
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

European Journal of Combinatorics 31 (2010) 491–501

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

New identifying codes in the binary Hamming space
Irène Charon, Gérard Cohen, Olivier Hudry 1, Antoine Lobstein
GET - Télécom Paris & CNRS - LTCI UMR 5141, 46, rue Barrault, 75634 Paris Cedex 13, France

a r t i c l e i n f o

Article history:
Available online 25 April 2009

a b s t r a c t

Let F n be the binary n-cube, or binary Hamming space of dimension
n, endowed with the Hamming distance. For r ≥ 1 and x ∈ F n, we
denote by Br (x) the ball of radius r and centre x. A set C ⊆ F n is
said to be an r-identifying code if the sets Br (x) ∩ C , x ∈ F n, are all
nonempty and distinct.We give new constructive upper bounds for
the minimum cardinalities of r-identifying codes in the Hamming
space.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

We define identifying codes in a connected, undirected graph G = (V , E), in which a code is simply
a nonempty subset of vertices. This definition can help to unambiguously determine a vertex, and the
motivationsmay come fromprocessor networkswherewewish to locate a faulty vertex under certain
conditions.
InGwedefine the usual distance d(v1, v2) between two vertices v1, v2 ∈ V as the smallest possible

number of edges in any path between them. For an integer r ≥ 0 and a vertex v ∈ V , we define Br(v)
(resp., Sr(v)), the ball (resp., sphere) of radius r centred at v, as the set of vertices within distance
(resp., at distance exactly) r from v. Whenever two vertices v1 and v2 are such that v1 ∈ Br(v2) (or,
equivalently, v2 ∈ Br(v1)), we say that they r-cover each other. A set X ⊆ V r-covers a set Y ⊆ V if
every vertex in Y is r-covered by at least one vertex in X .
The elements of a code C ⊆ V are called codewords. For each vertex v ∈ V , we denote by

KC,r(v) = C ∩ Br(v)

the set of codewords r-covering v. Two vertices v1 and v2 with KC,r(v1) 6= KC,r(v2) are said to be
r-separated by code C , and any codeword belonging to exactly one of the two sets Br(v1) and Br(v2) is
said to r-separate v1 and v2.
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A code C ⊆ V is called r-identifying [13] if all the sets KC,r(v), v ∈ V , are nonempty and distinct.
In other words, every vertex is r-covered by at least one codeword, and every pair of vertices is r-
separated by at least one codeword. Such codes are also sometimes called differentiating dominating
sets [9].
In the following, we drop the general case and turn to the binary Hamming space of dimension n,

also called the binary n-cube. First we need to give some specific definitions and notation.
We consider the n-cube as the set of binary row-vectors of length n, and in view of this, we denote

it by G = (F n, E) with F = {0, 1} and E = {{x, y} : d(x, y) = 1}, the usual graph distance d(x, y)
between twovectors x and ybeing called here theHamming distance— it simply consists of the number
of coordinates where x and y differ. The Hamming weight of a vector x is its distance to the all-zero
vector, i.e., the number of its nonzero coordinates. Additions are always carried out coordinatewise
and modulo 2.
We denote by 0n (resp., 1n) the all-zero (resp., all-one) vector of length n. For two sets X ⊆ F n1 ,

Y ⊆ F n2 , the direct sum of X and Y , denoted by X ⊕ Y , is defined by X ⊕ Y = {x|y ∈ F n1+n2 : x ∈
X, y ∈ Y }, where | stands for concatenation of vectors. We use the notation (r, n) or (r, n)K for a code
in F n which is r-identifying and has K elements. Finally, we denote by Mr(n) the smallest possible
cardinality of an (r, n) code.
In Section 2, we give various methods for constructing identifying codes, thus obtaining, in

Section 3, upper bounds onMr(n), of which several are new. These bounds are summarized in Tables
at the end of the paper.
For previous works, we refer the reader to, e.g., [1–3,6–8,10–13,15–17]. In the recent [7], tables for

exact values or bounds onM1(n), 2 ≤ n ≤ 19, andM2(n), 3 ≤ n ≤ 21, were given.
See also [18] for a bibliography on identifying codes and related concepts.

