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ABSTRACT

In this paper, a method to address the automatic instru-
ment recognition in polyphonic music is introduced. It
is based on the decomposition of the music signal with
instrument-specific harmonic atoms, yielding to an approx-
imate object representation of the signal. A post-processing
is then applied to exhibit ensemble saliences that give clues
about the number of instrument playing and the instru-
ment labels. After a parameter optimization on a develop-
ment set, the whole algorithm is applied on artificial mixes
of solo performances. The identification of the number of
instrument reaches 73 % and the identification of the en-
semble label without prior knowledge on the number of
instruments 17 %.

1 INTRODUCTION

Orchestration is a critical information for the automatic in-
dexing of music. It gives an important clue about the mu-
sic genres, and is often necessary for the query of sound
samples for electronic music composing.

Automatic Instrument Recognition has raised some in-
terest these latest years (see [1] for an overview of the do-
main). The early studies have addressed the recognition
of isolated music notes [2], and solos phrases [3, 4, 5].
For these two contexts, machines now reach the perfor-
mance of expert musicians. However, mono-instrument
music takes a weak part of the overall listened music, that
involves natural or artificial mixes of instruments.

To deal with multi-instrument music, several strategies
have been adopted. Template-based approaches have first
been proposed [6, 7]. Other approaches adapt “bag-of-
frames” approaches to polyphony: some aim at identify-
ing the main instrument playing in sonatas by isolating
harmonic combs in the signal [8] or using the missing
feature theory [9]. Other techniques consist in estimat-
ing jointly the instrument sources activated in a proba-
bilistic framework [10], at a heavy computational cost. A
few approaches involve blind source-separation as a pre-
processing [11], but obviously relies on the performances
of the source separation algorithm that are mainly at ease
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for statistically independent sources, exaggerated hypoth-
esis for music. A recent work [12] presents a representa-
tion showing the instrument presence probabilities in the
time-pitch plane without note detection. Ensemble classes
can also be modeled using standard feature-based repre-
sentations in addition with a hierarchical taxonomy [13],
when the number of instrument combinations is tractable.

In this paper a recent development in the decomposi-
tion of music signals is studied for the recognition of mu-
sic instrument in ensemble music. It relies on principles
coming from the sparse approximations domain. To get a
useful sparse representation of a signal, two aspects have
to be investigated: the building of a signal model (dic-
tionary design), and, given a dictionary, the choice of an
algorithm and its optimization towards a faster or better
approximation. Techniques from the sparse approxima-
tion domain have already been used for automatic music
transcription in an unsupervised way [14, 15]: the build-
ing of the dictionary was done in an data-driven way, pro-
hibiting to analyze the signals in view of prior knowledge
of the sources. The introduction of prior knowledge about
the sources in dictionaries has been presented in [16]: this
knowledge is put in the amplitudes of the note partials.
An algorithm decomposing the signal with such dictio-
naries is presented in Section 2. Section 3 shows how
to learn partials amplitudes codebooks. In section 4, a
post-processing is introduced to take a decision on the or-
chestration. The experiments of ensemble recognition are
detailed in section 5.

2 DECOMPOSITION ALGORITHM

The signal model and decomposition algorithm have been
introduced in [16]. Here the main features of the algo-
rithm are highlighted.

2.1 Signal Model

The signal is decomposed as a linear combination of short
pieces of signalh, calledharmonic atoms:

x(t) =

N
∑

n=1

αn hsn,un,f0n ,An,Φn
(t). (1)



The set of all the atoms available to decompose the sig-
nal is called adictionary.

The parameters of these atoms are the scalesn, the time
localizationun, the fundamental frequencyf0n

, the par-
tial amplitudesAn = {am,n}m=1:M and thepartial phases
Φn = {φm,n}m=1:M . An atomh is itself defined as a lin-
ear combination of partials atoms:

hs,u,f0,A,Φ(t) =

M
∑

m=1

am ejφmgs,u,m.f0
(t) (2)

where the amplitudes of theM partials are constrained to
∑M

m=1 a2
m = 1 and the signalg corresponding to each

partial is given by aGaboratom:

gs,u,f = w

(

t − u

s

)

e2jπft (3)

with w a time- and frequency-localised window.
In our study, eachA vector is linked to an instrument

and a pitch (integer Midi Code), and are learned from
databases of isolated instrument notes (see section 3).

