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Abstract. In this paper we propose a new criterion, based on Minimum
Description Length (MDL), to estimate an optimal number of clusters.
This criterion, called Kernel MDL (KMDL), is particularly adapted to
the use of kernel K-means clustering algorithm. Its formulation is based
on the definition of MDL derived for Gaussian Mixture Model (GMM).
We demonstrate the efficiency of our approach on both synthetic data
and real data such as SPOT5 satellite images.

1 Introduction

We are interested in knowledge extraction from a SPOT5 satellite image database.
One of our tasks is to find categories of images and to classify them without prior
knowledge on the type or number of these categories. Considering the amount
of available data we are concerned in using simple, fast and efficient clustering
algorithms. K-means is one of them but suffers from several drawbacks: i) it
cannot adapt to any cluster shape ii) the knowledge of number of clusters is
necessary iii) the result strongly depends on the initialization process.

To answer the first problem, a classical solution is to use Kernel K-means al-
gorithm [9] [14]. During the last decade kernel-based algorithms attracted lots of
researchers who applied them to various tasks such as machine learning, pattern
recognition, computer vision, etc. The success of these approaches is related
to the fact that using a kernel (see definition and properties of kernel in [13]
[14]) is equivalent to defining a feature space transform; the resulting feature
space is tuned to simplify the classification process and allows efficient classical
algorithms (like K-means) processing. This feature space depends on kernel pa-
rameter(s); several approaches are proposed in the literature to determine the
optimal parameter(s) [3]: in this work we use one kernel with fixed parameter.

To answer the second and third problems we propose to use a standard
approach such as selection of a clustering solution obtained using different num-
ber of clusters and initializations. This selection is based on the minimum of
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our KMDL criterion. It allows us to stabilize clustering results and to have a
smoothed KMDL curve.

Our proposition about using MDL criteria to determine the number of clus-
ters is based on several arguments. Firstly, MDL is able to give access to an
optimal code or an optimal data representation for a certain model of data [10],
e.g. for GMM in our case. Secondly, this criterion works well when lots of data
are available [6]. This is our case because we have a huge storage of satellite im-
ages. Finally, in the literature we have not found previous works about applying
MDL criteria to Kernel K-means to find the optimally associated number of clus-
ters. It gives us the motivation to formulate MDL criteria for Kernel K-means
clustering.

We revise the main definition of MDL for GMM and we show a simplification
of MDL through the complete log-likelihood of GMM in Sect. 2. The objective
function for Kernel K-means is presented in Sect. 3. Then we formulate KMDL
in Sect. 4 using the simplified MDL for GMM. Results on synthetic data and real
satellite images are presented in Sect. 5 and Sect. 6, respectively. Conclusions are
in Sect. 7.

2 MDL for the Gaussian Mixture Model

2.1 Gaussian Mixture Model

The finite mixture model is widely used to represent data in statistical pattern
recognition. Let X = {X1, ..., XI} denote the data set of samples Xi, where each
Xi is a vector Xi = (Xi1, ..., XiD) of feature values Xid. The set X is modelled
by a finite mixture model consisting of two parts [10]:

1. the prior probability P (Xi ∈ j | Θj) = αj that every sample Xi is a member
of only one mixture component j, (j = 1, ..., J), where αj = nj/I, (nj

denoting the number of samples belonging to the mixture component j);
2. the conditional probability modelling each component j by the parameter-

ized probability density function (pdf) Pj(Xi | Θj), where Θj denotes the
parameter set.