2. Constructing identifying codes

Our constructions will use Theorem 2 below, as well as various heuristics.

2.1. Extending an identifying code

In the constructions of Theorems 2 and 3 below, we use a new definition: a code is called r-
separating if every pair of vertices is r-separated by at least one codeword [2, Sec. 3] (we do not require
any longer that every vertex be r-covered by at least one codeword). The following remark and lemma
are easy.

Remark 1. (i) For 0 ≤ r ≤ n − 1, a code C ⊆ F n is r-separating if, and only if, it is also (n − r − 1)-
separating, because Br(x) = F n \ Bn−r−1(x+ 1n) for all x ∈ F n.
(ii) (cf. [10]) Since a separating code is such that atmost one vertex can be covered by no codeword,

the size of an optimum r-separating code in F n isMr(n) orMr(n)− 1, and we have

Mmax{r,n−r−1}(n) ≤ Mmin{r,n−r−1}(n) ≤ Mmax{r,n−r−1}(n)+ 1, (1)

i.e., the symmetry, with respect to b(n−1)/2c, observed for separating codes, still holds, within 1, for
identifying codes. �

Lemma 1. For all p ≥ 1 and∆ ∈ {0, 1, . . . , p− 1}, the set F p \ {0p} is∆-separating. �

The following theorem is inspired by [13, Th. 9] and [7, Ex. 2 and Th. 4]. Starting with an (r, n) code C ,
we intend to see how the direct sum C ⊕ F p can be used for constructing an (r, n + p) code. In
construction C2 below, k is an additional parameter on which we can act.
More comments on how to understand and use Theorem 2 are given after its statement.

Theorem 2. Let r ≥ 1, p ≥ 1, and k ∈ {0, 1, . . . , p− 1}; let C be an (r, n) code and

Xp = {x ∈ F n : ∀c ∈ C, d(x, c) ≤ r − p or d(x, c) > r}.
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Construction C1: Let Yp ⊆ F n be a set such that for every x ∈ Xp there exists y ∈ Yp with
r − p+ 1 ≤ d(x, y) ≤ r. Then

C ′ =
(
C ⊕ F p

)
∪
(
Yp ⊕ (F p \ {0p})

)
(2)

is (r, n+ p).
Construction C2: Let Yp,k ⊆ F n be a set such that for every x ∈ Xp there exists y ∈ Yp,k with

d(x, y) = r − k, and let Cp,k be a k-separating code in F p. Then

C ′ = (C ⊕ F p) ∪ (Yp,k ⊕ Cp,k) (3)

is (r, n+ p).
Proof. See the proof of Theorem 3, which contains Theorem 2 as a particular case. �

Theorem 2 calls for several remarks, in order to make its dry technicality more friendly.

Remark 2. Obviously, it is best to choose Yp (for construction C1) and Yp,k, Cp,k (for construction C2)
with the smallest possible cardinalities. �

Remark 3. Ideally, Xp = ∅; then Yp = Yp,k = ∅ and C ⊕ F p is (r, n+ p). This is Th. 4 in [7] (Th. 1 in [3]
for r = 1). This is the case as soon as p ≥ r + 1; cf. Cor. 3 in [7] (Th. 2 in [3] for r = 1). Therefore we
can limit our investigations to

p ≤ r.

On the other hand, we have

X1 ⊇ X2 ⊇ · · · ⊇ Xr ,

so the smaller the number p, probably the more difficult to jump to length n + p without having a
large set Yp or Yp,k. �

Remark 4. In constructionC1,we build aminimumset Yp using the union of p spheres of radii ranging
from r − p+ 1 to r , whereas in construction C2, for Yp,k we use only one sphere of radius r − k. We
can therefore hope for a set Yp (much) smaller than each set Yp,k. The price to pay is that |Yp| has to be
multiplied by 2p − 1, whereas |Yp,k| has a (much) smaller factor in (3).
When k = 0 or k = p−1, the smallest k-separating codes in F p have size 2p−1, and constructionC2

is not better than construction C1; therefore, for construction C2 we can limit ourselves to the cases

1 ≤ k ≤ p− 2, 3 ≤ p ≤ r.

