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ABSTRACT

In this paper, we present a theoretical stability analysis of the YAST
algorithm used for tracking the noise subspace of the covariance ma-
trix associated with time series. This analysis demonstrates the insta-
bility of the YAST and a more stable alternative solution is proposed.
In addition to its stability, the resulting algorithm is less expensive
than the YAST and has a computational complexity of orderO(nr)
flops per iteration wheren is the size of the observation vector and
r < n is the minor subspace dimension. Finally, we pay a special
attention to the caser = 1 due to its importance in many quadratic
optimization problems. In that particular case, we propose a sim-
plified version of the algorithm to estimate either the first principal
eigenvector or the last minor eigenvector of the covariance matrix.
Simulation results are provided at the end to validate the theoretical
stability analysis and to illustrate the tracking capacity of the pro-
posed algorithm.

Index Terms— Adaptive estimation, fast algorithm, numerical
stability.

1. INTRODUCTION

Principal and minor subspace analysis (PSA and MSA) are two im-
portant subspace-based high resolution methods that have been ap-
plied successfully to both temporal and spatial domain spectral anal-
ysis such as: adaptive filtering, multiuser detection in CDMA [1],
mobile positioning [2] and blind channel equalization [3].
Many subspace tracking algorithms exist in the literature that can be
classified according to their computational complexity. Since usu-
ally r << n, schemes requiringO(n2) orO(n2r) operations will be
classified as high complexity; algorithms with complexityO(nr2)
as medium complexity, finally algorithmic schemes requiring only
O(nr) operations are said of low complexity. Recently, a new low
complexity subspace tracker, referred to as the YAST (Yet Another
Subspace Tracking algorithm) has been introduced in [4, 5] as a gen-
eralization of Davila’s algorithm in [6] for PSA and MSA. This al-
gorithm greatly outperforms many well known subspace trackers in
terms of subspace estimation, such as Karasalos algorithm [7], PAST
[8], Loraf [9] and OPAST [10].
In this paper, we propose first a simplified version of YAST which
extracts the first principal (resp. minor) component of a covariance
matrix. Indeed, this particular case of subspace tracking is of high
importance in many practical problems where quadratic optimiza-
tion is used. The resulting algorithm is very easy to implement and
is referred to as the MYAST (Modified YAST) algorithm.
Secondly, we focus on the algorithm’s numerical stability when used
for the minor subspace extraction. We derived a theoretical analysis
that proves the numerical instability of the algorithm. Then, we pro-
pose a fast orthogonalization method based on the Pairwise Gram
Schmidt (PGS) technique [11] in order to stabilize the algorithm.

The proposed algorithm referred to as YAST-PGS is slightly less ex-
pensive than the YAST. Simulation results highlight the relative good
stability behavior of YAST-PGS.

2. MYAST

Let x(t) be a sequence ofn × 1 random vectors with covariance
matrix C = E[x(t)x(t)H ]. This matrix can be recursively updated
according to

C(t) = βC(t − 1) + x(t)x(t)H (1)

where0 < β < 1 is a forgetting factor. In [4] (resp. [5]), an efficient
algorithm (the YAST) has been proposed for the extraction of the
subspace spanned by ther < n principal (resp. minor) eigenvectors
of the covariance matrix. We consider here the particular caser = 1
and propose a modified version of YAST to estimate the first princi-
pal (minor) eigenvector of the covariance matrix. As shown in [4, 5],
the principal (minor) eigenvectorw(t) is obtained by maximization
(minimization) of the criterion

J(w(t)) = w(t)HC(t)w(t). (2)

However, a brute force implementation of this optimization prob-
lem is computationally demanding (the complexity is ofO(n2)), and
does not lead to a simple recursion betweenw(t) andw(t−1). In or-
der to reduce the computational cost, the idea introduced in [6] con-
sists in limiting this search into the space spanned by vectorw(t−1)
plus one additional search direction given by the current observation
vector. In other words, the principal eigenvectorw(t) is to be found
as a subspace vector of the2-dimensional space spanned by then×2
matrix

