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ABSTRACT

The purpose of this work is, starting from a close tracking
of the basic electromagnetic processes, to propose a simulator
enabling a better understanding of the radar images of urban
areas. An improved understanding of the radar images forma-
tion processes in this case, should lead to a better knowledge
of the potentialities of the SAR imagery of urban areas.

We argue that finite-difference time domain method (FDTD)
is a quite new and promising approach for the propagation in
urban areas. In order to numerically evaluate its electromag-
netic return to an active microwave sensor, a geometric and
electromagnetic model of a typical element of urban structure
is presented. It consists of a rectangular parallelepiped whose
vertical walls form a generic angle with respect to the sensor
line of flight. This parallelepiped is placed on a either smooth
or rough surface, to take into account multiple scattering be-
tween buildings and terrain.

Finally, the above model is used to analyze the field backscat-
tered from a building, as a function of the main scene param-
eters. In particular, the dimensions of the building and the
relationship with the look angle are analyzed.

1. INTRODUCTION

Although human beings are now permanently living in a ”bath”
of Radio Frequency radiations, the way these radiations in-
teract to produce images as in the Synthetic Aperture Radar
(SAR) imaging process is still badly controlled. A great ef-
fort has been made to evaluate the quality of propagation for
applications like mobile communications. They were mostly
interested in energy balances. Unfortunately the imaging pro-
cess is more complex, which measures the backscattered light
in any position and needs to take into account not only the
interaction of light and matter at any point, but also the con-
tributions of the interferences of the many beams, directlyre-
ceived, reflected or diffracted by the objects of the scene.

As long as the resolution of images was of the size order
of the objects of the scene, the problem was not really ad-
dressed by the Earth Observation community which was able
to efficiently treat it from a statistical point of view within
the generic terms of textures and speckle. So was the prob-
lem with most of the available satellite imaging SAR systems:
Radarsat, ERS, ENVISAT, etc. the resolution of which was
around10 meters.

In recent years, great efforts have been made to develop
radars with very high resolutions (less than1 meter), able to
consider each element of the scene (house, street, truck, ...)
as several tens of pixels. The expectation was that higher res-
olution would provide richer information on the scene. It has
often be true and high resolution may result in images amaz-
ing with details. But it is not always true and most images
obtained in many human-made landscapes are still very diffi-
cult to understand. It is the case for instance in dense urban
areas, where narrow streets act as light guides and multiplere-
flectors (balconies, gutters, antennas) interact, or in industrial
areas where regular structures may create unattended diffrac-
tions and strong scatterers are likely to overcome the other
signals.

In order to help the photo interpreter, a simulation sys-
tem would be welcome to simulate the propagation of a mi-
crowave in a city where all the parameters would be under
control of the operator. In such a system, it would be possi-
ble to measure the effect of the geometry of the buildings, or
the effect of the electromagnetic properties of the walls, the
roofs, the concrete or even the pieces of furnitures inside each
house. It would also be possible to evaluate the role of the
radar parameters in building the image.

The puprose of the simulator here presented is to allow
such experiments and to provide answers to the photo-interpreter
when in front of very complex situations on the role of some
elements.

In order to be able to simulate phenomena attached to the
basic physical components of the scene (as for instance the
roughness of the walls or the geometry of the tiles), in order
to predict fine effects as may be observed in the case of inter-
ferometric imaging, we decided to choose an electromagnetic
approach, issued from Maxwell equations. Such an approach
is very demanding in terms of computation and memory, it is
also limited in its practical ability to represent very large ar-
eas, but it is the most complete. It takes into account not only
the refracted waves, but also the transmitted ones. It allows to
deal with the phase of waves, and therefore elegantly solves
the interferometric challenge. It may easily take into account
polarization.

