the relevant information. As in the
previous section, we define dependencies between variables
with a Markov graph, shown in Figure 1. The bottleneck
is represented in the Figure 2. Then, the Multi-Information
Bottleneck problem is expressed as:

min
p(x̃|x)

I(X̃ ,X)−∑
i

βiI(X̃ ,Yi) (10)

The set of Lagrangian parameters {βi} trades off between the
compression and the relevant information extracted. In fact,
the variables {Yi} enable to qualify the information contained
in X̃ extracted from X while the mutual information I(X̃ ,X)
quantifies this information. Therefore, the Lagrangian pa-
rameters control the qualification of the information. We
consider the variables Zi = p(Yi | X) and Z̃i = p(Yi | X̃).
Each Z̃i takes values over the set of conditional distributions
{p(Yi | x̃)} = Z̃i. Then, the problem can be expressed as:

min
Z̃i,p(z̃i|zi)

∑
i

I(Zi, Z̃i)+βiEZi,Z̃i

[

d(Zi, Z̃i)
]

(11)

Solutions to (10) can be explicitely calculated for two condi-

tions, as in the equations (4) and (6). For fixed Z̃i, solutions
are:

p(x̃ | x) =
p(x̃)

N(x,{βi})
e−∑i βid(zi,z̃i) (12)

N(x,{βi}) = ∑
x̃

p(x̃)e−∑i βid(zi,z̃i) (13)

p(x̃) = ∑
x

p(x̃ | x)p(x) (14)

For fixed probabilistic assignments p(x̃ | x), solutions are
given by:

z̃i = EX |x̃ [Zi] (15)

= ∑
x

p(x | x̃)zi (16)

Finally, using these two properties we use an algorithm in-
spired from the one proposed in [10, 12]. These algorithms
are similar to the Expectation-Maximization algorithm with
the maximization step (12), (14) and the expectation step
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Figure 2: Heuristic representation of the information. Z̃i are
the conditional probabilities between the summary X̃ and Yi.

(15). The Multi Rate-Distortion curve can be computed with
the following formulas. We can define multi distortion de-
pending on the variables Yi.

Di

{β j}
= ∑

x,x̃

p(x)p(x̃ | x)d(zi, z̃i) (17)

R{β j} = ∑
x,x̃

p(x)p(x̃ | x) log
p(x̃ | x)

p(x̃)
(18)

2.3 Optimal trade-off

In the algorithm of Information Bottleneck, the number k
of z̃ is preset. However, the real number of distinguishable
z̃ obtained after optimization is constrained by β . There-
fore, the initial number k is chosen to be equal to the num-
ber of realizations z. Then, β influences the effective num-
ber of found clusters. As these two quantities are linked,
we give a criterion for the optimal choice of β to determine
the optimal number of clusters. This criterion is based on
the Rate-Distorsion curve D(R) which is a parametric func-

tion of β . The optimal β̂ maximizes the second derivative
of D(R) (19).This criterion has been experimentally studied
in [14]. In fact we try to localize on R(D), the point which
separates two behaviours. The first behaviour is a strong de-
creasing of distortion with the rate. The second behaviour is
a slow decreasing of distortion with the rate, which means
that compression gains are not really noticeable. The study
in [14] shows that this criterion finds the natural number of
clusters when clusters are well separated.

β̂ = argsup
β

∂ 2Dβ

∂R2
β

(19)

= argsup
β

∂ 2Dβ

∂β 2
(

∂ 2Rβ

∂β 2
)−1

We extend the principle to the multi Rate-Distortion curves
by maximizing the Laplacian.

ˆ{

β j

}

= arg sup
{β j}

∆D(R) (20)

= arg sup
{β j}

∑
i

∂ 2Di

{β j}

∂R2

{β j}

In addition, local maxima are also points of interest. They
determine the hierarchical structure of clusters. A natural
cluster tree can be derived, by selecting clusterings obtained
at each local maximum. A curve representing the Laplacian,
where some local maxima exist, is drawn in Figure 5.

3. RELEVANT INFORMATION CONTAINED IN
SITS

We want to characterize information contained in Satellite
Image Time Series. Specialists qualify three types of infor-
mation contained in satellite images: textural, geometrical
and spectral information. These characterizations are con-
sidered to be independent. Therefore, by applying the Multi-
Information Bottleneck principle to those information types,
one characterizes the information contained in SITS. A prob-
lem is to find the variables that could contain relevant infor-
mation. Consequently, we propose to characterize texture by
Gauss-Markov Random Field parameters and we character-
ize the spectral information by the spectral signature. For
example, information is described with Gaussain Mixture in
[15]. Geometrical information is not taken in consideration
in this study.

3.1 Gauss-Markov Random Field

Gauss-Markov Random Fields (GMRF) are parametric mod-
els which have presented interesting properties for character-
izing textures in satellite images [16, 17]. We can extend the
principle to a 3-dimensional signal. The field is defined on
a rectangular grid. Let Xs be the signal, s belonging to a lat-
tice and let N be the half of a symmetric 3-d neighborhood
(Fig.3). GMRF are defined as follows:

Xs = ∑
r∈N

θr(Xs+r +Xs−r)+ es (21)

where es is a white Gaussian noise. Then parameters Θ̂ and
the noise variance σ̂ are estimated by Least Mean Squares,
which corresponds to the Maximum Likelihood estimation
considering a white Gaussian error. The equation (21) is ex-
pressed vectorially (22), by introducing a matrix G expressed
with the values of the vector X . Hence, the estimated param-
eters are expressed in the following equations.

