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Abstract—Tversky’s set-theoretic similarity states that a 
similarity measure should increase with the saliency of common 
features and decrease with that of distinctive features. When all 
necessary and relevant semantic features could be listed by hand, 
the similarity measure would be reduced to count the number of 
common features followed by subtracting the number of 
distinctive features. The reason is one might well select semantic 
features, so that features are independent and in the same level of 
salience. However, in image retrieval, one might have very 
restricted way to semantic features, for instance semantic 
features need to be derived from low-level features or by 
interaction between users and retrieval system. In this paper, we 
explore the Tversky’s similarity measure between satellite images 
with heterogeneous contents in this situation. 

In this paper, the semantic feature is not any real word or 
phrase, but a label of class in which homogeneous regions reside. 
We assume that each region in images is related to a semantic 
feature, although we do not know what the semantic feature is. 
Therefore, semantic features used in this paper are not well 
defined in the sense that the distinction of different pair labels 
might vary from time to time. In other words, the salience of 
distinctive features might switch from one state to another. 
Therefore, a factor is proposed to simulate the Switch of 
Distinctive Features (SDF). The underlining principle is that the 
SDF would increase with the difference between two images in 
terms of content variation pattern within each image. Intuitively 
speaking, the role of distinctive features would be enlarged when 
there is little change in one image and clearly contrast in the 
other image. Although the definition of variation within single 
image is rather simple in this paper, experimental results show 
that the SDF does improve the retrieval precision of satellite 
images with heterogeneous contents. 

I. INTRODUCTION 
The effectiveness of retrieving images from a large 

Remote-Sensing (RS) archive weightily relies on the 
description of image content [3]. Low-level features, e.g., color, 
texture and shape, are widely used in image retrieval systems, 
because it is straightforward to extract and use them [7]. 
However, there exists an evident semantic gap between the 
demanding of user and the representation of low-level features 
[14]. Therefore, it seems more attractive to represent image 
with high-level semantic features. A difficulty frequently 
mentioned in the literature is how to effectively extract 

semantic features from images. Much attention has been paid 
to derive semantic features from low-level features [8, 12, 17] 
or bridge the gap through interaction between users and 
retrieval systems [9, 13, 18]. It seems that one can easily make 
full use of semantic features when available. However, even 
though each available semantic feature is well defined to 
represent corresponding image content, no guarantee can be 
made about the distinction between different semantic features. 

Given a set of binary semantic features for each object, 
Tversky argued that similarity measure should increase with 
the saliency of common features (which are shared by two 
objects) and decrease with that of distinctive features (which 
only belong to one of the two objects) [11]. As a real 
implementation of Tversky’s set theoretic similarity, Feature 
Contrast Model (FCM) reduces the saliency of features into the 
sum of number of features. In fact, the FCM assumes that 
features are independent of each other and in the same level of 
saliency in terms of contribution to similarity measures. The 
assumption seems reasonable when one could list all necessary 
and relevant features for each object under investigation. This 
was the case in Tversky’s experiments [11].  

Obviously, the above-mentioned assumption is far from 
what we could expect in image retrieval. On the one hand, we 
are very restricted to directly access semantic features of 
images. On the other hand, it is not straightforward to make 
available semantic features in the same level of salience. In this 
paper, from the viewpoint of the salience of features, we 
explore the similarity measure under the assumption that we 
have access to semantic features in a very restricted way. We 
assume that each homogeneous region in images is related to a 
semantic feature, although we do not know what the semantic 
feature is. That is to say semantic features are coded in class 
labels of regions where class labels are allocated through 
clustering using low-level features of regions. Although the 
clustering could partition all regions into some homogeneous 
classes, the difference of regions in different classes cannot 
ensure to be in a same level. Therefore, when class labels are 
used as semantic features, it is necessary to regulate the 
saliency or role of distinctive features in similarity measures. 
Moreover, an additional assumption is that all common 
features are in the same level of saliency. This assumption is 
acceptable, because the goal of clustering is to group similar 
regions in a same class. 



2007 Urban Remote Sensing Joint Event 
 

1-4244-0712-5/07/$20.00 ©2007 IEEE. 

