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Abstract

Consider a connected undirected bipartite graph G = (V = I ∪ A, E), with no edges inside I or A. For
any vertex v ∈ V , let N (v) be the set of neighbours of v. A code C ⊆ A is said to be discriminating if all
the sets N (i) ∩ C , i ∈ I , are nonempty and distinct.

We study some properties of discriminating codes in particular classes of bipartite graphs, namely trees
and, more generally, (bipartite) planar graphs.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Let G = (V = I ∪ A, E) be a connected undirected bipartite graph, with E ⊆ {{i, a} : i ∈ I,
a ∈ A}. For any vertex v ∈ V , let N (v) denote the neighbourhood of v and B(v) = N (v) ∪ {v}.
Whenever two vertices v1 and v2 are neighbours, we say that they cover each other. A set X ⊆ A
covers a set Y ⊆ I if every vertex in Y is covered by at least one vertex in X .

A code C is a nonempty subset of A, whose elements are called codewords. For each element
i ∈ I , we denote by

KC (i) = N (i) ∩ C

the set of vertices which are both codewords and neighbours of i . Two vertices i1 and i2 with
KC (i1) 6= KC (i2) are said to be discriminated by code C .
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A code C is called discriminating if the sets KC (i), i ∈ I , are all nonempty and distinct [1].
In other words, all vertices in I must be discriminated and covered by C .

The motivation for these definitions comes from the fact that the sets I and A can be seen as
a set of individuals and a set of attributes, respectively, with an edge between i ∈ I and a ∈ A if
i owns a; then a discriminating code is a set of attributes which can distinguish between all the
individuals (and an individual must own at least one codeword).

This problem can also be expressed in terms of binary matrices: given a matrix, where rows
represent individuals and columns attributes, find columns inducing a submatrix with no zero
row and no two equal rows.

Discriminating codes are closely related to (one-)identifying codes [5], the definition of which
can be found in Section 2, and to (one-)locating–dominating codes (see [6]), the differences being
that here codewords belong to a prescribed subset (namely the set A of attributes), and only a
prescribed set of vertices (namely, the set I of individuals) must be identified; see also Remark 3
at the end of Section 4. See [7] for a large bibliography on identifying and locating–dominating
codes.

Remark 1. For a given bipartite graph G = (I ∪ A, E), there exists a discriminating code C ⊆ A
if, and only if,

∀i1, i2 ∈ I (i1 6= i2), N (i1) 6= N (i2).

Indeed, if for all i1, i2 ∈ I , N (i1) and N (i2) are different, then C = A is discriminating.
Conversely, if for some i1, i2 ∈ I , N (i1) = N (i2), then for any code C ⊆ A, we have KC (i1)

= KC (i2). Individuals i1 and i2 with N (i1) = N (i2) are called twins, and we can reformulate our
remark in the following way: a bipartite graph admits at least one discriminating code if, and only
if, it is twin-free.

Obviously, given a bipartite twin-free graph, we shall be interested in finding the smallest
possible discriminating code.

In this paper, we investigate the case of trees and planar graphs. In Section 3, we exhibit
a polynomial-time (and even linear-time) algorithm finding a smallest discriminating code in
a given tree, whereas in general, this problem is NP-hard [1] (for completeness, we give in
Section 2 the full proof of this result). In Section 4, we study planar graphs which are optimal in
a certain sense.

2. A complexity result

In [1] is sketched the proof that finding the smallest discriminating code is NP-hard in general.
More specifically:

Theorem 1. The following decision problem is NP-complete:

Name: Discrimination (DISC).
Instance: A bipartite graph G = (V = I ∪ A, E), an integer k.
Question: Is there a discriminating code C ⊆ A of size at most k?
We give here a proof which is more detailed than that in [1]. For notions of complexity theory

and NP-completeness, we refer the reader to [4].
Since we shall consider two graphs G and G∗, in order to avoid ambiguities we shall use the

notation NG(v) for v ∈ G and BG∗(w) for w ∈ G∗.
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First, we see that DISC ∈ NP, by observing that, given a set C ⊆ A, it is polynomial, with
respect to the number of vertices of G, to check whether C is, or is not, a discriminating code (of
convenient size).

Next, we polynomially reduce the following NP-complete problem to DISC:

Name: Identification (ID).
Instance: A graph G∗

= (V ∗, E∗), an integer k∗.
Question: Is there an identifying code of size at most k∗ in G∗, i.e., a set C∗

⊆ V ∗ of size at
most k∗ such that the sets BG∗(v), v ∈ V ∗, are all nonempty and distinct?