V(t) = [w(t − 1),x(t)] . (3)

Let V(t) be an× 2 orthonormal matrix spanning the range space of
V(t). Thenw(t) will be written in the form

w(t) = V(t)u(t) (4)

whereu(t) is a 2-elements unitary vector. In this case

J(w(t)) = u(t)HC(t)u(t) (5)

whereC(t) is the2 × 2 matrix

C(t) = V(t)HC(t)V(t). (6)

The result of the maximization (minimization) ofJ(w(t)) is well
known: u(t) must be the principal (minor) eigenvector of the2 × 2

symmetric matrixC(t). Thus,w(t) can be tracked by computing :

• An orthonormal basisV(t) of the range space ofV(t).

• The matrixC(t) = V(t)HC(t)V(t).

• The principal (minor) eigenvector ofC(t) denoted byu(t).

• The principal (minor) eigenvector of the covariance matrix
C(t) can be written asw(t) = V(t)u(t).



3. FAST IMPLEMENTATION OF MYAST

Below, a fast implementation of MYAST is proposed whose global
cost is ofO(n) flops per iteration. It can be decomposed into three
steps: computation ofV(t) (section 3.1), computation ofC(t) (sec-
tion 3.2), computation ofu(t) and update ofw(t) (section 3.3).

3.1. Computation ofV(t)

This is done by Gram Schmidt orthogonalization ofV(t). Define the
scalary(t) = w(t− 1)Hx(t) and lete(t) = x(t)−w(t − 1)y(t). The
n×1 vectore(t) is orthogonal tow(t−1) and hence the orthonormal
matrixV(t) is given by

V(t) =

»

w(t − 1),
e(t)

‖e(t)‖

–

. (7)

3.2. Computation ofC(t)

Substituting equation (7) into equation (6) and after some straight-
forward manipulations we get

C1,1(t) = βcy(t − 1) + |y(t)|2

C1,2(t) =
β

‖e(t)‖2
(y

′

(t) − cy(t − 1)y(t)) + y(t) ‖e(t)‖

C2,1(t) = C∗
1,2(t)

C2,2(t) =
β

‖e(t)‖2
(x(t)Hx

′

(t) − 2Re(y
′

(t)∗y(t))) +

|y(t)|2 cy(t − 1) + ‖e(t)‖2

where
cy(t) = w(t)HC(t)w(t) (8)

x
′

(t) = C(t− 1)x(t) and1
y
′

(t) = w(t− 1)Hx′(t). The notationa∗

represents the complex conjugate ofa andRe(a) the real part ofa,
while Ci,j represents the(i, j)-th entry of matrixC.

3.3. Update ofw(t)

As mentioned in equation (4), the principal (minor) eigenvectorw(t)
is written as the product ofV(t) andu(t). the Last vector represents
the principal (minor) eigenvector of matrixC(t). SinceC(t) is a
2 × 2 matrix, one can compute this eigenvector explicitly according
to :

ū(t) =

»

C2,2(t) + C1,2(t) − λ

λ − C1,1(t) − C1,2(t)∗

–

(9)

u(t) =
ū(t)

‖ū(t)‖
(10)

whereλ =
C1,1(t)+C2,2(t)+ǫ

√
∆

2
is the eigenvalue ofC(t),

∆ = (C1,1(t) − C2,2(t))2 + 4
˛

˛

˛C1,2(t)
˛

˛

˛

2
andǫ = +1 (resp.ǫ = −1)

for the principal (resp. minor) eigenvalue. The updating of equation
(8) is then given bycy(t) = u(t)HC(t)u(t).
Our new algorithm MYAST summarized in Table 1, costs approxi-
mately15n flops per iteration.