On the contrary, most of the methods used for applica-
tions in mobile communications make use of simplified prop-
agation schemes, suitable for very large fields as for instance
ray-tracing or geometrical approaches. Recently more com-



plex techniques, based on the Uniform Theory of Diffraction
have been proposed [1, 2], able to well treat reflected light on
complex scene but ingnoring interactions between rays and
internal propagations. Our work is in the line of the simulator
built by V. Bouland [3], but this last simulator was only able
to deal with 2D objectsz = f(x).

2. FDTD SIMULATOR

2.1. FDTD algorithm features

In order to use FDTD, a computational domain must be es-
tablished. For our application, three different domains may
be isolated. A first domain covers the free space propaga-
tion from the emitter to the city. The second is the domain
of interaction between waves and matter. The third one is
the free space propagation from the scene to the receiver. We
will be concerned mostly by domain two which will be called
”the domain” from now on, domain two and three will be be
taken into account in section 2.3. This domain is simply the
physical region over which the simulation will be performed.
The FDTD algorithm is based on the Yee’s scheme [4]. It
discretizes with appropriate interlaced meshings, Maxwell-
Faraday’s and Maxwell-Ampere’s equations, in both time and
space coordinates. The vector components of the E-field and
H-field are spatially staggered about cubic unit cells of the
Cartesian computational domain so that each E-field vector
component is located midway between a pair of H-field vec-
tor components, and conversely (Fig. 1).

Fig. 1. The standard Yee lattice used for FDTD, in which
different field components use different locations in a grid.

Contrary to other technics, such as ray-tracing method, fi-
nite element method or moment method, no approximation is
necessary upstream of the spatial and temporal discretization.

Equations solver quality is guaranteed by the principles
described in [5]. The FDTD discrete Maxwell’s equations
solution must tend to the real solution, when spatial and tem-
poral steps tend to zero.

Furthermore, we use a leap-frog scheme [4] for march-
ing in time, wherein the E-field and H-field updates are stag-
gered so that E-field updates are conducted midway during
each time-step between successive H-field updates, and con-
versely. On the plus side, this explicit time-stepping scheme
avoids the need to solve simultaneous equations. It further-
more yields dissipation-free numerical wave propagation.On

the minus side, this scheme mandates an upper bound on the
time-step to ensure numerical stability. The stability crite-
rion that we use, is defined by relation 1. As a result, certain
classes of simulations can require many thousands of time-
steps for completion.
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The FDTD method accuracy relies on the computational
domain meshing. The space should be cut into small-sized
cubes relative to the wavelength in a given medium. Wave
propagation modeling becomes acceptable, if the spatial step
is less than one-tenth of the wavelength in the particular medium.
In order to limit the computational time, we consider :

δi =
λ

10
(2)

The FDTD computing area is obviously limited in space.
The waves inside this area are reflected, instead of leaving the
FDTD domain. It is as if the latter is surrounded by perfect
conductors. The absorbing boundary condition for truncating
three-dimensional FDTD meshes is the Berengers ”perfectly
matched layer” (PML) technique [6].

2.2. CAD and meshing

Then a modelized urban scene is created by determining its
dimensions, its features and its electromagnetic parameters.
Each created object is defined by its geometry (due care is
given, of course to sampling theorems) and its electromag-
netic parameters relative permeabilityµr, relative permittiv-
ity εr and conductivityσ. The complexity of its geometry is
only limited by the number of voxels and the sampling rate.
The material of each cell within the computational domain
must be specified. Typically, the material is either free-space
(air), metal, or dielectric. Any material can be used as longas
the permeability, permittivity, and conductivity are specified.

The first step is the CAD construction and the meshing.
The three-dimensional cartesian domain is described by its
size (Di, i = x, y or z) and the spatial step (δi, i = x, y

or z) along the three axis. The spatial step is depending on
the emitting wavelength (or rather on the smallest wavelength
within the computational domain, if the incident signal has
some temporal extent) :

Di = Niδi with δi = Tiλ (i = x, y or z)

whereNi is the mesh number, according to thei axis andTi,
the discretization rate. In essence, the tridimensional grid de-
pends on the source and also on the medium refractive index.
We only consider cubic meshes :δx = δy = δz = 1cm. The
dimensions of the modelized scene have to stay moderate, to
ensure reasonable calculation time. They can go from around
one meter to several tens of meters.