It has been proved in [3] that ID is NP-complete. We consider an instance of ID and, starting
from G∗, we construct the bipartite graph G in the following way: I = V ∗, A = {BG∗(v) : v

∈ V ∗
}, E = {{i, BG∗(v)} : i ∈ BG∗(v), v ∈ V ∗

}; we set k = k∗.
We claim that there is an identifying code of size at most k in G∗ if, and only if, there is a

discriminating code of size at most k in G.
If C∗

⊆ V ∗ is an identifying code in G∗, all the sets BG∗(v) ∩ C∗, v ∈ V ∗, are nonempty
and distinct. A fortiori, the sets BG∗(v) are all distinct; consequently, the set C = {BG∗(v) : v

∈ C∗
} ⊆ A has |C∗

| elements. Moreover, C is a discriminating code in G: for i ∈ I ,

NG(i) ∩ C = {BG∗(v) : i ∈ BG∗(v), v ∈ C∗
},

or

NG(i) ∩ C = {BG∗(v) : v ∈ BG∗(i) ∩ C∗
}.

Since the sets BG∗(i) ∩ C∗, i ∈ V ∗, are nonempty and distinct, the same is true for the sets
NG(i) ∩ C , i ∈ I .

Conversely, assume that we have a discriminating code C ⊆ A in G; there exists C∗
⊆ V ∗

such that C = {BG∗(v) : v ∈ C∗
}, and we claim that C∗ is an identifying code in G∗. If not,

then either a set BG∗(v0) ∩ C∗ is empty or two sets BG∗(v1) ∩ C∗, BG∗(v2) ∩ C∗ are equal.
In the former case, v0, seen as a vertex in I , is such that NG(v0) ∩ C is empty; in the latter,
NG(v1) ∩ C = NG(v2) ∩ C . In both cases, we get a contradiction. Finally, C∗ and C obviously
have the same size.

We have therefore transformed ID to DISC in such a way that there is a positive instance for ID
if, and only if, there is a positive instance for DISC. This, together with the obvious polynomiality
of the transformation and the membership to NP, proves that DISC is NP-complete. M

However, if we restrict ourselves to trees, we can answer the question in DISC (in a
constructive way) in polynomial (and even linear) time, as we show in the next section.

From now on, the graphs considered are always bipartite, connected and twin-free.

3. A polynomial algorithm for trees

Let T = (V = I ∪ A, E) be a tree with n vertices. A leaf ` ∈ V is a vertex with only one
neighbour, which we denote by n(`). If ` ∈ I , then n(`) ∈ A and there is no other leaf whose
neighbour is n(`), since T is twin-free.

We can also observe that if ` ∈ A, then n(`) ∈ I and every leaf with neighbour n(`) is an
attribute; if there are several leaves with neighbour n(`), it is then obvious that among them, at
most one will belong to a discriminating code with minimum size.

First we show how we can either solve the problem or transform it into one or several smaller
problems; then we show that this approach indeed leads to an algorithm which is polynomial
with respect to n. Finally we mention that a linear algorithm exists.
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Fig. 1. Different paths of length up to four, with optimal discriminating codes. White circles are individuals, black circles
are attributes, with a larger diameter when they are codewords.

Fig. 2. How to cut the paths of length at least 5.

3.1. Paths

For T a path of length (i.e., number of edges) at most four, we give in Fig. 1 all the possibilities.
We now study paths of length L ≥ 5, and distinguish between two cases.

(a) There is an individual at one end of the path, so we can write T = i1, a1, i2, a2, i3, a3, . . .;
see Fig. 2(a).

Because i1 must be covered by a codeword and i1 and i2 must be discriminated, necessarily
both a1 and a2 belong to any discriminating code. Now i3 is covered by a2 and will be
discriminated from i4, whatever the status of a3 and a4 will be. So, remembering that a1 and
a2 are codewords, we can cut the path between i3 and a3 and see that the problem of searching
for an optimal code in the whole path is equivalent to the same problem in the reduced path.