For different values of p and k, it seems very difficult to compare constructions C1 and C2, or
constructions C2 between themselves. For a fixed p, k varies from 1 to p− 2. When k increases, up to
b(p−1)/2c, it may be that |Yp,k| increases and |Cp,k| decreases (and, by Remark 1(i) before Theorem 2,
in this case |Cp,k|would increase when k ranges from b(p−1)/2c+1 to p−2); but actually the former
hypothesis highly depends on particular situations (see Example 1), and the latter, more general, one
remains to be proved. �

Example 1. We use the notation of Theorem 2. In F 10, consider the five vectors x1 = 12|08, x2 =
02|12|06, x3 = 04|12|04, x4 = 06|12|02, x5 = 08|12. Then 010 is at distance 2 from each of them, but
it is easy to see that it is impossible to find a vector which is at distance 1 from each of them or a
vector which is at distance 3 from each of them. So, if Xp = {x1, x2, x3, x4, x5}, thenwe have |Yp,r | = 5,
|Yp,r−1| > 1, |Yp,r−2| = 1 and |Yp,r−3| > 1. �

This could indicate that, in the absence of information on |Yp,k|, a reasonable bet is to take k =
b(p− 1)/2c, assuming that |Cp,k| is minimum for this k. Let us give two small examples.

Example 2. - The case of p = 3; r ≥ 3, k = 1.
Y3 is such that d(x, y) = r − 2, r − 1 or r , and |Y3| is multiplied by 7.
Y3,1 is such that d(x, y) = r − 1, and |Y3,1| is multiplied byM1(3)− 1 = 3: C3,1 = {000, 001, 100}
is 1-separating in F 3 (but not 1-identifying: 111 is not 1-covered by C3,1).
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- The case of p = 5; r ≥ 5, k ∈ {1, 2, 3}.
Y5 : d(x, y) ∈ {r − 4, r − 3, r − 2, r − 1, r}, and |Y5|multiplied by 31.
Y5,1 : d(x, y) = r − 1, |Y5,1|multiplied byM1(5) = 10 (the method of [8, Th. 2] can also be used to
give a general lower bound on separating codes showing that there is no 1-separating code of size
9 in F 5).
Y5,2 : d(x, y) = r − 2, |Y5,2|multiplied byM2(5) = 6 (it is not very difficult to prove that there is
no 2-separating code of size 5 in F 5). �

Remark 5. The definition of C ′ shows that |C |will have a factor 2p, so it seems best, in general, to take
a code C as small as possible. However, it may be that a larger C , together with a (smaller) Xp inducing
a smaller Yp or Yp,k, gives better results. In practice, since one cannot try everything, we were led to
use the best identifying codes at our disposal. �

Remark 6. If in (2) we replace F p \{0p} by F p, we obtain a new code C ′′ = (C⊕F p)∪ (Yp⊕F p) = (C ∪
Yp)⊕F p which is also (r, n+p) and has X ′′p = {x ∈ F

n+p
: ∀c ∈ C ′′, d(x, c) ≤ r−p or d(x, c) > r} = ∅

(indeed, for all x1 ∈ F n, there is, by construction, v1 ∈ C ∪ Yp such that r − p + 1 ≤ d(x1, v1) ≤ r ,
so for all x1|x2 ∈ F n+p, we have r − p+ 1 ≤ d(x1|x2, v1|x2) ≤ r , with v1|x2 ∈ C ′′). Therefore, we can
apply [7, Th. 4], mentioned in Remark 3, to C ′′ and reach lengths higher than just n+ p. �

Open problem. Among all (r, n) codes C with |C | = Mr(n), is there at least one such that the set Xr
defined in Theorem 2 is empty? If the answer is YES, then Mr(n + r) ≤ 2rMr(n); in particular, we
would have M1(n + 1) ≤ 2M1(n). Could this be true for Xp for any p ∈ {1, . . . , r}, so that we would
haveMr(n+ p) ≤ 2pMr(n)? �
It is possible to generalize the previous construction, changing both length (from n to n + p) and
radius (from r1 to r1+ r2), the case r2 = 0 being exactly Theorem 2. Similarly, it will be best to choose
Yp,r2 , Yp,r2,k, Cp,k with the smallest possible sizes.