The remainder of this paper is organized as follows. In 
section II, the limitation of Tversky’s set-theoretic similarity is 
discussed from the viewpoint of the salience of features. In 
section III, the difference of feature salience is analyzed 
according to the process of hierarchical clustering. The switch 
of distinctive features is defined in section IV. Experimental 
results are presented in section V. Some discussions are given 
in section VI. 

II. THE SALIENCE OF FEATURES IN TEVERSKY’S SET-
THEORETIC SIMILARITY 

Tversky challenged the dimensional and metric assumption, 
which underlies the geometric similarity models, and 
developed an alternative feature matching approach to the 
analysis of similarity relations [11]. In this section, we describe 
the basic model of Tversky’s set-theoretic similarity, i.e., 
Feature Contrast Model (FCM). Then, we analyze the 
limitations to measure image similarity with FCM from the 
viewpoint of the salience of features. 

A. Feature Contrast Model 
Feature contrast model is a representation form of feature 

matching functions, which satisfies Tversky’s assumptions of 
feature matching processing. Let A, B, C be the feature sets of 
objects a, b, c, respectively, and ),( baS  be a similarity 
measure between objects a and b. Tversky postulated five 
assumptions for his similarity theory: matching, monotonicity 
and independence, solvability and invariance [11]. Any 
function, which satisfies the first two assumptions, is called 
matching function )(xF : 

1) Matching: ),,(),( ABBABAFbaS −−∩= . That is to 
say that the similarity measure could be expressed as a function 
of three parameters: common features, which are shared by two 
objects (i.e., BA ∩ ) and distinctive features, which belong to 
only one of the two objects (i.e., BA −  and AB − ). 

2) Monotonicity: ),(),( caSbaS >  wherever BACA ∩⊆∩ , 
CABA −⊆−  and ACAB −⊆− . That implies the similarity 

would increase with common features and decrease with 
distinctive features. 

As a simple form of matching function, the FCM is given 
by 

)()()(
),,(),(

ABfBAfBAf
ABBABAFbaS

−−−−∩=
−−∩=

βαθ
,              (1) 

where )(xf  is a nonnegative salience function of feature x  
and  θ , α  and β  are three nonnegative constants. In addition, 
the salience function )(xf  is assumed to satisfy feature 
additivity 

)()()( BfAfBAf +=∪ ,                          (2) 

where feature sets A  and B  are disjoint.  

B. The salience of features 
In Tversky’s original paper [11], two primary comments 

are made about the feature representation before the theory was 
presented. First, one has access to a general database of 
properties concerning a specific object (e.g., person or country), 
where the properties are deduced from human general and prior 
knowledge of the world. Given a specified task (e.g., 
identification or similarity assessment), one can extract or 
compile a limited list of relevant features from the database, to 
fulfill the requested task. Second, features are often represented 
as binary values, i.e., presence or absence of a specified 
property. These comments not only put the feature extraction 
out of the similarity theory, and they also make relevant 
features available in a suitable form (e.g., binary value) before 
similarity is measured. Therefore, it seems reasonable for 
features to be additive in Tversky’s experiments, because the 
extraction or compiling of relevant features is strictly under 
control. 

As shown in Eqs.1-2, feature additivity implies that: (1) 
features are independent of each other; (2) each feature is in the 
same level of saliency in terms of contribution to the similarity 
measure. Therefore, each feature is actually regarded as an 
elementary atom in the sense that it cannot be split into “finer” 
features any more and any object under investigation cannot be 
represented by two different subsets of features in an 
equivalent way. It is the very reason that the salience of 
features can be reduced to the number of features in Tversky’s 
experiments. Therefore, a semantic feature must not be a 
summary of other semantic features. In particular, terms land, 
island and building area should not occur in a same list of 
elementary features, since term land might be a summary of 
terms island and building area. However, even when available 
semantic features are well defined in database, the case could 
be still inevitable in image retrieval, because one cannot ensure 
users also understand images in the same way. In other words, 
that means we have access to the description of images in an 
intuitional and unambiguous way. Of course, we are still far 
way from the ideal state. The common approaches to semantic 
features make the case occur more often in real applications, 
e.g., deriving semantic features from low-level features or 
interaction between users and retrieval systems. 