(b) Both ends of the path are attributes, so L ≥ 6 is odd and we can write T = a1, i1,

a2, i2, a3, i3, a4, . . . , a1+L/2; see Fig. 2(b).
Suppose that a1 belongs to a minimal code in T ; then it is easy to see that this optimal code

contains exactly one of a2 and a3; if it is a2 (respectively, a3), then another optimal code can be
obtained by replacing a1 by a3 (respectively, a2). This shows that, remembering that a1 will not
be a codeword, we can cut the path between a1 and i1, and, as in Case (a), search for an optimal
code in the remaining path.

This shows how to progressively reduce the problem to the paths given in Fig. 1.

3.2. Threads and branchings

From now on, we assume that T is not a path, which means that there is at least one vertex
with degree at least three.

We call thread any path such that (a) one of its two extremities is a leaf, which we call the
end of the thread, and the other is a vertex of degree at least three, which we call the origin of
the thread, and (b) all in-between vertices have degree two. We distinguish between three cases.

(a) There exists in T a thread of length at least five whose end is an individual i1 and whose
origin w is either an individual or an attribute; see Fig. 3(a).

As in the case of paths, the attributes a1 and a2 belong to any discriminating code in T since
i1 must be covered by a codeword and i1 and i2 must be discriminated. It is then easy to observe,
as previously for paths, that the problem of finding an optimal code is the same for in T (where
we take a1 and a2 as codewords) and for in T deprived of the vertices i1, a1, i2, a2 and i3.
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Fig. 3. How to cut threads. Squares can be individuals or attributes.

Fig. 4. Each branching is an individual.

(b) There exists in T a thread of length at least three whose end is an attribute a1 and whose
origin w is either an individual or an attribute; see Fig. 3(b).

We claim that there exists an optimal discriminating code not containing a1. Assume that C
is an optimal discriminating code. If a1 6∈ C , we are done; if a1 ∈ C , we remove a1 from C : the
resulting code is not discriminating. This is so either because now i1 is not covered by any
codeword, or because i1 and i2 are not discriminated. In the former case, a2 6∈ C and i2 is covered
by another codeword; we can therefore replace a1 by a2 in C and still have a discriminating code.
In the latter case, the only codeword covering i2 is a2; in C , we can therefore replace a1 by any
attribute which is neighbour to i2 and different from a2 and still have a discriminating code. In
both cases, our claim is true. As a consequence, we can, keeping in mind that a1 will not be a
codeword, cut the thread between a1 and i1, and search for an optimal code in the remaining tree.

(c) All threads whose end is an attribute have length at most two and all threads whose end is
an individual have length at most four.

We call branching any vertex of degree at least three which is the origin of at least two threads.
Branchings exist in T because T is not a path. We distinguish between two cases for branchings:
individuals or attributes.

(i) The branching is an individual. Its threads can have length 1, 2 or 4: length 3 is impossible
since the end of the thread would be an attribute. We have two subcases.

(i1) The branching has a thread of length one.
If there are two threads of length one, since their ends are attributes, there is one which needs

not be a codeword and can be removed from the current tree; see Fig. 4(a).
If there is a thread of length two, see Fig. 4(b), then necessarily a2 is a codeword, and if a1

belongs to an optimal code, we can replace it by an attribute, other than a2 and neighbour of i1
(remember that i1 has degree at least three); as before, we see that we can, keeping in mind that
a1 will not be a codeword, delete a1 and search for an optimal code in the remaining tree.
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Fig. 5. Each branching is an attribute.

Finally, if there is a thread of length four, see Fig. 4(c), necessarily a2 and a3 belong to any
discriminating code, and we can as before delete a1.

(i2) All the threads of the branching have length two or four; cf. Fig. 4(d).
Obviously, a1, a2 and a3, and, more generally, all the attributes on all the threads, belong to

any discriminating code. Therefore, if we remove all the threads (including the branching), then
in the remaining forest, any optimal code will give, together with the attributes on the threads, an
optimal code in T . This completes Case (i).

(ii) The branching is an attribute. Its threads can have length 1, 2 or 3: length 4 is impossible
since the end of the thread would be an attribute. We have already noticed that there can be at
most one thread of length one. We have three subcases.