4. STABILITY ANALYSIS

Here, we analyse the numerical stability of the YAST algorithm for
minor subspace tracking [5]. Its pseudo-code is summarized in Table
2 (in this tableW(t) is then × r weight matrix estimate of the de-
sired minor subspace). To examine the numerical stability, we focus

1The computation of vectorx
′

(t) = C(t − 1)x(t) is reduced from
O(n2) to 9n by means of the technique described in [6], which exploits
the shift invariance property of time-series covariance matrices.

y(t) = w(t − 1)Hx(t)

x
′

(t) = C(t − 1)x(t)

y
′

(t) = w(t − 1)Hx
′

(t)

‖e(t)‖ =
q

‖x(t)‖2 − |y(t)|2)

C1,1(t) = βcy(t − 1) + |y(t)|2

C1,2(t) = β

‖e(t)‖2 (y
′

(t) − cy(t − 1)y(t)) + y(t) ‖e(t)‖

C2,1(t) = C∗
1,2(t)

C2,2(t) = β

‖e(t)‖2 (x(t)Hx
′

(t) − 2Re(y
′

(t)∗y(t))+

|y(t)|2 cy(t − 1) + ‖e(t)‖2

∆ = (C1,1(t) − C2,2(t))2 + 4
˛

˛

˛C1,2(t)
˛

˛

˛

2

λ =
C1,1(t)+C2,2(t)+ǫ

√
∆

2

ū(t) =

»

C2,2(t) + C1,2(t) − λ

λ − C1,1(t) − C1,2(t)⋆

–

u(t) =
ū(t)

‖ū(t)‖ =

»

u1(t)
u2(t)

–

w(t) = V(t)u(t) = (u1(t) − y(t)
u2(t)
‖e(t)‖ )w(t − 1) +

u2(t)
‖e(t)‖x(t)

cy(t) = u(t)HC(t)u(t)

Table 1. MYAST algorithm.

on the deviation of the algorithm from orthonormality. Let us first
consider the matrixW(t)HW(t) which, in the ideal case should be
equal to the identity. Using the equations of Table 2, and after some
straightforward manipulations we getW(t)HW(t) = A + B + BH

where2

A = WHW+f(1+ 1
‖e‖2 (−‖y‖2+yHWHWy))fH−2fvHWWHvfH

+ ff
′HWHWf

′

fH + fvH(WWH)2vfH ,

B = fvHWf
′

fH −
`

I − WHW
´

WHvfH − ff
′HWHWWHvfH

− WHWf
′

fH .

Letǫ(t) be the deviation from orthonormality due to numerical round-
ing errors i.e.

W(t)HW(t) = I + ǫ(t). (11)

Using this expression together with the expression of vectorv(t)
given in Table 2, leads to

W(t − 1)Hv(t) =
−1

‖e‖
ǫ(t − 1)y(t). (12)

Now, by replacing (11) and (12) into the above expression of matri-
cesA andB and keeping only the first order terms inǫ(t − 1), we
obtain

ǫ(t) = ǫ(t − 1) −
1

1 + ρ
ffHǫ(t − 1) −

1

1 + ρ
ǫ(t − 1)ffH+

1

(1 + ρ)2
ffHǫ(t − 1)ffH +

1

‖e‖2
fyHǫ(t − 1)yfH (13)

or equivalently,

vec (ǫ(t)) = Nvec (ǫ(t − 1))

wherevec (.) represents the column vectorization operator and
N = Ir2 − 1

1+ρ
Ir ⊗ ffH − 1

1+ρ
ffH ⊗ Ir + 1

(1+ρ)2
ffH ⊗ ffH +

1
‖e‖2

`

fyH ⊗ fyH
´

, where⊗ is the matrix Kronecker product.
This expression leads to

‖ǫ(t)‖2 = ‖vec (ǫ(t))‖2 = vec (ǫ(t − 1))H NHNvec (ǫ(t − 1))

and hence the algorithm would be stable only if all the eigenvalues
of NHN are strictly smaller than one [12]. This is unfortunately not