2.2 Algorithm

Many algorithms exist for the decomposition of a signal
on dictionaries of atoms. Among them, the Matching Pur-
suit algorithm has been chosen for this study. It is known
to be relatively fast and to yield to decompositions close to
optimal in practical cases. It has been introduced in [17],
and proceeds as follows:

1. The correlations between the signal and all the atoms
h of the dictionary are computed using inner prod-
ucts〈x, h〉 =

∑T
t=1 x(t)h(t).

2. The atomh that has the largest absolute correlation
|〈x, h〉| with the signal is selected, then subtracted
from the signal with a weighting coefficient1 α =
〈x, h〉.

3. Correlations are updated on the residual signal, and
the algorithm is iterated to step 2 until the stopping
condition is satisfied. This condition can be a target
Original-to-Residual energy ratio, or a fixed number
of iterations.

With the parameters mentionned in Section 5, the runtime
takes about 10 times real-time on a monoprocessor at 3
GHz.

3 LEARNING

3.1 Learning on annotated isolated notes

The vectors of partials amplitudes{Ai,p,k}k=1...K are learned
for each instrument/pitch classCi,p on isolated notes from

1 Since we want to handle real signals, atoms are practically selected
by couple of conjugate atoms, that form a real atom. More details on the
computation of the amplitude and the phase of the weight can be found
in [18].

three databases: the RWC Musical Instrument Sound Database
[19], IRCAM Studio On Line [20] and the University of
Iowa Musical Instrument Samples[21]. We select seven
instruments producing harmonic notes: bassoon (Bo), oboe
(Ob), clarinet (Cl), cello (Co), viola (Va), violin (Vl) and
flute (Fl).

For each isolated note signal, the time frame with maxi-
mal energy is computed and all the subsequent time frames
whose energy lies within a certain threshold of this maxi-
mum are selected. This relative threshold is set to a ratio
of 1/20 in the following. The partials amplitudes are com-
puted on each of these training frames by

am =
|〈x, gs,u,m×f0

〉|
(

∑M
m′=1 |〈x, gs,u,m′×f0

〉|2
)1/2

(4)

wheref0 is tuned in order to maximize the SRR on this
frame. The vector of amplitudes is then associated to the
pitch classp that is related2 to f0. The resulting number
of vectors per instrument and per pitch class is approxi-
mately 300.

The size of the dictionary varies linearly as a function
of the number of amplitude vectors. Since the number
of vectors is too large to ensure computationally tractable
decompositions, we choose to reduce the number of vec-
tors by vector quantization:K amplitude vectors are kept
for each classCi,p using the k-means algorithm with the
Euclidean distance. This operation also helps avoiding
overfitting by averaging the training data and removing
outliers.

3.2 Learning on solo phrases

A weak point of the use of the above-mentionneddatabases
for learning is that the models are learned from isolated
notes, that are recorded in almost anechoic conditions. To
get a codebook more adapted to realistic recording condi-
tions,A vectors can be learned on real solo phrases from
commercial CDs in an adaptive way. Let’s consider that
we want to learn an adapted codebook for an instrumenti,
the following steps are performed:

• A codebook is built only with atoms from isolated
notes of instrumenti with the method described above

• Given this dictionary, The Matching Pursuit algo-
rithm is performed with the following modifications:

– at the selection step: anA vector is computed
using Equation 4, by settingf0 equal the fun-
damental frequency of the selected atom, then
it is stored for further use.

– at the subtraction step: instead of subtract-
ing the selected atom from the signal, the sig-
nal is set to 0 on the time range corresponding

2 The pitchp related tof0 is the integer the closest tolog2(f0/440)+
69



to the selected atom by multiplying the signal
by the function:

ω(t) = 1 − 1[u,u+s] cos(2π(
t − u

s
)) (5)

It prevents the algorithm to extract atoms on
the residual of the extraction of a previous atom.

Once this process is achieved, a dictionary of atoms learned
on solos phrases can be built. It can be noted that the solo
database must be large enough to contain notes covering
almost all the pitch range of each instrument. If atoms are
missing for a given pitchp, the sub-dictionary from the
previous pitchp − 1 is taken.

4 SCORING

In the previous Section, an algorithm decomposing the
music signal into a collection of meaningful objects has
been presented. The output of such decomposition can be
postprocessed in order to estimate the orchestration of the
music signal.