(ii1) There is a thread of length one.
If there is a thread of length two, see Fig. 5(a), then a1 and a2 belong to any discriminating

code and, using the same arguments as before, we see that we can remove i2 and a2.
If there is a thread of length three, see Fig. 5(b), then again a1 and a2 must be codewords, and

we can remove i2, a2 and i3.
(ii2) The smallest thread has length two; cf. Fig. 5(c).
We claim that there exists an optimal discriminating code not containing a2. Assume that C

is an optimal discriminating code. If a2 6∈ C , we are done; if a2 ∈ C , we remove a2 from C : the
resulting code is not discriminating. This is so either because now i1 is not covered by any
codeword, or because i1 is not discriminated from some (unique) individual i . In the former
case, a1 6∈ C and all its neighbours other than i1 are covered by some other codeword(s); we can
therefore replace a2 by a1 in C and still have a discriminating code. In the latter case, a1 ∈ C
is the only codeword covering i1 and i ; since there is no thread of length one, i has a neighbour
a 6∈ C and we can replace a2 by a in C , proving our claim. Consequently, we can remove a2
from the tree.

(ii3) All threads have length three; see Fig. 5(d).
Then a1, a2 and a3, and more generally all the attributes on all the threads, belong to any

discriminating code, and we can remove the vertices i2, a3 and i3 from T .
This completes Case (ii), and Case (c) is treated.

3.3. Summary and conclusion

From Sections 3.1 and 3.2, it is now easy to see how an algorithm outputting an optimal
discriminating code can work.
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If T is a path of length at most four, we use Fig. 1. If T is a path of length at least five, we
reduce it following Cases (a) and (b) in Section 3.1, cf. Fig. 2, until its length is at most four. By
the way, we observe that a discriminating code needs to contain approximately two out of three
attributes.

Now we assume that T is not a path. There are special induced subgraphs which we called
threads. We reduce the lengths of these threads, cf. Cases (a) and (b) in Section 3.2 and Fig. 3,
until we are in Case (c): any thread whose end is an attribute has length at most two and any
thread whose end is an individual has length at most four. Then we investigate the vertices which
we called branchings and still reduce the current tree; see Figs. 4 and 5. At this stage, the tree may
be disconnected; we then operate on each connected component. At each step, noting whether
attributes that were removed are codewords or not, the search for an optimal code in the reduced
tree (or forest) will give an optimal code in the whole tree T .

At each step, we perform polynomial-time operations (with respect to n, the number of
vertices of T ) and decrease n, so that the algorithm sketched above will stop after a polynomial
time. With careful investigation on which data structures to use, we could even show that this
algorithm is linear with respect to n. We refer the reader to [2] for a similar work.

4. Planar graphs

In this section, every graph is connected, bipartite, twin-free and planar. Note that a planar
graph may admit several plane embeddings, in which the lengths of the faces may vary.

Rather than searching for the smallest discriminating codes in planar graphs, we address
the following issue: we fix |A|, the number of attributes, and construct a connected, bipartite,
twin-free, planar graph G = (V = A ∪ I, E) with the maximum possible number, |I |, of
individuals which can be discriminated by the attributes.

From this angle, we shall denote by α(G) the number of attributes and by β(G) the number
of individuals: α(G) = |A|, β(G) = |I |. The graph G is said to be optimal if no graph G ′ is such
that α(G) = α(G ′) and β(G) < β(G ′).

We shall denote by G2 the set of graphs such that any individual has degree at least two, and
say that a graph G ∈ G2 is optimal in G2 if no graph G ′

∈ G2 is such that α(G) = α(G ′) and
β(G) < β(G ′).

Theorem 2. If G ∈ G2 has α(G) ≥ 4 attributes, then G is optimal if, and only if, in every plane
embedding of G, each face has length four and contains one individual of degree two and one
individual of degree three.

Proof. The proof is constructive and shows how to transform a graph in G2 into an optimal graph
in G2.

During the process of our transformation, it may happen that we delete edges, but the resulting
graph will never be disconnected.

Lemmas 3–9 will be proved in the course of the proof of Theorem 2.

Lemma 3. If G ∈ G2 has at least three attributes and admits a plane embedding with a face
which is not delimited by an elementary cycle, then to G we can add one individual and obtain a
new graph belonging to G2.

Proof. We assume that F is a face in G which is not delimited by an elementary cycle. If F is
not delimited by a cycle, then G has only one face and is a tree. It is rather straightforward to
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Fig. 6. An example of a face delimited by a cycle C containing an elementary cycle C′, represented with bold edges. The
vertex v may be an individual or an attribute.