Theorem 3. Let r1 ≥ p ≥ r2 ≥ 0, and k ∈ {0, 1, . . . , p− 1}; let C be an (r1, n) code and

Xp,r2 = {x ∈ F
n
: ∀c ∈ C, d(x, c) ≤ r1 − p+ r2 or d(x, c) > r1 + r2}.

Construction C1: Let Yp,r2 ⊆ F
n be a set such that for every x ∈ Xp,r2 there exists y ∈ Yp,r2 with

r1 − p+ r2 + 1 ≤ d(x, y) ≤ r1 + r2. Then

C ′ =
(
C ⊕ F p

)
∪
(
Yp,r2 ⊕ (F

p
\ {0p})

)
is (r1 + r2, n+ p).
Construction C2: Let Yp,r2,k ⊆ F

n be a set such that for every x ∈ Xp,r2 there exists y ∈ Yp,r2,k with
d(x, y) = r1 + r2 − k, and let Cp,k be a k-separating code in F p. Then

C ′ = (C ⊕ F p) ∪ (Yp,r2,k ⊕ Cp,k)

is (r1 + r2, n+ p).

Proof. First, we prove, in both constructions, C1 and C2, that any x ∈ F n+p is (r1 + r2)-covered
by a codeword in C ′. We write x = x1|x2 with x1 ∈ F n, x2 ∈ F p. Because C is r1-identifying in F n,
there is a codeword c ∈ C such that d(c, x1) ≤ r1. Therefore, d(c|x2, x1|x2) ≤ r1 ≤ r1 + r2, with
c|x2 ∈ C ⊕ F p ⊆ C ′.
Next, we prove that, given any two vectors x, y ∈ F n+p (x 6= y), there is a codeword in C ′ which

(r1 + r2)-separates them. We write x = x1|x2, y = y1|y2, with x1, y1 ∈ F n, x2, y2 ∈ F p. We distinguish
between four cases. The first three cases, (i)–(iii), work for both constructions C1 and C2, because
only C ⊕ F p is needed.
(i) x1 6= y1, x2 6= y2. Then there is a codeword c ∈ C such that, say, d(c, x1) ≤ r1 and d(c, y1) > r1.

If r2 ≤ p − 1, then two spheres with radius r2 and distinct centres are different in F p, and one is not
included in the other. So there is a vector v ∈ F p which is within distance r2 from x2 and not from y2.
If r2 = p, we take v = y2 + 1p, so that d(v, y2) = r2 and d(v, x2) ≤ r2.
In both cases, d(c|v, x1|x2) ≤ r1 + r2 and d(c|v, y1|y2) > r1 + r2, with c|v ∈ C ⊕ F p ⊆ C ′.
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(ii) x1 6= y1, x2 = y2. Apply the argument in (i) with v = x2 + 1r2 |0p−r2 .
(iii) x2 6= y2 and x1 = y1 6∈ Xp,r2 . Then there is a codeword c ∈ C such that r1 − p + r2 + 1 ≤

d(c, x1) ≤ r1 + r2. If we set ∆ = r1 + r2 − d(c, x1), we see that 0 ≤ ∆ ≤ p − 1. Therefore,
as in case (i), we can find a vector v ∈ F p which is within distance ∆ from x2 and not from y2.
Now d(c|v, x1|x2) ≤ d(c, x1) + ∆ = r1 + r2 and d(c|v, x1|y2) > d(c, x1) + ∆ = r1 + r2, with
c|v ∈ C ⊕ F p ⊆ C ′.
(iv) x2 6= y2 and x1 = y1 ∈ Xp,r2 .
In construction C1, there is a vector z ∈ Yp,r2 such that r1 − p + r2 + 1 ≤ d(z, x1) ≤ r1 + r2.