Let Pj(Xi | Θj) denote the class-probability of observing the sample Xi con-
ditional to Xi belonging to the component j. The finite mixture model expresses
the probability of observing the sample Xi as a sum of pdf:

P (Xi | Θ) =
J∑

j=1

αjPj(Xi | Θj) . (1)

An important sub-class of mixture models is the multivariate Gaussian dis-
tribution, based on a Gaussian class-distribution:

Pj(Xi | Θj) = N (Xi | µj , Σj) =
e−

1
2 ((Xi−µj)

T Σ−1
j (Xi−µj))

(2π)D/2 | Σj |1/2
, (2)
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where µj and Σj are the mean and the covariance matrix of the jth component,
respectively. Estimates of the jth mean and covariance matrix are classically
obtained as:

µj =
1
nj

nj∑

l=1

Xl , (3)

Σj =
1
nj

nj∑

l=1

(Xl − µj)T (Xl − µj) , (4)

where Xl⊆j.
With the assumption that the data instances Xi are independently dis-

tributed, the joint data probability (probability of observing data set X or like-
lihood function) is the product of the individual instance probabilities:

P (X | Θ) =
I∏

i=1

J∑

j=1

αjPj(Xi | Θj) . (5)

The Expectation-Maximization (EM) algorithm [10] can be used to estimate the
optimal parameters Θj of GMM. Without loss of generality we say that the jth

component of GMM models the jth cluster.
The purpose of clustering data is to simplify their representation in the fea-

ture space by replacing each sample by a generic class which is likely to express
all the properties of the samples. However, when substituting a sample by its
model, an error is introduced. The more complex the model, the less the error.
The ”model complexity” is well expressed by the number of parameters needed
to build the model. In the mixture of Gaussians case where every cluster is given
by its mean (3) and its covariance matrix (4), the more clusters are used, the
more complex the model is, and the less error between data and model. A method
to choose the optimal number of clusters consists in selecting the number that
most efficiently codes the data, i.e. that provides the shortest description when
representing the samples using models and the errors to the model. This method,
named Minimum Description Length (MDL), was proposed by Rissanen [2], [11],
[12]. MDL is defined as [12]:

min
k,Θ

−log(P (X|Θ)) +
1
2
klog(I) , (6)

where log(P (X | Θ)) is the log-likelihood of the mixture model (5) and 1
2klog(I)

is a penalty function with k parameters.

2.2 MDL for the Complete Log-likelihood of GMM

Let see the log-likelihood for the mixture of Gaussian distributions in more
details. To complete the likelihood P (X|Θ) (5) of the finite mixture expressed
by (1), we should introduce the hidden variable z which attribute any sample
to a class: z = {z1, ..., zi, ..., zI} [4] [5]. Label zi is coded as a binary vector
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zi = [zi1, ..., zij , ..., ziJ ], where zij = 1 if sample i belongs to cluster j, or 0 if
not. Using (5), the complete log-likelihood log(P (X, z|Θ)) becomes [4] [5]:

log (P (X, z | Θ)) = log




I∏

i=1

J∑

j=1

zijαjPj(Xi | Θj)


 =

I∑

i=1

zij log(αjPj(Xi | Θj)) .

(7)

By substituting the multivariate Gaussian distribution Pj(Xi | Θj) (2) in the
complete log-likelihood (7), we obtain:

I∑

i=1

zij log(αjN (Xi | µj , Σj)) =
I∑

i=1

zij log

(
αj

e−
1
2 ((Xi−µj)

T Σ−1
j (Xi−µj))

(2π)D/2 | Σj |1/2
)

)
=

I∑

i=1

zij

(
log

(
αj

| Σj |1/2

)
− D

2
log(2π)− 1

2
(
(Xi − µj)T Σ−1

j (Xi − µj)
))

=

1
2

I∑

i=1

zij log

(
α2

j

| Σj |

)
− 1

2

I∑

i=1

zijD log(2π)

−1
2

I∑

i=1

zij

(
(Xi − µj)T Σ−1

j (Xi − µj)
)

.

(8)
In this equation, some terms are constant:

−1
2

I∑

i=1

zijD log(2π) = −1
2

J∑

j=1

njD log(2π) = −1
2
ID log(2π) = const1 . (9)

Moreover, to calculate the matrix Σj (4) the only samples from the cluster j are
needed, therefore:

−1
2

I∑

i=1

zij

(
(Xi − µj)T Σ−1

j (Xi − µj)
)

= −1
2

J∑

j=1

njDI = −DI2

2
= const2 .