Fig. 7. A face of length at least eight.

observe that any tree in G2 with at least four vertices is such that we can add one individual and
obtain a new graph belonging to G2. So from now on we assume that F is delimited by a cycle
C, from which we can extract an elementary cycle C′. Let C′′

= C \ C′ and let v be a vertex
connecting C′ and C′′ (v is not necessarily unique); see Fig. 6. Since G is bipartite, C′ contains
at least four vertices, and thus at least one attribute, a1, which is not equal to v. We claim on the
other hand that C′′ contains at least one attribute, a2; first C′′ is not empty; second if C′′ contains
only individuals, then these individuals, which have at least a second neighbour since G ∈ G2,
are linked to attributes not belonging to C′′, and we can see that, as a consequence, F would
not be delimited by C. It is then easy to see that we can add one individual with neighbourhood
{a1, a2}, which yields a new graph in G2, and ends the proof of Lemma 3. M

Definition 1. We denote by (P1) the following property of a graph G ∈ G2: in every plane
embedding of G, any face is delimited by an elementary cycle.

Lemma 4. If G ∈ G2 satisfies (P1) and admits a plane embedding with a face of length greater
than or equal to 8, then to G we can add one individual and obtain a new graph belonging to G2.

Proof. Let φ = a1, i1, a2, i2, a3, i3, a4, i4, . . . be a face of length 8 or more; see Fig. 7(a). If
there is no individual with neighbourhood {a1, a3}, we add such an individual inside φ. If such
an individual, i , already exists outside φ, see Fig. 7(b), then no path can exist between a2 and a4
because such a path would cross either the path a1, i, a3 or the face φ. We can therefore add one
individual with neighbourhood {a2, a4} inside φ, which yields a new graph in G2, and ends the
proof of Lemma 4. M
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Fig. 8. An individual i of degree at least four.

Definition 2. We denote by (P2) the following property of a graph G ∈ G2: in every plane
embedding of G, any face has length at most six — remember that all cycles, and hence faces,
are even.

Lemma 5. If G ∈ G2 satisfies (P1) and (P2) and has an individual of degree at least four, then
we can delete one edge, add one individual and obtain a new graph belonging to G2.

Proof. Let a1, a2, a3, a4 be four neighbours of an individual i of degree at least four in G; see
Fig. 8(a). At most one of the following two possibilities can occur: there is an individual, other
than i , linked to a1 and a3; there is an individual, other than i , linked to a2 and a4. Therefore,
without loss of generality, we can assume that i is the only individual linked to a2 and a4.

Now we delete the edge {a1, i} and add an individual i ′ with neighbourhood {a1, a2, a4},
which, thanks to our assumption on a2 and a4, yields a graph which is still twin-free and belongs
to G2; see Fig. 8(b). This ends the proof of Lemma 5. M

Definition 3. We denote by (P3) the following property of a graph G ∈ G2: any individual has
degree two or three.

Lemma 6. Consider a graph G ∈ G2 which satisfies (P1)–(P3) and has at least four attributes.
If G admits a plane embedding with a face of length six, then we can replace one edge, add one
individual and obtain a new graph belonging to G2.

Proof. Let φ = a1, i1, a2, i2, a3, i3, a1 be a face of length six. If there is no individual with
neighbourhood {a1, a2, a3}, we can add such an individual inside φ. So we assume that such an
individual, i , already exists outside φ; see Fig. 9(a). We distinguish between two cases.

(i) There is an individual with degree three belonging to φ, say i1. Let a be the third neighbour
of i1; see Fig. 9(b). Then no individual can be the neighbour of both a3 and a. We replace the
edge {i1, a1} by the edge {i1, a3}, and we add the individual i ′ with neighbourhood {a, a3}; see
Fig. 9(c). The graph thus constructed is still twin-free and in G2.

(ii) All individuals in φ have degree two. Because (P3) is satisfied, N (i) = {a1, a2, a3}; cf.
Fig. 9(a). If the only face containing the path a1, i, a3 (respectively, a3, i, a2 and a1, i, a2) has
length four, then this face is a1, i, a3, i3, a1 (respectively, a3, i, a2, i2, a3 and a1, i, a2, i1, a1). If
these three faces have simultaneously length four, then we can have no vertex other than the seven
vertices given in Fig. 9(a), which contradicts the assumption that G has at least four attributes.
Therefore, at least one of them is of length six and contains the individual i , which has degree
three, and we are back to Case (i), which ends the proof of Lemma 6. M

Lemma 7. Consider a graph G ∈ G2 which satisfies (P1)–(P3). If G admits a plane embedding
with a face of length four with two individuals of degree three, then we can replace two edges,
add one individual and obtain a new graph belonging to G2.
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Fig. 9. A face of length six.