4.1 Decomposition algorithm viewed as a pitch and in-
strument salience extractor

An atom extraction can be seen as an “pitch-and-instrument”
salience extractor, since it correlates both a spectral en-
veloppe and a harmonic comb with the signal. Given an
extracted atom at fundamental frequencyf0, scales and
localizationu, we define thef0-and-instrument salience
for instrument i as3 :

Si = max
A∈Ci,p

{|〈x, hs,u,f0,A,Φn
〉|} (6)

If an instrumenti enveloppe cannot play the pitchp, i.e.
Ci,p = ø, its salience is set to 0. Although not required for
the decomposition, all instrument saliences for every se-
lected atom are kept for the scoring step: they are needed
for the ensemble saliences evaluations.

4.2 From Instrument Salience to Ensemble Salience

The scoring algorithm processes the output of the decom-
positions to have an indication of which instruments are
playing. Here, a frame-based scoring is developed: for a
given time frame, the score of a given ensemble class de-
pends on which atoms have been extracted and on their
f0-and-instrument salience.

Given a decomposition of a music signal, there can be
several atoms per time frame since the music is in general
polyphonic. The first step to perform is to select which
atoms are present for each time frame, the timeline be-
ing sampled at the greatest common divider between the
∆u corresponding to each scale. Then, the contribution of
each atoma on a given time sample is equal to the value

3 Note that the inner product is not depending on the values ofΦ if f0

is high enough since the partials atoms can be considered as orthogonal:
|〈x, hs,u,f0,A,Φn

〉|2 =
PM

m=1
|〈x, gs,u,m.f0

〉|2

at instantu of the weighting window starting atua mul-
tiplied by the atom weight. Hence, given a time frameu
and an ensemble labele, its ensemble salience is the fol-
lowing4 :

Se(u) =
maxCe∈Ce

∑

a∈Ce
Sia(u)w(u−ua

sa
)

Nβ
e

(7)

whereCe is the set of all the instrument salience combina-
tions whose time support overlap withu. For example, if
two atoms are present at timeu, the salience of ensemble
Co&Fl (Cello and Flute) is the maximum between the sum
of theFl salience for the first atom and theCosalience for
the second one, and sum of theCo salience for the first
atom and theFl salience for the second one, divided by
2β . An example of book output and corresponding en-
semble saliences is displayed on Figure 1.

The β parameter is a sparsity parameter: it balances
the weight between the sum of all atom saliences and the
number of instrument of the ensemble. Its value has to be
optimized on a development set. The use of such a co-
efficient to compensate the salience by the number of in-
strument is somewhat related to the Minimum Description
Length criterion used in model order estimation, and also
with cost functions for sparse approximations. It has also
been used in an empirical way by Klapuri for multi-pitch
estimation [22].

4.3 Voting

Decisions taken on single time frames does not provide
useful information as such. However, one can be inter-
ested on decisions taken on the whole music signal, or a
segment of it. To get a global decision from local ones,
voting techniques must be employed. The technique used
in this study is derived from a probabilistic framework.
Other techniques, like majority-vote, have been tried but
they yield to weaker results. First, the ensemble saliences
are mapped to ensemble Pseudo Log-Likelihoods (PLL),
then a segment PLL for each ensemble label is computed
by adding the PLL of each time frames. The mapping of
a ensemble salienceSe(u) to PLLLe(u) is achieved with
the following formula:

Le(u) = (Se(u))γ (8)

γ weighs the influence of salience amplitudes over the
overall score in the segment. Likeβ in previous Section,
theγ coefficient has to be optimised on a development set.
The decision over the all segment is obtained by summing
all the PLL. It corresponds to an hypothesis of statistical
independence between each time frame. This hypothe-
sis is clearly erroneous in music signals (the orchestration
does not change at every short time frame), but is com-
monly taken for fusion of local likelihood.

The whole system is described on figure 2.

4 Using theL2 norm
q

P

a∈Ce
(Sia(u)w(u−ua

sa
))2 instead of the

L1 norm
P

a∈Ce
Sia(u)w(u−ua

sa
) would be more consistent with the

optimality criterion of the decomposition, however it leads to weaker
results in the studied applications
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Figure 1. Bassoon (Bo) and Oboe (Ob) duo (synthetic mix): (a) Book representation in the Time-Pitch plane: atoms
are represented by rectangles, whose width is the atom scaleand height is their amplitudes, (b) Ensemble Saliences for a
subset of ensemble labels (high saliences are darker).