Then if we set ∆ = r1 + r2 − d(z, x1), we see that 0 ≤ ∆ ≤ p − 1, and by Lemma 1, there is a
vector v ∈ F p \ {0p}which is within distance∆ from x2 and not from y2, or the other way round. Then
d(z|v, x1|x2) ≤ d(z, x1) + ∆ = r1 + r2 and d(z|v, x1|y2) > d(z, x1) + ∆ = r1 + r2, or the other way
round, with z|v ∈ Yp,r2 ⊕ (F

p
\ {0p}) ⊆ C ′, and we have proved that x and y are (r1 + r2)-separated

by C ′.
In construction C2, there is a vector z ∈ Yp,r2,k such that d(z, x1) = r1 + r2 − k and a codeword

c ∈ Cp,k such that, say, d(c, x2) ≤ k and d(c, y2) > k. Then d(z|c, x1|x2) ≤ r1 + r2 and d(z|c, x1|y2) >
r1 + r2, with z|c ∈ Yp,r2,k ⊕ Cp,k ⊆ C

′. �

Remark 7. The set Xp,r2 is empty whenever 1 ≤ r2 ≤ p − 1 [14]. Indeed, if C is (r1, n), then for any
vertex x ∈ F n, there is a codeword c such that d(x, c) = r1 or r1 + 1; otherwise, if e denotes a vector
of weight 1, then x and x+ e could not be r1-separated by C . With the conditions−p+ r2 ≤ −1 and
r2 ≥ 1, a vertex x is in Xp,r2 if for all c ∈ C , d(x, c) ≤ r1 − 1 or d(x, c) > r1 + 1, and we have just seen
that this is impossible. �

Togetherwith [7, Cor. 3] and Remark 7, Theorems 2 and 3 immediately yield the following corollary
on codes sizes.

Corollary 4. (1) Let r ≥ 1, p ≥ 1, and k ∈ {0, 1, . . . , p− 1}. We have

Mr(n+ p) ≤

{2pMr(n) if p ≥ r + 1 [7, Cor. 3]
2pMr(n)+ (2p − 1)|Yp| (C1 of Theorem 2)
2pMr(n)+ |Cp,k||Yp,k| (C2 of Theorem 2),

where Yp, Yp,k and Cp,k are as in Theorem 2.
(2) Let r1 ≥ p ≥ r2 > 0, and k ∈ {0, 1, . . . , p− 1}. We have

Mr1+r2(n+ p) ≤

{2pMr1(n) if 0 < r2 < p (Remark 7)
2pMr1(n)+ (2

p
− 1)|Yp,p| if r2 = p (C1 of Theorem 3)

2pMr1(n)+ |Cp,k||Yp,p,k| if r2 = p (C2 of Theorem 3),

where Yp,p, Yp,p,k and Cp,k are as in Theorem 3. �

2.2. Heuristics: Noising and greedy

It is known [12] that deciding whether a given code C ⊆ F n is r-identifying is co-NP-complete.
This suggests that constructing good identifying codes in the Hamming space might be hard.
Here, we use two different heuristic methods in order to build good identifying codes, noising and

greedy, as well as combinations of the two.
Noising algorithms have already been used in [5] for the construction of identifying codes in various
grids; they constitute a family of metaheuristics, of which one is a generalization of simulated
annealing [4]. Another of these consists of the following. Once r , n and a number of codewords, M ,
have been fixed, we consider codes C ⊆ F n with M codewords, and we define NC(C) as the number
of vectors which are not r-covered by C , NS(C) as the number of pairs of vectors not r-separated by C ,
and the evaluation function

f (C) = NC(C)+ NS(C),
which we try to make equal to zero. A starting code is chosen, which will be the current code C . We
iteratively modify the current code, using an elementary transformation which consists in replacing a
codeword by a noncodeword, thus keeping |C | = M .
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Now when do we accept an elementary transformation? We cyclically go through all codewords:
after looking into the last codeword, we start again with the first one. Looking into a codeword m
means that we go through all vectors s in F n \ C , we note Cm,s = C \ {m} ∪ {s}, and we compute

∆(C,m, s) = f (Cm,s)− f (C).
For each s, we also compute a noised value

∆noise(C,m, s) = ∆(C,m, s)+ (ρ× ln(R)),
where ρ is a tuning parameter which wemake decrease, and R is a number which is randomly chosen
for each new elementary transformation (see below for more details).
If there is a vector s forwhich∆(C,m, s) < 0, thenwekeep a vector s0whichminimizes∆(C,m, s).
If for all vectors s, we have ∆(C,m, s) ≥ 0, then we look for a vector s0 which minimizes