X = GΘ+E (22)

Θ̂ = (GGT )−1GT X (23)

σ̂ 2 = XT X − (GΘ̂)T (GΘ̂) (24)

We denote the texture variable by T = (Θ,σ). We calculate
the estimate of parameters for each realization of the vari-
able X . Then, these estimates constitute a set of parameters
ΩT . The random variable T takes its value in the set ΩT .
Finally, the conditional probabilities p(T | X) are estimated
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Figure 3: Symmetric 3-d neighborhood of 3 different orderd.
The pixel Xs is black. Pixels corresponding to Xs+r are white
and pixels corresponding to Xs−r are striped

with Bayes rules and the Gaussian distribution of the noise
E calculated with the equation (22). We assume that the pa-
rameters Θ,σ are equally distributed and N is the length of
X .

p(T | X) =
p(X | T )

∑ΩT
p(X | T )

(25)

p(X | T ) =
1

(2πσ 2)N/2
e
− 1

2
ET E

σ2 (26)

3.2 Spectral information

Each image of the SITS is composed of three spectral bands.
We model spectral information by a Gaussian model which
is fully determined by its mean and variance. We denote by
S = (µS,σS) these quantities which take values in the set ΩS.
Similarly to texture parameters, spectral parameters are es-
timated for each realization of X . Finally, the conditional
probabilities are computed using the following equations:

p(S | X) =
p(X | S)

∑ΩS
p(X | S)

(27)

p(X | S) =
1

(2πσ 2
s )N/2

e
− 1

2
(X−µs)

T (X−µs)

σ2
s (28)

4. MULTI-INFORMATION BOTTLENECK
APPROACH FOR CLUSTERING

This section explains how to use previous results with the
Multi-Information Bottleneck to calculate a soft clustering.
We take into account two types of information, knowing that
they are qualified to be textural and spectral. We estimate the
parameters T,S for each X by maximum likelihood. Then,
we define ΩT ,ΩS to be the sets that contain all the estimated
parameters. In consequence, we can evaluate the conditional
probabilites expressed by (25), (27) and denoted as follows:

z1 = p(T | x) (29)

z2 = p(S | x) (30)

Finally, using recursively the equations (12), (14) and (15),
the algorithm described in [10] converges to a local mini-
mum and gives the soft clustering p(X̃ | X). In order to find
the optimal trade-off, we run the algorithm with varying pa-
rameters β1,β2. The methodology is represented in Figure 4.

p(T|X)=Z1

p(S|X)=Z2

Texture T

Spectral S

Parameters Conditional Clusters
probabilities Z

Data

X
~

PE CPE MIB

Figure 4: Data-driven information extraction by two chan-
nels of communication. PE stands for Parameters Estima-
tion. CPE stands for Condtional Probabilities Estimation.
MIB stands for Multi-Information Bottleneck.

Two channels of communication are clearly represented. It
shows that information is data-driven extracted by two chan-
nels of communications before being fused in a single repre-
sentation.

5. EXPERIMENTS AND DISCUSSION

For our experiments, we have worked on SITS provided by
the CNES. Each image is composed of 3 spectral bands and
has the size of 3000×2000 pixels. The series is composed of
38 images which represent the evolution of the countryside
at the South East of Bucarest during one year. Moreover, the
series is non uniformly sampled in time. We worked on a
subseries of size 70× 70× 10. A parallepipedic partition of
the data is done and we consider each parallepiped as a real-
ization of a random variable X . The partition is determined
by the size (width × height × time) of the parallelepipeds
which is also called the analyzing window size. We take
a window of 10× 10× 5. For the computation time prob-
lem, we have chosen to run the algorithm for several equal
trade-off parameters (β1 = β2). Figure 5 shows the Lapla-
cian of Rate-Distortion curves obtained with several trade-off
parameters. There are several local maxima which indicate
the existence of a hierarchical structure. Then, the number
of clusters obtained at the optimal trade-off is 131. In addi-
tion, the Rate-Distortion curves give a way to quantify the
extracted information. In our case, the information extracted
can be encoded at 3.44 bits per symbol. Figure 6 represents
one cluster in the data space. The cluster is representative of
a spatio-temporal pattern given by an oblic line and a white
part which disappear in time.

6. CONCLUSION

Nowadays only a few SITS exist, therefore the data type we
considered is quite recent. However, with the increasing ex-
pansion of satellites, the number of SITS will grow. A new
technique for information extraction has been presented in
this paper. 3D texture models and spectral models have been
extended for characterizing spatio-temporal structures. The
method enables to find the number of classes contained in
SITS by determining the critical number of clusters in the
feature space. Finally, the method enables to quantify and
qualify the extracted information.



Figure 6: Example of two clusters represented in the data space.
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