A possible way to apply FCM in image retrieval is to 
assume that features are correlated and to model the 
correlations by introducing suitable weights. In other words, 
the salience of features is employed to model the correlation. 
As shown in Eq. (1), there exist two kinds of salience in FCM: 
(1) the salience of each feature; (2) the relative salience 
between common and distinctive features. In [16], Tang et al. 
explored the former in one of extensions of FCM, i.e., fuzzy 
feature contrast model. Although the three nonnegative 
constants in Eq. (1) can reflect the relative salience between 
common and distinctive features in a general way, the 
constants are independent of any specific feature subset. Daniel 
and Lee proposed a modified model to reflect the salience of 
each feature as common or distinctive feature [15]. In the 
modified model, the extreme case is that each individual 
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feature is either purely common feature or a purely distinctive 
feature. That means a feature shared by two objects (i.e., it is a 
common feature in fact) would not increase the similarity of 
the two objects, if the feature has been modeled as a purely 
distinctive feature. Therefore, the weight defined by Daniel and 
Lee is independent of the fact that a feature is a common or 
distinctive feature when comparing two objects. 

In this paper, we explore the relative salience between 
common and distinctive features in the sense that it is 
dependent on features involved in current similarity assessment. 
We assume that common features are reliable and would 
always increase similarity of objects in a same way. In contrast, 
the salience of distinctive features deserves re-evaluating. The 
reason is one often have no access to a complete and well-
defined semantic database in real applications. Limited 
semantic features still need to be derived from low-level 
features in supervised learning or from interaction between 
users and retrieval systems. Therefore, one might believe that 
images tied with a same semantic should be similar, although it 
is not clear what is the difference of images with different 
semantics. Therefore, the similarity assessment of objects with 
different semantics used to be not straightforward and it might 
be different from one to another, because it cannot be ensured 
that different semantics are independent and in a same level of 
salience. In this paper, we do not directly use semantic features 
but regard class labels of regions as semantic features. In other 
words, regions in a same class would be related to certain 
semantic features although it is not clear what the semantic 
features are. Therefore, semantic difference induced by labels 
deserves being explored furthermore. 

Because common features are assumed to increase 
similarity in a consistent way, the relative salience between 
common and distinctive features can be reduced to be the 
salience of distinctive features. Therefore, we rewrite the 
formulation of FCM as: 

)]()()[,()(),( ABfBAfBABAfbaS −+−−∩= δ ,     (3) 

where ),( BAδ  is a variable describing the variation of salience 
of distinctive features in similarity measures. Unlike the three 

constants in Eq. (1), ),( BAδ  would change with the feature 
sets A and B and be in the range from 0 to 1. In the followings, 
it will be defined in detail. For simplifying description, we term 
it a Switch of Distinctive Features (SDF), which regulate the 
role of distinctive features in similarity measures. 

Before proceeding to the detail of the definition for the SDF, 
an example in satellite image retrieval is employed to show the 
change of importance of distinctive features in similarity 
measures. Four segmented images (i.e., I1, I2, I3 and I4) are 
shown in Fig. 1, which come from three classes: SEA, BEACH 
and CITY (i.e., the upper-case words above images in Fig. 1). 
Note that the name of image class (e.g., sea) denotes the set of 
images in our ground truth database, which is not any semantic 
feature. In contrast, the texts in images are desirable semantic 
features for corresponding regions, e.g., water, island and so on. 
Recall that these semantic features are not available in our 
experiments and we expect they are perfectly encoded by class 
labels of regions during clustering. However, in current 
example, we suppose they are available to use. Moreover, the 
segmentation is also not perfect, for example, the island in 
image I2 is segmented into two regions in top-left of the image. 
We assume that both regions could be related to a same class 
label, since they are similar in terms of low-level features. 
Therefore, their semantic features are assumed to be the same, 
i.e., island. 

As shown in Fig. 1, one might say that two images from 
class BEACH are the most similar among the four images. 
However, it is not the case if the similarity is measured using 
FCM, i.e., Eq. (1), where the salience function is equal to the 
sum of number of features. Similarity measures between four 
images are listed in Table 1, where the three constants of Eq. (1) 
are set to 1, i.e., 1=== βαθ . Note that the before-mentioned 
judgment cannot be validated whatever the three constants are 
set. The reason is the constants can only regulate the relative 
salience between common and distinctive features in a global 
way and cannot adapt with the feature sets in use. The 
constants do not influence the relative order of similarity 
measure. For image retrieval based on similarity measure, the 
constants are of less importance.  