∆noise(C,m, s), and we keep s0 only if∆noise(C,m, s0) < 0.
If a vector s0 has been found in one of the two cases above, then we apply the elementary

transformation with C,m and s0, so that C becomes C \ {m} ∪ {s0}. Otherwise, the current code
is not modified after looking into m. After each accepted elementary transformation, we check the
evaluation function of the current code: if f (C) = 0, then C is r-identifying.
If we have found an identifying code, we reinitialize the process by removing from the current

code C a codeword m which minimizes f (C \ {m}), and we cyclically go through the remaining
codewords.
The parameter R is a real number, randomly chosen, in a uniform way, between zero and one; the

noising rate ρ is a positive real number which we decrease arithmetically from an initial value down
to zero, and for each value of ρ, we cyclically go through the codewords a certain number of times.
How do we choose the starting codes?We observed that, for given r , n andM , it was more efficient to
use an r-identifying code of size larger thanM , fromwhich we deleted codewords until it had sizeM ,
rather than simply take a random code of size M . These starting identifying codes were very often
obtained by the constructions of Theorem 2.
Greedy algorithms are based on the following simple idea: starting from an empty code C , at each step
we choose to add in C a codewordmwhich will maximize f (C)− f (C ∪ {m}). In the case of a tie, the
choice is made at random.

3. Results

We give tables of lower and upper bounds onMr(n) for 1 ≤ r ≤ 5, 1 ≤ n ≤ 21. There are boldface
figures when the exact value is known. Up to now, the most extensive tables (r = 1, n ≤ 19, and
r = 2, n ≤ 21) had been given in [7].

3.1. Using heuristics

The upper bounds which are marked by a star in our tables were obtained by heuristic methods.
For instance (see Table 1), the code consisting of the length-9 binary expressions of the following 112
integers:
0, 13, 14, 27, 31, 32, 35, 39, 43, 44, 53, 54, 56, 58, 65, 67, 68, 79, 81, 82, 84, 86, 110, 115, 120, 121, 125,
130, 133, 134, 136, 137, 144, 149, 155, 162, 169, 177, 181, 190, 200, 204, 211, 215, 218, 220, 221, 222,
225, 226, 235, 239, 246, 247, 248, 253, 256, 263, 266, 275, 276, 278, 281, 284, 300, 301, 313, 319, 328,
330, 331, 341, 343, 344, 351, 354, 357, 358, 365, 366, 368, 370, 371, 373, 382, 391, 398, 399, 400, 402,
405, 409, 417, 420, 423, 426, 434, 444, 446, 447, 449, 452, 454, 459, 461, 468, 481, 484, 488, 491, 498,
509,
is a (1, 9)112 code obtained by noising. All of our best codes can be found, in the same form, at
http://www.infres.enst.fr/~charon/newIdentifyingNcube.html

3.2. Applying Theorem 2

The codes obtained by noising and greedymethods are used in this section in order to obtain codes
of greater lengths, thanks to the constructions of Theorem 2. Sincemost of these results will be further
improved, we do not give many details here.
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Table 1
Lower and upper bounds, r = 1.

n Lower bound Upper bound Previous known upper bound

2 a 3 3 B
3 b 4 4 A
4 d 7 7 C
5 b 10 10 A

6 n 19 19 D
7 e 32 32 E
8 c 56 61∗ 62 F
9 c 101 112∗ 114 J
10 c 183 208∗ 214 J

11 c 337 352 F
12 c 623 684∗ 696 F
13 c 1158 1280∗ 1344 F
14 c 2164 2550∗ 2784 F
15 c 4063 4787∗ 5120 F

16 c 7654 9494∗ 10240 F
17 c 14469 18558∗ 20480 F
18 c 27434 35604∗ 40960 F
19 c 52155 65536 F
20 c 99392 131072 (5)
21 c 189829 262144 (4)

a [13, Th. 1(iii)].
A [13].
b [13, Th. 2].
BMn−1(n) = 2n − 1 [2, Th. 5].
c [13, Th. 3].
C [3, Th. 4].
d [3, Th. 4].
D [3, Th. 5].
e [3, Th. 11].
E [3, Th. 6].
F [7, Tables 3 and 4].
J [8].
∗ Heuristics.
n [8, Th. 11].