2A, B are function ofW(t−1) but for simplicity we omit to specify the
time dependence.



y(t) = W(t − 1)Hx(t)

x
′

(t) = C(t − 1)x(t)

y
′

(t) = W(t − 1)Hx
′

(t)
e(t) = x(t) − W(t − 1)y(t)

‖e(t)‖ =
q

‖x(t)‖2 − ‖y(t)‖2

v(t) = 1
‖e(t)‖e(t)

α(t) = ‖x(t)‖2

y
′′

(t) = βy
′

(t) + y(t) ‖x(t)‖2

cy(t) = βx(t)Hx
′

(t) + ‖x(t)‖4

C
′

y(t) = βCy(t − 1) + y(t)y(t)H

h(t) = y
′′

(t) − C
′

y(t)y(t)

γ(t) = cy(t) − y(t)Hh(t) − y
′′

(t)Hy(t)
g(t) = −1

‖e(t)‖h(t)

γ
′

(t) =
γ(t)

‖e(t)‖2

C =
h

C
′

y(t),−g(t);−g(t)H , γ
′

(t)
i

(φ(t), λ(t)) = eigs (C(t), 1)
ˆ

ϕ(t)T , z(t)
˜

= φ(t)T

z(t) = ρ(t)ejθ(t) (polar decomposition)
f(t) = ϕ(t)θ(t)

f
′

(t) =
f(t)

1+ρ(t)

e
′

(t) = v(t) + W(t − 1)
“

f
′

(t) − W(t − 1)Hv(t)
”

W(t) = W(t − 1) − e
′

(t)f(t)H

g
′

(t) = g(t) + f
′

(t)
“

γ
′

(t) − θ2(t)λ(t)
”

Cy(t) = C
′

y(t) + g
′

(t)f
′

(t)H + f
′

(t)f(t)H

Table 2. YAST algorithm.

the case here as shown by the following Lemma :
Lemma 1 : The YAST algorithm is numerically instable as matrix
NHN has eigenvalues larger than1.
Proof : Let us consider a unitaryr × 1 vectora orthogonal tof , we
have:

N (a ⊗ a) = a ⊗ a +
(yHa)2

‖e‖2
f ⊗ f .

These two vectors, being orthogonal, we have then

‖N (a ⊗ a)‖2 = ‖a ⊗ a‖2 +

˛

˛

˛

˛

yHa

‖e‖

˛

˛

˛

˛

4

‖f ⊗ f‖2

= 1 +

˛

˛

˛

˛

yHa

‖e‖

˛

˛

˛

˛

4

‖f‖4

which is clearly larger than one. Hence, the deviation from orthonor-
mality does increase at each iteration which means that the YAST
algorithm for minor component extraction is numerically instable.

5. YAST-PGS

To mitigate this effect, we propose to use an efficient partial orthogo-
nalization scheme called Pairwise Gram-Schmidt (PGS) orthogonal-
ization [11] so that we refer to this algorithm version by YAST-PGS.
The PGS consists simply in the re-orthogonalization of two succes-
sive column vectors ofW at each iteration,i.e. if
W(t)

△

=
ˆ

w0(t) . . . wr−1(t)
˜

represents the weight matrix at
iterationt, we propose to choose two column vectors of indexkt =

modr(t) and kt+1 = modr(t + 1), wheremodr is the modulor

value, and perform their Gram-Schmidt orthogonalization accord-
ing to Table 3. The Yast-PGS algorithm can be resumed as in Table
2 with the difference that, in the expression of vectore

′

(t), we do

wkt+1
(t) := wkt+1

(t) − wkt
(t)wH

kt
(t)wkt+1

(t)

wkt+1
(t) :=

wkt+1
(t)

‖wkt+1
(t)‖

Table 3. YAST-PGS Algorithm

not projectv(t) onto the signal subspace (i.e. in Table 2, we have
e
′

(t) = (I − W(t − 1)W(t − 1)H)v(t) + W(t − 1)f
′

(t) where the
subspace projector(I − W(t − 1)W(t − 1)H) is introduced only
for the algorithm stabilization, since, in the absence of numerical
rounding errors, we have(I − W(t − 1)W(t − 1)H)v(t) = v(t))
but rather we computee

′

(t) = v(t) + W(t − 1)f
′

(t). This reduces
the computational cost bynr flops per iteration. Thanks to this re-
orthogonalization and re-normalization, the accumulated numerical
error becomes stable as shown in figures 3 and 4.