Synthetic Mixes

Ensemble

Synthetic mixes
Database (Dev)

with all instruments

dictionary

Decomposition

for classification

parameters optimized

with all instruments

dictionary

Decomposition

Classification Results

scoring

knowing the instrument

learning
initial A

dictionary

decomposition

isolated
notes  DB

solo DB 1

Solo DB 2

DEVELOPMENT

LEARNING

dictionary

realistic A

scoring

Ensemble

Database (Test)

TEST

Artificial mixes

Figure 2. Flow chart of the whole system.
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Figure 3. Accuracy of Number of Instrument Detection
as a function ofβ for decision on single times frames, 2
seconds segments and 10 seconds segments.

5 EXPERIMENTS

5.1 Parameters

The parameters used for the decomposition ares = 46ms,
∆ = 23ms. f0 is sampled logarithmically with a step
of 1/10 ton. The decompostions are performed until the
Signal-To-Residual ratio reaches 20 dB.

5.2 Validation of the algorithm on solo phrases

The algorithm has been tested on solo phrases in [16] on
an instrument set (Co, Cl, Fl, Ob, Vl), and the identifi-
cation results are computed on 2 seconds segments. The
overall instrument recognition rate was 68,5 %, with very
few training data (3 atoms per pitch and instrument in av-
erage). With the dictionary of atoms learned on the set
of isolated note, reduced to 16 atoms per pitch and instru-
ment by vector quantization, the recognition rate raises
to 75%. Additional improvement is brought by the use
of the realistic set of solo phrases: the recognition rate
becomes 84%. For this task, the recognition rate is now
close to what a SVM-based system with a pairwise clas-
sification strategy can perform (84 % with [5]). These ex-
periments now prove that decomposition with instrument-
specific atoms are useful for instrument idenfication in re-
alistic playing conditions.

5.3 Optimisation of parameters

The development and test sets are composed of artificial
mixes of solo phrases extracted from commercial CDs,
from sources different from the one used for atom learn-
ing. The mixes are done by summing the monoinstrument
signals of instruments Bo, Co, Cl, Fl, Ob, Va and Vl af-
ter an energy normalization. For each set, 100 10-seconds
samples have been made, 25 for each ensemble cardinal.

The parametersβ andγ have to be tuned to maximize
the accuracy of the estimation of the number of instru-
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Figure 4. Ensemble recognition results for each subset
(solos, duos, trios, quartets). For each ensemble, the three
groups of bars depict respectively the results of a random
draw, the results of our algorithm with no knowledge on
the number of instruments playing, and the results know-
ing the number of instruments playing.

ments, which is required to estimated the good instrument
label. Optimizing these parameters for instrument label
accuracy would overfit the algorithm for the solo recog-
nition, that is the easiest problem. In our experiments on
the development set, the bestγ parameter has shown to be
independant on the decision window: the valueγ = 0.8
give the best results.

For these values, the instrument recognition rates for
decisions on 10 seconds segments are depicted on Fig-
ure 4. It shows that the problem of finding an instrument
among the mix is correctly addressed when the number of
instrument is known (from 70 % to 100 %, depending on
the ensemble type), and a less accurately when it is not
known (from 54 % to 84 %). However, as the required
number of instrument increases, the method fails at cor-
rectly identifying them alltogether. Dealing with ensem-
bles of more than three instruments needs more refined
techniques both at decomposition step and post-processing
or more prior information, since the problem is more dif-
ficult (results for random draw is at less than 1 %).

6 CONCLUSION

In this paper, we developped a novel approach to address
the complex problem of finding the instruments playing
in ensemble music. The approach consists in getting a
knowledge assisted mid-level representation of the sig-
nal, then in performing a post-processing using ensemble
saliences based on individual instrument saliences derived
from representation. The results are encouraging for the
estimation of the number of instrument, but weak for the
ensemble classification, which is a much more difficult
problem without prior information on ensemble labels oc-
curences.

Further work will be dedicated to the improvement of



the decomposition step by refining atom parameters to
better fit the underlying signal structures, and to group
atoms into molecules at the extraction step to catch tem-
poral dependencies. The joint estimation of atom com-
binations will also be investigated using more elaborated
sparse decomposition algorithms. The post-processing will
be improved by using melodic line following techniques
to disambiguate mixes involving numerous notes.
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