First, using [7, Cor. 3] ([3, Th. 2] for r = 1), mentioned in Remark 3,

M1(21) ≤ 4M1(19) ≤ 262144; M2(21) ≤ 8M2(18) ≤ 51440. (4)

(i) Because the (1, 19)65536 code from [7] is such that every vector is 1-covered by at least two
codewords, we have X1 = ∅ and

M1(20) ≤ 2 · 65536 = 131072. (5)

(ii) Using a (2, 18) code which has since been improved, we obtained

M2(19) ≤ 13458; M2(20) ≤ 26710. (6)

(iii) Using a (3, 18)1628 code, we obtained

M3(19) ≤ 3330; M3(20) ≤ 6569; M3(21) ≤ 13030. (7)

(iv) We have a (4, 18)511 code which leads to

M4(19) ≤ 1047; M4(20) ≤ 2056; M4(21) ≤ 4094. (8)

(v) We have a (5, 18)210 code yielding

M5(19) ≤ 428; M5(20) ≤ 840; M5(21) ≤ 1680. (9)
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Table 2
Lower and upper bounds, r = 2.

n Lower bound 1st upper bound 2nd upper bound Previous known upper bound

3 f 7 7 B
4 g 6 6 G
5 a 6 6 G

6 a 8 8 G
7 h 14 14 F
8 a 17 21 F
9 a 26 32∗ 34 J
10 i 41 57∗ 62 J

11 i 67 100∗ 109 J
12 i 112 177∗ 191 J
13 i 190 318∗ 496 J
14 i 326 566∗ 872 J
15 i 567 1020∗ 1528 J

16 i 995 1844∗ 3056 J
17 i 1761 3476∗ 6112 J
18 i 3141 6430∗ 11264 F
19 i 5638 13458 (6) 12458∗∗ 21824 F
20 i 10179 26710 (6) 25401 (10) 40480 F

21 i 18471 51440 (4) 50342 (10) 80040 F

a [13, Th. 1(iii)].
i [15, Cor. 4].
h [7, Table 4].
fMn−1(n) = 2n − 1 [2, Th. 5].
g [2, Th. 6].
G [2, Th. 6].
BMn−1(n) = 2n − 1 [2, Th. 5].
F [7, Tables 3 and 4].
J [8].
* Heuristics.
** Removing codewords.

3.3. Further improvements: Removing codewords

Perhaps Theorems 2 and 3 can be sharpened, since in practice we observe (with the help of a
computer) that the sizes of several codes obtained by Theorem 2 can be reduced by simply removing
some of their codewords, which are ‘‘useless’’.
As a consequence, we have new upper bounds for some values of n and r , marked by a double

star in the tables. The corresponding codes can be found at http://www.infres.enst.fr/∼charon/
newIdentifyingNcube.html

3.4. Re-applying Theorem 2

We can again use Theorem 2with the newly improved codes obtained in Section 3.3. All the details
can be found at http://www.infres.enst.fr/∼charon/newIdentifyingNcube.html, and we only develop
here case (d), to serve as an example. Note that the various sets Yi needed in the constructions are
obtained via a greedy-type algorithm, and are subject to small improvements.

(a) There is now a (2, 19)12458 code, which gives

M2(20) ≤ 25401; M2(21) ≤ 50342. (10)

(b) (b) We have now a (3, 19)2846 code, with which we obtain

M3(20) ≤ 5813; M3(21) ≤ 11477. (11)
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Table 3
Lower and upper bounds, r = 3.

n Lower bound 1st upper bound 2nd upper bound

4 f 15 15 B
5 ` 9 10 H

6 a 7 7∗
7 a 8 8∗
8 a 10 13∗
9 a 13 17∗
10 a 18 25∗

11 a 25 36∗
12 a 39 67∗
13 a 61 109∗
14 a 95 180∗
15 a 151 305∗

16 a 241 530∗
17 a 383 901∗
18 a 608 1628∗
19 a 959 3330 (7) 2846∗∗
20 k 1593 6569 (7) 5813 (11)

21 j 2722 13030 (7) 11477 (11)

a [13, Th. 1(iii)].
` Using (1).
fMn−1(n) = 2n − 1 [2, Th. 5].
k [15, Cor. 7].
j [15, Cor. 5].
BMn−1(n) = 2n − 1 [2, Th. 5].
H Using (1).
* Heuristics.
** Removing codewords.