    

SEA BEACH BEACH CITY 

I1 I2 I3 I4 
Figure 1.  Images with regions labeled by semantic features 

island 

water 

water 

water 

building 

building
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TABLE I.  SIMILARITYMEASURES USING EQ. 1 

 I1 I2 I3 I4 

I1 1 0 0 -2 

I2  2 -1 -3 

I3   2 0 

I4    1 

     

The results listed in Table I seem contradictive to 
traditional similarity measures, since some values are negative, 
for instance the similarity measure between I2 and I3 is equal to 
-1. The reason is that their number of common features is one 
(i.e., water) and the number of distinctive features is two (i.e., 
island and building). According to Eq. (1), the similarity 
measure would be one minus to two, i.e., -1. 

It can be seen from Table I that the similarity value of 
images I2 and I3 (i.e., -1) is less than that of images I1 and I2 or 
I3 and I4 (i.e., 0). Therefore, images I2 and I3 are not the most 
similar in four images according to similarity measures of 
FCM. Obviously, this is contradictive to what one would judge. 
One might argue that the contradiction does not originate from 
the weakness of FCM but multiple meanings of semantic 
features. The term beach is related to two basic objects, i.e., 
water of sea and land near the sea. Therefore, when image I2 or 
I3 are judged to be similar, one naturally replace semantic 
feature island and building with a more general feature land. 
As mentioned above, Tversky rules out this kind of multiple 
meanings of semantic features from his set-theoretic similarity 
by assuming that available features are independent and in a 
same level of salience. In image retrieval, the assumption often 
is hard to satisfy, in particular for the case that limited semantic 
features still need to derive from low-level features or 
interaction with users. We believe that Tversky’s assumption is 
far from the real case in image retrieval. Therefore, the SDF, 

),( BAδ , in Eq. (3) is designed to solve the multiple meanings 
of semantic features. The desired behavior of the SDF is as 
follows: (1) when the similarity between images I2 and I3 is 
measured, it will be near to minimum value, i.e., zero. That 
means the difference of distinctive features should be totally 
ignored or tolerated; (2) when measuring the similarity of 
images I1 and I2 (or I3 and I4), it will be near to maximum value, 
i.e., one. The possible principle is to directly detect whether 
there exist multiple meanings of distinctive features. It seems 
too hard to do it because one used to have no access to the 
relative relation between various semantic features. We 
approach the problem by firstly detecting the change of 
semantic features in each image and secondly comparing the 
changes of two images.  

III. IMAGE REPRESENTATION USING LABELS OF REGIONS 
In the previous section, we assume that semantic features of 

images are available. In practice, we do not have a direct access 
to the semantic features but an indirect one, i.e., class label of 
region. First, each image is segmented into possible multiple 

regions and each region is represented as low-level features 
(e.g., Gabor texture). Second, all regions in image database are 
clustered into several classes using the low-level features. And 
each class is given a label. In an image, each region is tied with 
a label. At last, each image is represented as possible multiple 
labels. Although the label of region is not equivalent to any 
semantic feature, we believe that it should be related to certain 
semantic feature. Therefore, in the following, we do not 
discriminate semantic feature and class label of region. 

A. Class Label of Homogenous Regions 
For satellite images with homogeneous contents, it seems 

that global texture features work well when we are not 
interested in identifying specific objects but categorizing 
images. However, it might be difficult for texture features to 
well characterize the global content of image with multiple 
heterogeneous regions. A straightforward approach is to make 
feature extractor work in homogeneous regions in an image, 
e.g., squared blocks partitioned from the image or irregular 
regions segmented from the image. From the viewpoint of 
shape, it seems more accurate for region than block to represent 
homogeneous content in an image. Furthermore, it seems 
reasonable to extract better features from regions. Although a 
large number of segmentation algorithms are available, a 
desired segmentation for a set of images is often a try-and-error 
work. In addition, some global texture extractors, e.g., Gabor 
texture, cannot well be adapted to various regions but work in 
squared blocks of images. In our experiments, an accurate 
approximation of object shape does not ensure a good global 
representation of image content, in particular, for regions with 
too small size or slender regions. Therefore, we combine two 
methods in this paper. Gabor texture is extracted from squared 
blocks of a fixed size. The feature of each region is a weighted 
combination of all blocks in the region and/or intersected with 
the region. 