(10)
Then, the complete log-likelihood log(P (X, z|Θ)) (7) may be written as:

1
2

I∑

i=1

zij log

(
α2

j

| Σj |

)
+ const =

1
2

J∑

j=1

nj log

(
α2

j

| Σj |

)
+ const . (11)

In the right part of the MDL definition (6), k is the model free parameters
number. In case of Gaussian mixture model free parameters are:
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– J − 1 parameters for J weights αj (since
∑

αj = 1);
– D parameters for each mean µj ;
– D(D + 1)/2 parameters for each covariance matrix Σj .

Therefore, the number of free parameters is:

k = J − 1 + J(D + D(D + 1)/2) = J(D2 + 3D + 2)/2− 1 . (12)

Using the complete log-likelihood (11) and the free parameter number of (12),
the description length (6) of Gaussian mixture model with J clusters is:

−1
2

J∑

j=1

nj log

(
α2

j

| Σj |

)
+ (J(D2 + 3D + 2)/2− 1)log(I)/2 + const . (13)

The const term having no influence on MDL for different cluster numbers and
as αj = nj/I, we may minimize:

Λ = −
J∑

j=1

nj log

(
n2

j

| Σj |

)
+ J(D2 + 3D + 2)log(I)/2 . (14)

Equation (14) shows that a quality of clustering only depends on the weighted
determinants of the covariance matrices which express the square errors between
data and model. Estimating the covariance matrices Σj and the populations of
each cluster nj , we can draw the MDL curve Λ as a function of the cluster
number J . The minimum on this curve indicates the optimal description of the
data set X, i.e. the minimum error with the minimum model complexity.

The MDL criterion (14) may be applied to any clustering method: to EM,
which, as said before, provides the best clustering, given a number of clusters, or
to simpler algorithms - like K-means which may be seen as a simplified version
of EM [10], or Kernel K-means, which is an extension of K-means. Based on this
remark, we propose first to define an MDL optimization of Kernel K-means.

3 Kernel K-means Algorithm

In the case where data have a complex structure (e.g. data are non linearly
separable), a direct application of K-means is not suit because of its tendency
to group data into globe-shaped clusters [10]. To solve this problem, data may
be mapped by a transformation into a new feature space where samples are
linearly separable [14]. The transformation is defined by a kernel K(·) as the
inner product:

K(Xk, Xl) = 〈φ(Xk), φ(Xl)〉 , (15)

where φ(·) is a mapping of X to an inner product feature space [14] and k, l take
values [1, ..., I]. The simplest kernel is a linear:

K(Xk, Xl) = XkXl , (16)
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and one of the frequently used kernels is the Gaussian kernel:

K(Xk, Xl) = e
−‖Xk −Xl‖2

2σ2
, (17)

where σ is a kernel parameter. Kernel K-means minimizes an optimization func-
tion on the transformed data space [14]:

min
J∑

j=1

∑

k⊆j

‖ φ(Xk)− φ̄(Xk) ‖2 , (18)

where φ̄(Xk) = 1
nj

∑
Xk⊆j φ(Xk) is the jth cluster mean. One of the advantages

of using the kernel function is that we can solve (18) (e.g. for the Gaussian
kernel (17) without the explicit representation of function φ(·). The distance
‖ φ(Xk)− φ̄(Xk) ‖2 may be calculated with the inner product 〈φ(·)φ(·)〉. With
this objective, the standard steps of K-means algorithm are applied [14]. As can
be seen Kernel K-means algorithm is equal to K-means when the linear kernel
(16) is used.

4 Kernel MDL

Taking advantage of the formulation of (14), we propose to derive now a more
general form for MDL.

From (14) it has been said that the simplified MDL is depending on the
determinants of the | Σj | matrices which describe the model to data error. This
error may be determined in the original space X, as well as in the transform
space after kernel transformation. Therefore, we propose to define a general
MDL, similar to (14), as:

−
J∑

j=1

nj log

(
n2

j

Dist(Xk, Xl|k, l⊆j)

)
+ P (J,D, I) (19)

where Dist(Xk, Xl|k, l ⊆ j) is the error function for sample Xk being represented
by the jth cluster (for instance, the distance between Xk and the mean of cluster
j) and P (J,D, I) is a penalty function.