(c) There is a (4, 19)835 code which leads to

M4(20) ≤ 1710; M4(21) ≤ 3358. (12)

(d) There is a (5, 19)326 code with

X1 = {27295, 32440, 34030, 72402, 82154, 83370, 86526, 88505, 94930, 95882,
116692, 118724, 120796, 128603, 134214, 142236, 143019, 145498, 147063,
165018, 181588, 191949, 210357, 214527, 221493, 223979, 225622, 226623,
228669, 242104, 245245, 258906, 262456, 265258, 271128, 272468, 274143,
295216, 311330, 312668, 324512, 330041, 336184, 343344, 348668, 349632,
366688, 379552, 379649, 381044, 382699, 390156, 420002, 425365, 426068,
427361, 434532, 449090, 460995, 461154, 462763, 480905, 483322,
486134, 490226, 495812, 497976},

Y1 = {346531, 489983, 165316, 381224, 163547, 250140, 350922, 207280,
264722, 415128, 429534} (11 elements),

X2 = {88505, 134214, 181588, 480905},
Y2 = {151364, 228505} (2 elements), and so
M5(20) ≤ 2 · 326+ 11 = 663; M5(21) ≤ 4 · 326+ 2 · 3 = 1310. (13)

Due to time and space limitations, we could not try to remove codewords from these new codes.

3.5. Tables

We give our results for 1 ≤ r ≤ 5, r + 1 ≤ n ≤ 21. For some values of r and n, we give two upper
bounds, the first one from Section 3.2, the second one from Section 3.3 or 3.4, so that one can see how
we used Theorem 2, then possibly removed codewords and possibly reused Theorem 2.
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Table 4
Lower and upper bounds, r = 4.

n Lower bound 1st upper bound 2nd upper bound

5 f 31 31 B
6 ` 18 18∗
7 ` 13 14 H
8 a 9 13 H
9 a 10 14∗
10 a 12 16∗

11 a 15 20∗
12 a 19 33∗
13 a 27 47∗
14 a 38 76∗
15 a 54 123∗

16 a 77 192∗
17 a 121 305∗
18 a 190 511∗
19 a 304 1047 (8) 835∗∗
20 a 489 2056 (8) 1710 (12)

21 a 792 4094 (8) 3358 (12)

fMn−1(n) = 2n − 1 [2, Th. 5].
` Using (1).
a [13, Th. 1(iii)].
BMn−1(n) = 2n − 1 [2, Th. 5].
H Using (1).
* Heuristics.
** Removing codewords.

Table 5
Lower and upper bounds, r = 5.

n Lower bound 1st upper bound 2nd upper bound

6 f 63 63 B
7 ` 31 32 H
8 ` 19 21 H
9 ` 12 17 H
10 a 11 16 H

11 a 12 17∗
12 a 14 22∗
13 a 17 26∗
14 a 21 43∗
15 a 28 64∗

16 a 37 94∗
17 a 53 136∗
18 a 77 210∗
19 a 112 428 (9) 326∗∗
20 a 161 840 (9) 663 (13)

21 a 229 1680 (9) 1310 (13)

fMn−1(n) = 2n − 1 [2, Th. 5].
` Using (1).
a [13, Th. 1(iii)].
BMn−1(n) = 2n − 1 [2, Th. 5].
H Using (1).
* Heuristics.
** Removing codewords.

We think that there is still room for ameliorations, and that this is a nice field for investigations,
where different heuristics (such as tabu search, genetic algorithms, . . . ) could also be applied and
tested.
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3.6. Conclusion

By mixing both heuristic and theoretical constructing arguments, we were able to present
numerous upper bounds on Mr(n), the smallest possible cardinality of an r-identifying code in F n:
we first used heuristics for constructions of codes, andwe then used some of these codes to build new
codes with the help of Theorem 2; after that, the computer possibly removed codewords from these
codes, and eventually we reapplied Theorem 2. We stopped to apply heuristics when the time/space
constraints were too demanding.
There still remains a large, challenging gap between the lower and upper bounds for most of the

values of r, n in Tables 1–5.
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