Any way, in order to capture the variation of content within 
an image, both partition and segmentation result in possible 
multiple features for an image. Each image might not be 
represented as a single point in the feature space but as a 
feature set of variable size. Therefore, the similarity measure 
between images could be a combination of comparisons of 
some paired features between two feature sets. A possible 
approach is to compare each possible pair of features and 
integrate overall comparing results with suitable weights [5]. 
However, it is often not easy to allocate suitable weights to 
them and the computation is also very dense. Some strategies 
(e.g., “winner takes all”) are employed to select desirable 
feature pairs (e.g., Euclidean distance between them is the 
nearest) [2]. Another possible approach is to reconstruct a new 
feature space, where each image can be represented as a single 
point in the space again. For instance, all regions are clustered 
into n classes and each class is regarded as a variable. In the n-
dimensional space, the ith coordinate value of each image 
might be the number of regions in the ith class [1]. Then, the 
similarity between images is measured by certain distance 
between new feature vectors. The first step of approaches 
mentioned above is to construct a correspondence between a 
pair of features. The second step is to integrate or accumulate 
all weighted “distances” of corresponding regions. The 
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underlining assumption is that image similarity is dependent on 
the difference between “nearer” or “similar” regions and has 
nothing to do with “farer” or “dissimilar” regions. However, 
following Tversky’s principle, similarity should be a function 
of both common and distinctive features. Here, the common 
features are regions where there exist correspondences between 
two images. The distinctive features refer to regions of one 
image, which do not correspond to any region in the other 
image. As mentioned before, it is not true that distinctive 
features influence the similarity measure in a consistent way, 
i.e., decreasing the value of similarity. In other words, the 
salience of distinctive features in similarity measure might 
change with the context of similarity assessment. In the 
following, we explore the salience of distinctive features during 
discovering common features. 

B. The Salience of Class Label in Hierarchical Clustering 
Although K-means is widely used to form clustering, little 

information about the relative relationship of different classes 
could be deduced from the clustering result, except the distance 
between class centers. In this paper, hierarchical clustering is 
employed to cluster regions using their low-level features. 
Therefore, the relative relationship of classes can be analyzed 
from the viewpoint of salience in similarity measures. Because 
class labels are used as semantic features in this paper, the 
salience of class label is the relative role or importance in the 
similarity measure. From the viewpoint of feature selection, the 
importance of feature often refers to its relevance of the 
required task, e.g., classification. As we know, one might use 
quantitative indicators (e.g., the rate of recognition) to evaluate 
classification, then to rank the relevance or importance of 
features for classification. However, it seems more feasible to 
rank the relevance or importance of features for similarity 
measure with some general principles than quantifiable 
indicators, because the result of similarity measure used to be a 
relative quantity. In other words, a value of similarity measure 
is meaningful only when it is compared with other values. 
From the viewpoint of classification, a common principle is 
that a better approach to similarity measure should make 
similar objects near to each other and far away from dissimilar 
objects in the feature space. Therefore, given a similarity 
metric, a better feature, by itself, should be homogenous for 
similar objects and be different from features of dissimilar 
objects.  

As mentioned above, semantic features used in the 
similarity measure (i.e., Eq. (3)) are class labels and each class 
label is given to regions in the class. Therefore, the salience of 
class label originates from the homogeneity in a same class and 
the heterogeneity between regions in different classes. In the 
following, we discuss the salience of class label in the process 
of hierarchical clustering with complete-link. The basic process 
is the following. First, Euclidean distance is calculated for each 
pair of regions using low-level features (i.e., Gabor texture). 
Second, the pair of regions with maximum Euclidean distance 
is cut off and two disjoint classes of regions are created. Third, 
the process proceeds until the number of existing classes is 
equal to a given number. 