The simplest error function is the Euclidean distance which may be calculated
using the kernel K (15). The sum-squares distances from patterns to their corre-
sponding jth cluster centroid was presented in [14] as the optimization function
for Kernel K-means:

Sj =
1

njD

∑

k⊆j


K(Xk, Xk)− 1

nj

∑

l⊆j

K(Xk, Xl)


 . (20)

In case where K is the linear kernel, S equals the variance in the original
space X as expressed by (16). To obtain the complete MDL formulation of (14),
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supposing the variances of a cluster equal for each dimension, we may rewrite
the determinant of covariance matrix Σj as:

| Σj | = SD
j . (21)

As the error Sj (20) may be derived for any kernel, e.g. Gaussian (17), we may
substitute the determinant (21) in the MDL expression (14) to obtain the kernel
MDL:

KMDL = −
J∑

j=1

nj log

(
n2

j

SD
j

)
+ J(D2 + 3D + 2)log(I)/2 . (22)

For the following experiments the same penalty function as in (14) have been
used. The derivation of an alternative penalty is not addressed in this paper.
One of the main advantages of this formulation lies in that the explicit mean
of a cluster j is not needed. This point is important when this mean has no
physical meaning, as it is often the case for non-convex clusters. To calculate
MDL criterion for the mixture of Gaussians in the original space X the distance
between samples and the nearest cluster centroid must be calculated. Problems
may appear in case of data distributed on clusters with holes as in Fig. 1-d.

5 Experiments with synthetic data

We tested our approach on synthetic data before applying it to real data such
as satellite images. The simplest and often used example of synthetic data are
using Gaussian distributions where each distribution is a cluster. When working
on satellite images, we expect to have a large number of clusters because of the
great variety of possible scenes. Therefore we demonstrate the potential of the
method with a rather large number of clusters, larger than in the usual literature
[8]. We make use of 20 Gaussian distributions as presented in Fig. 1-a with 100
samples per cluster. EM algorithm run 20 times for each cluster number, with a
different random initialization. Two curves are presented in Fig. 1-b, showing the
results of clustering using either MDL (14) or KMDL (22) with Gaussian kernel
and parameter σ = 2. For all curves of KMDL a constant is added to better
visualise with MDL. As expected, both curves exhibit a well defined minimum,
with an optimal number of clusters equals to 20.

The same experiments were done for another toy example having clusters
with a complex structure. Points of this cluster are distributed on a circle. Here
again, EM-algorithm and Kernel K-means with Gaussian kernel (σ = 0.5) have
been used. Optimal results are presented Fig. 1-c and Fig. 1-d. From Fig. 1-e,
it may be observed that EM with MDL detects more clusters than expected
because of the difficulty to linearly separate a cluster with a complex structure
(also seen in Fig. 1-c where the circle is split into 4 clusters). On the contrary
Kernel K-means with the Gaussian kernel optimally separates the mixture in
Fig. 1-d, and KMDL determinates the true number of clusters.

The last experiment concerns two real world data sets Iris and Thyroid taken
from the UCI machine learning repository. Iris data contain 3 classes, 50 samples
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Fig. 1. Synthetic examples. In a: synthetic example 1 with 20 clusters. In b: results
on clustering example 1. Detection of the optimal number of clusters by MDL (14)
(solid line) and by KMDL (22) (dashed line). In c: example 2 with a circular cluster as
clustered by EM. In d: the same as clustered by Kernel K-means. In e: curves drawn for
example 2. In f: Optimal number of clusters for Thyroid and Iris data. MDL (14) (solid
line with points) and KMDL1 (22) with σ = 5 (solid line with diamonds) propose 3 as
an optimal number of clusters for Thyroid data set. KMDL2 (22) with (16) (dashed
line with stars) and KMDL3 (22) with (17) σ = 4 (dashed line with squares) propose
3 as an optimal number of clusters for Iris data set.
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per class and 4 features per sample. The minimum of KMDL (22) with the
linear kernel (16) and the Gaussian kernel (17) determines the true number of
clusters as three Fig. 1-f. Thyroid data have 3 classes: 150, 35 and 30 samples
per class, respectively, and 5 features per sample. Both criteria KMDL (22) with
the Gaussian kernel (17) and MDL (14) determine the true number of clusters
as three Fig. 1-f.