Due to the stability criterion 1, the time stepδt is linked
to the model sampling frequencyfe, that should verify the
Shannon criterion :
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wheref is the wave frequency according to the meshing step.

2.3. Incident field characteristics

In SAR imagery, airborne or spatial radars are used. Thus, the
incident field must be initialized outside the discretization do-
main. This requires the description of the incident field in the
FDTD domain and the computation of the backscattered field
outside the area. This step is necessary for the computation
of the field before the PML boundary conditions are applied.
Huygens principle is the basic tool for these two operations.
Although the details can be rather subtle, let us just say, that
a so-called Huygens surface is delimited inside the PML to
compute the near-field/far-field transformation [7].

Plane wave approximation can be used with reasonable
accuracy, in some cases. This approximation is guaranteed
for space radars. However, its validity for air-borne radars is
restricted to only a small part of the swath, on the ground.
Such is the case in our simulations.

The limited dimensions of the modelized urban structures,
legitimizes the use of the plane wave approximation, in simu-
lations.

In addition, as we can simulate a very short Gaussian elec-
tromagnetic pulse, we have no need to use a frequency ramp
to improve the range resolution. But a complete Radar sim-
ulation would need both the azimuth and range compression
[8].

2.4. Performances versus complexity

The simulator’s performances consists of computer storage
capacity and calculation time. The main parameters of the
performances estimate, are the FDTD space dimensions, in
term of mesh number (Nx, Ny and Nz) and the algorithm
iteration number,Ni.

One iteration corresponds to the electromagnetic field com-
putation in the whole space. The total time of one simulation,
is determined by the algorithm iteration numberNi :

D = Niδt

The iteration number depends on the FDTD space dimen-
sions. It must be sufficient to let the wave make a ”return
trip” over the scene. Thus, to get some results,Ni has to be
greater than the minimal quantity :
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For a scene of which dimensions areDx = 10 m,Dy = 10
m andDz = 5 m and in the case of an isotropic meshing ac-
cording to a spatial step ofδx = 1 cm, the minimal iterations

number isNi(min) = 5196. This minimal iteration number
has to increase, if the space is composed of dielectric objects.
For example, in a medium of permittivityεr = 4, the electro-
magnetic wave velocity is twice as low as previously. If such
a medium takes up the half-space, the new minimal value for
Ni is :
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To observe multiple reflection phenomena,Ni(min) has
to increase more :N ′′

i(min) = 2Ni(min) to observe all double
reflections andN ′′

i(min) = 3Ni(min) for all triple reflections.
At last, for a short pulse, the calculation time is lower than

for an infinite sinusoidal signal which would simulate a steady
state. The electromagnetic field calculation is reduced to the
durationτp of the incident pulse over the Huygens surface.

2.5. Roughness modeling

In this urban environment study, it is of significant interest to
take into account radio wave scattering from rough surfaces.
In particular, it is important to be able to generate speckle,
and to consider realistic simulated data.

Rough surface modeling is not trivial and it is the source
of many publications [9, 10, 11, 12, 13]. Several numeric
methods can solve such a problem. Those methods are gener-
ally asymptotic approaches such as Khirchhoff models [9, 14]
or small perturbation method [15]. The latter are limited by
a certain validity domain and hardly render an account of all
desired observables. In addition, these methods often need
excessive computational time.

Thanks to FDTD method, we propose another option to
take into account rough surface scattering. We used a quick
and practical way to estimate the roughness impact on the
wave propagation over urban environments, using a statistic
descriptive model [9].

Fig. 2. One rough surface example with its height density
function Ph(Z). For a constantσh, the more the correla-
tion function grows, the more the surface behaves locally as
a smooth surface.

Height density function from one rough surface is char-
acterized by the height meanZ0, standard deviationσh (that
determines the height variations amplitude), the correlation



width lc (that fixes the height variation regularity) and the
kind of density (Gaussian, Lorentzian...).