As shown in Fig.2, we assume that a perfect hierarchical 
clustering tree is created using all regions of four images 
shown in Fig.1. Each node in Fig.2 denotes a class including 
some regions and the digital number of node is related to the 
sequence of hierarchical clustering. For instance, node 1 (i.e., 
class 1) is the root node including all regions in four images. 
Given two regions, if they are in a same class, one might say 
they are similar because they share the same class label (i.e., 
common semantic feature). However, if they belong to 
different classes, one might say they are dissimilar because 
their class labels are different. In Tversky’s contrast model, the 
overall similarity of objects would increase with the similarity 
judgment and decrease with the dissimilarity judgment. That is 
to say the similarity and dissimilarity deduced by semantic 
features are in a same level of salience. Is it true in our case 
that semantic features are hierarchically derived from low-level 
features? In other words, the problem is whether the reliability 
of the judgments is the same using all the classes in Fig. 2. 
Obviously, the answer is negative. For instance, class 1 in 
Fig.2 includes all regions in images. If two regions are judged 
to be similar because both of them are in class 1, one might say 
the judgment is unreliable, because too many heterogeneous 
regions are in the class. In other words, if the label of class 1 
would be used as a semantic feature, it should be less important, 
even make nonsense. Therefore, class 1 needs to be split to 
more precisely describe regions in the other class, i.e., class 2 
and 3. Then, the similarity judgment based on class 2 or 3 is 
more reliable than based on class 1. At the same time, it is 
possible to measure dissimilarity using different class labels. 
When one region is in class 2 and the other in class 3, one 
might say they are dissimilar. The judgment might be the most 
reliable among all dissimilarity judgment based on the 
distinction of class labels, because the splitting of class 2 and 3 
is based on the largest Euclidean distance among all pair of 
regions. It seems reasonable that the difference between 
regions respectively coming from classes 2 and 3 is the most 
obvious in terms of low-level features.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  An illustration of hierarchical clustering 

To intuitionally describe the distinction between various 
class labels, the regions in class 3, 4 and 5 in Fig. 2 is termed 
as land, island and building, respectively. Therefore, it is 

water building island
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acceptable that the similarity judgment based on class 4 or 5 is 
more reliable than class 3. However, for the dissimilarity 
judgment, it is not the case. For instance, the dissimilarity 
judgment between class 2 and 3 is more reliable than that 
between class 4 and 5. The reason is that class 4 and 5 still 
share a similar character, i.e., both of them belong to a more 
general notion land. 

Although the above-mentioned discussions are for an ideal 
case, we can conclude that: (1) the reliability of similarity or 
dissimilarity judgments based on class labels changes with 
their relative positions in the hierarchical clustering; (2) the 
reliability of judgments is closely related to the salience of 
class labels; (3) a possible common sense is the similarity 
judgment of class label is more reliable when the class is in 
lower level node of hierarchical clustering; The extreme case is 
that class labels on the lowest level of hierarchical clustering 
(they are often called leaf nodes) are the most reliable; (4) the 
dissimilarity judgments behaves in a different way from the 
similarity judgment. In particular, the reliability of dissimilarity 
judgments decreases with the proceeding of hierarchical 
clustering. 

Therefore, only class labels of leaf nodes are often used as 
semantic features, because their similarity judgments are the 
most reliable and in a same level of salience. At the same time, 
much extra attention should be paid to the dissimilarity 
judgments, because their reliability is rather low and might 
vary from one to another. The before-mentioned analysis also 
serves a reasonable analysis for the SDF ),( BAδ  defined in Eq. 
(3). 

IV. THE SWITCH OF DISTINCTIVE FEATURES 
Although the terms “distinctive” and “common” features 

are defined according to comparing two objects, they are 
closely related to the clustering of regions using low-level 
features in this paper. Therefore, a common feature would be 
only tied to those regions in a same class, which are expected 
to be homogeneous in content. And distinctive features 
originate from the distinction between class labels and are 
expected to be as heterogeneous as possible in content. 
Intuitionally speaking, the variations of image contents result in 
distinctive features and they can be decomposed into the 
changes within an image (i.e., within-image variation) and 
between two images (i.e., between-image variation). Given an 
image, the within-image variation is mainly dependent on the 
changes of image content and algorithms of segmentation and 
clustering. Therefore, it could be well characterized using some 
objective quantity. In contrast, the variation between two 
images is a relative conception, and it is meaningful when 
images are compared. When the clustering results are 
acceptable (i.e., all regions in each leaf node on the clustering 
tree are similar to each other), between-image variations are 
reduced to distinctive features, which occur in only one of two 
images. As we know, distinctive features are defined according 
to given common features. It seems reasonable that between-
image variations could be defined according to the within-
image variation. Furthermore, it seems reasonable to evaluate 
the salience of distinctive features in similarity measures using 
the variations within each image. The principle we follow is 

that the salience of distinctive features increases with the 
difference between the patterns of within-image variations. 