Fig. 10. A face of length four with two individuals of degree three.

Proof. Let φ = a1, i1, a2, i2, a1 be a face of length four, with N (i1) = {a1, a2, a3} and N (i2)

= {a1, a2, a4}. As before, we can assume that there is already, outside φ, an individual i
with neighbourhood {a1, a2}; see Fig. 10(a). This in turn makes impossible the existence of
an individual linked to both a3 and a4. Now we delete the edges {i1, a2}, {i2, a1}, add the edges
{a3, i2} and {i1, a4}, and create a new individual i ′ with N (i ′) = {a3, a4}; see Fig. 10(b). The
graph thus constructed is still twin-free and in G2, which ends the proof of Lemma 7. M

Lemma 8. In an optimal graph G ∈ G2 with at least four attributes, in every plane embedding,
every face has length four and contains one individual of degree two and one individual of degree
three.

Proof. Use Lemmas 3–7 and the fact that in a face of length four, the two individuals cannot
both have degree two (they would be twins). M

It remains to show that any graph G ∈ G2 with at least four attributes, for which, in every
plane embedding, all faces have length four and contain one individual of degree two and one
of degree three, is optimal. To do so, we prove that all such graphs, with a given number of
attributes, α ≥ 4, have the same number of individuals, denoted by β(α).

Lemma 9. Let G ∈ G2 be a graph with α ≥ 4 attributes, for which, in every plane embedding,
all faces have length four and contain one individual of degree two and one individual of degree
three. Then β(G) = β(α) = 5α − 10.

Proof. Let n be the number of vertices in G, m the number of edges and Φ the number of faces.
We have
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Fig. 11. Optimal constructions for one, two and three attributes: β(1) = 1, β(2) = 3, β(3) = 7.

n = α + β(α), (1)

and it is well known that

n + Φ = m + 2. (2)

Let β2 and β3 be the numbers of individuals with degrees two and three, respectively; we know
that

β(α) = β2 + β3, (3)

and trivially

m = 2β2 + 3β3. (4)

Moreover, since there is one individual with degree two (respectively, three) on each face, if we
count all these individuals on all faces, then we count them twice (respectively, thrice); so

Φ = 2β2 = 3β3. (5)

Combining (3) and (5), we obtain

β2 =
3β(α)

5
; β3 =

2β(α)

5
, (6)

which, by (4) and (5) yields

m =
12β(α)

5
; Φ =

6β(α)

5
. (7)

Now in (2), we replace n,Φ and m by their values given by (1) and (7), and we obtain

α + β(α) +
6β(α)

5
=

12β(α)

5
+ 2,

from which the result in Lemma 9 follows. M

As mentioned previously, this is sufficient for completing the proof of Theorem 2. M

Corollary 10. Let G be a graph with α ≥ 4 attributes. Then β(G) ≤ 6α − 10, and the optimal
graphs have β(α) = 6α − 10 individuals.

Proof. Use the graphs in G2 and to each attribute link one individual which is not linked to any
other attribute. M

The cases α ≤ 3 are easily solved by the constructions given in Fig. 11, which are optimal
since they meet the trivial bound β(α) ≤ 2α

− 1.

Remark 2. There is a bijection between the set of optimal graphs and the set of triangulated
(planar) graphs. Indeed, starting from an optimal graph, we can carry out the following three
operations:
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Fig. 12. A tile with an individual of degree three. Dashed individuals were removed.

(a) We delete the individuals of degree one.
(b) We replace each individual i of degree two and its edges {i, a1}, {i, a2} by one edge {a1, a2};

we then obtain a tiling by tiles of the form given in Fig. 12.
(c) We delete the individuals of degree three (and their edges) and obtain a triangulated graph.

It is easy to check that this application from the set of optimal graphs with α attributes into the
set of triangulated graphs of order α is bijective.

Remark 3. The result of Corollary 10 can also be obtained from [6], where locating–dominating
codes are constructed for bipartite planar graphs, using the inverse of the application described
in Remark 2: if by construction all the attributes are the elements of a discriminating code
on the one hand, and if on the other hand there are no edges inside the set of elements of a
locating–dominating code or inside its complement in V , then the two notions coincide.
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