In practice, we manually create rough surfaces with a stan-
dard CAD software. We attribute some roughness parameters
to the rough surface boundary curves. The interpolation of the
four boundary lines results in the rough surface. This is only
an approximate approach that presents some obvious limits.
It will be improved in future works.

3. SIMULATION GUIDANCE

The first step toward numerical electromagnetic models is to
try to find sound canonical models involving simple man-
made elements of urban areas. Within this framework, the
radar return from a canonical structure representing a build-
ing over a rough terrain can provide useful information.

The simulator presented here is able to simulate mono-
static and bistatic SAR acquisitions for a particular position
of the radar. As this work set up in the SAR remote detection
context, we only simulate here monostatic system specifying
only one receiver placed in the same position as the source
one (Fig. 3). Thus, we only consider the backscattered field
towards the radar.

Fig. 3. Spherical coordinate system used for simulations.

The following results describe the backscattered complex
signal amplitude (after quadratic demodulation and sampling
as in a real SAR system [3, 13]) as a function of time. For
imaging applications, and since the attenuations are not taken
into account in domain one and three, the amplitude is not a
relevant parameter. So amplitudes will be systematically nor-
malized with respect to the incident field entering the domain.

4. RESULTS AND DISCUSSION

4.1. Ground modeling influence on the backscattered am-
plitude

In SAR imagery, the first structure to model is the ground.
The ground can be considered as a horizontal plane of unlim-
ited extent (if the image method is applied). Then the 3D grid
is only constituted with studying object as a building. The
ground can also be modelized by creating a finite surfacic (or
volumic) plate. In this case, it must be taken into account in
the computational space that makes the computation time, as
long as the ground dimensions are big.

Figure 4 describes the backscattered amplitude from a fi-
nite metallic plate. Its dimensions are5 m × 6 m.

Fig. 4. Backscattered amplitude from a smooth and a rough
rectangular plate, in blue and red respectively. The incident
direction is defined byθ = 40◦ andφ = 90◦.

The signal backscattered by an infinite ground plane is
blank, because of specular reflections whereas the one backscat-
tered by finite metallic plate is characterized by two peaks
corresponding to the ground diffracting edges. Various scenes
have been modelized in order to compare backscattering from
a scene composed of an infinite ground plane to scenes com-
posed of a ground of some extent. It was shown that boundary
effects can be disregarded.

Whereas the smooth ground plane only responds by two
diffracting peaks, a rough ground (as proposed in section 2.5)
is responding with a continuous signal with a chaotic speckle
and with a greater amplitude between the two diffracting peaks.

The comparison between the two responses can be ob-
served inside the corresponding images, with adequate quan-
tization. Figure 5 describes a typical line of the simulated
radar image. Even if the ground dimensions are not sufficient
to have a good statistics, we can observe an intensity variation
that appears like radar speckle.

(a) smooth (b) rough

Fig. 5. Line from simulated images on smooth and rough
ground, which dimensions are5 m× 6 m.

We verify the statistics of simulated data (image before
azimuth compression) confirm the laws established by Good-
man, in the case of a fully developed speckle. Rayleigh’s law
for amplitude is tendentially observed.

4.2. Simulations on a canonical model

Let us now focus on a canonical model. The proposed model
is relevant to a building that is isolated from other man-made



(a) Histogram (b) Rayleigh’s law

Fig. 6. Histogram of the image 5 (b) and Rayleigh’s law com-
parison.

structures. It consists of a parallelepiped with smooth walls,
surrounded by a generic ground. The scene is illuminated by
a plane wave with an incident angle following the direction
defined byθ = 40◦ andφ = 90◦ (see Fig. 3).

The backscattered field is interpreted as a function of the
optogeometry of the scene. The backscattered field is calcu-
lated as the sum of elementary contributions from simple ob-
jects which form the whole structure. In our case, these ele-
mentary scatterers are the parallelepipeds faces and the sur-
rounding ground.