A. Within-image Variation 
When only common features are used to measure similarity, 

images with multiple regions will be judged similar to images 
with one single region, if the feature of the single region is the 
same as one of features in the multiple-region image. For 
instance, for images shown in Fig.1, image I2 might be judged 
similar to image I1 and I3 to the same degree, because they 
share the only common feature “water”. This might be one of 
the reasons for the retrieval precision of images with multiple 
objects to be often rather low. When within-image variation is 
considered in the similarity measure, images with multiple 
regions (e.g., I2) should be rather different from images with 
single or small number of regions (e.g., I1), because the 
variation of the later is very small or even nothing. It seems 
that the number of objects is a suitable indicator to characterize 
the within-image variation. However, the number of objects 
cannot encode the degree of difference between class labels, 
which is what we want to measure because it is easier for us to 
focus on the contrasting information in an image. In addition, 
in our experiments, each satellite image is not segmented into 
too many regions by adjusting the parameters of the 
segmentation algorithm. Therefore, the number of regions is 
not a suitable indicator for within-image variation. 

As we know, the pair of regions with largest Euclidean 
distance is cut off at each step of hierarchical clustering with 
complete-link. That means that there is the most evident 
contrast (or variation) between features in two newly created 
classes. The within-image variation should reflect the class 
variation of regions in a same image. If all regions in an image 
are very near to a same leaf node in the hierarchical clustering, 
the within-image variation should be rather small. In contrast, 
if regions in a same image are split into different classes at the 
very beginning of hierarchical clustering, the within-image 
variation should be rather large to well reflect the content 
contrast in the image. 

Assume the maximum Euclidean distance between regions 
in ith node of hierarchical clustering tree is denoted by id . 
Note that Euclidean distance between each pair regions is 
computed based on their low-level features. And the ith node is 
also the node, from which regions of image x  are split into 
different nodes (i.e., various classes) at the first time. The 
within-image variation of image x  is defined as 

0

)()(
d

XdXv i= ,                                  (4) 

where X  is feature set of image x ; 0d  is the maximum 
Euclidean distance among all pair of regions, which is 
dependent of specific regions or images; )(Xdi is the 
maximum Euclidean distance of the ith node and is also the 
node where regions in image x  are split into different classes 
at the first time. The within-image variation measures the 
degree of maximum contrast (or variation) within an image. In 
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general, within-image variation of images with multiple 
regions should be potentially larger than that of images with 
single region, since the single region has no opportunity to be 
two various leaf nodes of hierarchical clustering. However, 
there does not exist any direct relationship between them in 
terms of within-image variation. 

B. The Switch of Distinctive Features 
As mentioned in the beginning of this section, the salience 

of distinctive features is related to the difference of within-
image variations. Therefore, given two images a  and b , the 
switch of distinctive features ),( BAδ  in Eq. (3) is defined as: 

)()(),( BvAvBA −=δ ,                         (5) 

where within-image variations )(Av  and )(Bv are given by Eq. 
(4) and x  is the absolute value of x . For homogeneous 
images (e.g., SEA or CITY), their within-variation would be 
rather small. However, heterogeneous images with multiple 
class labels (e.g., BEACH), their within-variation would be 
rather large. Intuitionally speaking, the SDF ),( BAδ  can 
realize that: 

(1) When comparing images from SEA and BEACH, the 
SDF would be enlarged. Then, distinctive semantic features 
island or building will play a larger role in the overall 
similarity measures.  

(2) In contrast, when comparing two images from BEACH, 
the role of the distinctive features island and building will be 
devaluated, since there exist rather similar within-image 
variations in the two images. Intuitively speaking, the 
difference between distinctive features island and building 
would be tolerated by replacing them with a more general 
feature land. 

In a word, using the SDF defined in Eq. (5), the salience of 
distinctive features can be switched from one state to another to 
some extent. 