6. SIMULATIONS

To assess the performance of our algorithm, we calculate the en-
semble average of the performance factorρ(t) expressed in the case
r = 1 by

ρ(t) =
1

p0

p0
X

p=1

‖Wp(t) − E2‖
2

and in the caser > 1 by

ρ(t) =
1

p0

p0
X

p=1

tr(WH
p (t)E1E

H
1 Wp(t))

tr(WH
p (t)E2E

H
2 Wp(t))

where the number of algorithm runs isp0 = 100, p indicates that
the associated variable depends on the particular run.E2 is then× r
matrix of ther minor (or principal if we target the PSA) eigenvectors
andE1 is then × n − r matrix of the principal eigenvectors. This
performance indexρ measures the averaged estimation quality of the
target subspace. To measure the deviation from the orthonormality,
we use the performance index

η(i) =
1

p0

p0
X

p=1

‖WH
p (t)Wp(t) − I‖2

F

In the simulation experiment, we have considered aniid sequence
of n-dimensional random vectorsx(t). For figures 1, 2 and 3 (n =

4), the random sequence is generated using a zero mean Gaussian-
distribution with the well known [5] covariance matrix

C =

2

6

4

0.9 0.4 0.7 0.3
0.4 0.3 0.5 0.4
0.7 0.5 1.0 0.6
0.3 0.4 0.6 0.9

3

7

5
. In Fig.1, we extract the principal

eigenvectors ofC using the proposed MYAST but also for compar-
ison, the PASTd method [8] and the singular value decomposition
(SVD) applied to the updated covariance matrixC(t) = βC(t−1)+

x(t)x(t)H . One can observe that PASTd and MYAST have the same
behavior and reach the performance of the SVD method.
In Fig.2, a similar experiment is done but this time to extract the
minor eigenvector ofC. One observes that MYAST provides better
estimation performance than PASTd but now its convergence rate is
lower than that of the SVD.
In Fig.3, we consider the MSA case withr = 2 and compare the
performance of the YAST, YAST-PGS and SVD. To highlight the
effect of the numerical errors, we have used a rounding precision of
10 digits. One can observe that in this context, YAST-PGS behaves
as well as the SVD and has a very good stability behavior. As we can
observe, this is not the case for YAST which is numerically instable
due to the degeneration of the weight matrix in the sense that its col-
umn vectors become almost linearly dependent and close to the least



eigenvectors. For this reason, the value ofρ becomes lower than that
reached by the SVD and MYAST-PGS.
For the least experiments, we choosen = 15 and generatex(t) as
an iid sequence with a positive definite covariance matrixC that is
generated randomly at each run. In Fig.4, we compare again YAST,
YAST-PGS and SVD algorithms for the MSA withr = 6. As before,
YAST-PGS is observed to be stable (but not the YAST) and leads to
a better steady state estimation error than the SVD.

7. CONCLUSION

In this paper, we proposed first a simple modified version of the
YAST algorithm (the MYAST) for the principal and minor eigen-
vector extraction. The MYAST is easy to implement and it reaches
the performance of the expensive SVD algorithm. Then, we proved
theoretically the numerical instability of the YAST algorithm and
we proposed a stabilized version using the PGS technique. The re-
sulting algorithm becomes more stable than YAST and has a lower
computational cost.
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Fig. 1. Principal vector estimation with (r = 1, n = 4)
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Fig. 2. Minor vector estimation with (r = 1, n = 4)
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