Figure 7 shows the characteristic response of such a model.
The parallelepiped dimensions are4m × 3m × 1m. It is
fixed on an infinite perfect conductor smooth ground (image-
method). Due to multiple reflection phenomena, the backscat-
tered signal is characterized by high amplitude variations: it
is not possible to observe simultaneously the loud and the fee-
ble signals.

Fig. 7. Backscattered signal from a parallelepiped (4m ×
3m×1m) surrounded by an infinite perfect conductor ground
plane and scheme of the front wave travel inside the 3D do-
main. The layover dimension isd1 = h cos θ, the shadow is
characterized bys = h

cos θ
andd2 = sin θ(l − h

tan θ
).

Let us focus on the main peaks of the signal. First-order
contributions to the radar return are those relevant to eachele-
mentary scatterer (terrain, wall, or roof): these contributions
have been widely studied in the literature and are referred to
here as ”single-reflection contributions” (see Fig. 8).

(a) First-order contributions

(b) Second-order contributions

Fig. 8. Scheme of the first-order (a) and second-order (b)
contributions.

In the studied signal, ”single-reflection contributions” ap-
pear in the first and the fourth peaks. The first one corre-
sponds logically to the first scatterer encountered by the front
wave : the diffracting edge AB, formed by the roof and the
wall directly illuminated. The fourth one corresponds to the
roof/wall diffracting edge EF. We can note that the amplitude
of the first peak is higher than the fourth one. We made var-
ious simulations, with different configurations : whatsoever
the variable parameter, we noticed that this ratio is always
preserved.

We observe one second-order contribution (see Fig. 8 (b))
coming from ”wall/ground reflections” and ”ground/wall re-
flections”. As expected, this peak, issued from the dihedral
angle CD has a very high amplitude.

A third-order mechanism appears in the small peak3 in
the studied signal (Fig. 7). Part of the incident wave trans-
mitted by the radar is firstly scattered by the ground towards
the wall, then diffracted by the wall/roof edge AB, and finally
scattered by the ground itself toward the radar (see Fig. 9).

Fig. 9. Representation of the third-order mechanism between
the ground and the diffracting edge AB (BI + IJ = 2HC =
2d1).



Superposition of first-, second-, and third-order contribu-
tions fully represents the scattered field. Although extremly
simple, this example well illustrates the complexity of radar
images interpretation. We verified that the positions of the
peaks in the simulation fully agree with the theory. This is
still the case if the scene is more complicated. Figure 10
descibes the previous scene with a low wall in front of the
parallelepiped. The backscattered signal presents quadruple
reflections.

(a) scene profile (b) quadruple reflection phenomenon

Fig. 10. A more complex situation with a low wall in front of
a building.

Fig. 11. Backscattered signal from profile 10 (a). The signal
is characterized by quadruple reflection coming after other
contributions.

5. CONCLUSIONS ON STRUCTURE DETECTION
AND CHARACTERIZATION IN URBAN AREA

The FDTD computation provides a new approach to simu-
late radar wave propagation inside urban areas. It is pos-
sible to build canonical scenes, from which we can study
the backscattered field as a function of the parameters of the
scenes. Thanks to simulation, the role of some objects may be
better understood (grids, fences, edges). The role of hidden
parameters (electromagnetic characteristics of materials, in-
ternal structures of buildings,...) may be checked for. We will
also soon be able to compare simulated images of real cities,
digitized by conventionnal 3D cartographic means, with the
obtained radar images, to extensively compare measured and
expected signals.

The advantages of FDTD include : rigorous algorithm,
possibility to handle dispersive materials including metals,
time-domain simulation and modularity. The main disadvan-
tage is that for many three-dimensional structures of interest
to the radar community, FDTD simulation with high accu-
racy requires a computer memory rapidly increasing with the
scene dimensions and the models meshing parameters ; the
time needed to run increases consequently, in an unsustain-
able fahion. Todays advanced computing power enables to
apply this method for SAR imagery.
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