V. EXPERIMENTS AND DISCUSSION 
A Quickbird intensity image shown in Fig. 3 is used to 

construct an image collection for retrieval, which is located in 
the south of Marseille in France. The image in Fig. 3 is 
partitioned into 512x512 sub-images. For simplification of 
expression, the term “image” will be used to replace the term 
“sub-image” in the following description. In our experiments, 
500 images are selected to construct 5 ground-truth classes. 
The names of ground-truth classes include SEA, CITY, 
MOUNTAIN, BEACH and FIELD. In each class, there exist 
exactly 100 images. Note that the name of ground-truth class 
has nothing to do with semantic features or the label of class in 
hierarchical clustering. They are only used to calculate the 
retrieval precision when retrieval results are presented in each 
round of retrieval.  

Four segmented images from each ground-truth class are 
shown in Fig. 4. Each image is segmented into several regions 

using the algorithm JSEG [4]. On average, each image includes 
about 3 regions. 

Figure 3.  Overview of the Quickbird image using in the experiments 
(Copyright: CNES) 

The Gabor texture with 3 scales and 6 directions is adopted 
as low-level features for region in our experiments [6]. Note 
that the low-level features of each region are not directly 
extracted from the segmented region but from each 64x64 
square blocks in the region and intersected with the region. For 
each region, the low-level feature is a reweighed average of 
Gabor texture of all square blocks in and intersected with the 
region. The weight is the area percentage. At last, each region 
is represented as a 36 dimensional feature vector. Then, The 
algorithm of hierarchical clustering is employed to cluster 
regions using Gabor texture features. The class labels are 
regarded as semantic features of images and are employed to 
measure similarity between images using Eq. (3). For 
simplifying notation, the proposed approach is termed as SDF 
in Fig. 5. 

SEA

CITY

MOUNTAIN

BEACH

FIELD

Figure 4.  Segmented Images of 5 ground-truth Classes 

For comparison, k-means is also used to cluster regions and 
class label is employed to measure the similarity between 
images using Eq. (1). The three constants in Eq. (1) are set to 1. 
For simplifying notation, the approach is termed as FCM in Fig. 
5. The retrieval precisions based on two similarity measures are 
shown in Fig. 5. It can be seen from Fig. 5 that the precision of 
SDF is higher than or equal to that of FCM except for image 
class “CITY”. The evident improvements occur in class 
“BEACH”, which includes two kinds of objects: water and 
land.  

However, a possible question is whether the improvement 
is due to the difference of clustering algorithms, i.e., k-means 
and hierarchical clustering. Fig.6 shows the retrieval precision 
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when class labels created by two algorithms for clustering are 
used in the FCM. 

 

Figure 5.  Retrieval precisions using SDF and FCM 

 

(a) (b) 
Figure 6.  Class label created by hierarchical clustering and k-means 

It can be seen from Fig.6 that the difference between the 
two kinds of algorithms for clustering is not evident except for 
class “BEACH” in Fig.6 (a). At the same time, it can be seen 
from Fig.5 (a) and Fig. 6 (a) that the precision of class 
“BEACH” is also improved using the SDF. This shows that the 
SDF fulfills the function of feature switch to some extent. In 
our experiments, the retrieval precision of images in class 
“FIELD” is still rather low. The possible reason is that the field 
in our dataset is too diverse for a correct retrieval in the dataset. 
In many “FIELD” images, building areas occupy a noticeable 
percentage of the whole images. Moreover, there exists evident 
visual difference between field areas in “FIELD” images. 

VI. CONCLUSION AND FURTHERMORE WORKS 
In this paper, a factor, termed a Switch of Distinctive 

Features (SDF), is explored to simulate the switch of 
distinctive features in satellite image retrieval. In particular, the 
SDF is designed to reflect the variation of the role of distinctive 
features in similarity measure, e.g., the variation of importance 
induced by the multiple meanings of features in various 
contexts. In this paper, the SDF is defined as the difference of 
variation pattern within each image. Experimental results show 
that retrieval precision of images with heterogeneous contents 
is improved. However, the solution is still far from achieving 
fluent feature switch of human. Feature switch actually is a 
process of feature selection for a given task. Therefore, the key 
is to discover the relevance of features to the goal when 
comparing two objects. However, the term feature selection 
(i.e., select relevant features for objects to be compared) is 
different from that used in machine learning (i.e., select a 
subset of features for all objects from a feature set). It seems to 
be a local or real-time feature selection. Therefore, the feature 
switch is too ideal to realize in real applications. Any way, we 
attempt to approach it in some limited situations. The next step 

is to explore the relevance of features during feature extraction. 
So, features can be utilized in a more local or real-time way. 
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