From this set of experiments, several practical rules have been observed. At
first, it seems that it is better to start from high values of cluster number to
progressively reduce it in order to have a less chaotic behaviour of the curve.
Then we observe that the MDL is often unequivocal, allowing to use speeding
search techniques like dichotomy for instance.

6 Experiments with real data: satellite images

6.1 The experiment

In the framework of the CNES-DLR Competence Centre we are interested in
information extraction and image understanding for Earth observation with high
resolution images [1]. In order to reduce the amount of information carried by
an image, we propose to categorize satellite images. To avoid bias and omissions
due to human expertise, we investigate unsupervised image category extraction.
In this scope we consider each cluster as a category. The optimal number of
clusters obtained from a given set of images is therefore an important clue which
cannot be arbitrarily fixed. The previous approach (with simplified MDL (14)
and KMDL (22)) will be our guideline to determine this number.

We are working with images from the SPOT 5 satellite, they are panchro-
matic images with a ground resolution of 5m per pixel. Each original image is
very large (12000 × 12000 pixels) and quite complex; therefore we extract smaller
images (1024 × 1024 pixels) with rather homogeneous content on urban areas.
These (1024 × 1024) images will, from now on, be named ”the images” since
the original large images will no longer be used in the rest of this document.
The images represent 6 cities: Copenhagen (Denmark), Istanbul (Turkey), Los
Angeles (USA), La Paz (Mexico), Madrid (Spain), Paris (France). We assume
that because of geography, culture and history each image has different surface
textures. Sub-samples of images are presented in Fig. 2. From these images, we
form a database of samples by cutting each image into 400 samples, each of size
64 × 64 pixels. Samples overlap by 13 pixels. The composed database contained
2400 samples, 6 cities and 400 samples per city. From each sample, 202 features
have been extracted: statistics issued from Quadratic Mirror Filters filtering,
statistics from Gabor filters, statistics from Haralick co-occurrence matrix de-
scriptors and geometrical features. 15 features were automatically selected from
the initial features using unsupervised feature extraction [9].

The data matrix of size 2400 × 15 is clustered with two algorithms: EM-
algorithm [10] with GMM and Kernel K-means [14] with the Gaussian kernel
(17) and parameter σ = 15. 50 random initializations were performed and the
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a b c

d e f

Fig. 2. Samples of SPOT5 images (64 × 64 pixels per sample) : a - Copenhagen (Den-
mark), b - Istanbul (Turkey), c - Los Angeles (USA), d - La Paz (Mexique), e - Madrid
(Spain), f - Paris (France). c©Copyright CNES

best clustering was chosen. In our experiments the data were normalised in a
such a way that their mean equals 0 and the standard deviation of each column
is 1, so that the weight of each feature be the same.

µd =
1
I

I∑

i=1

Xid , (23)

σd =

√√√√1
I

I∑

i=1

(Xid − µd)
2
, (24)

X̃id =
Xid − µd

σd
(25)

Setting in (17) σ as the data dimension (σ = D), we obtain the curves shown in
Fig. 3 for MDL and for KMDL (22). For EM-algorithm the optimal number of
clusters is 9 whereas for Kernel K-means it is 11. We may present these optimal
clusterings as distribution matrices (as in Tables 1 and 2 respectively), where
each column corresponds to a city in the same order as in Fig. 2, and each line
represents a cluster.

6.2 Discussion

In the ideal case, where all the cities would be perfectly different, we could con-
sider that the clustering is good if each cluster consists of one city only. From
the classification matrices Tables 1 and 2 we can see that the EM-algorithm and
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Fig. 3. Detection of the optimal number of clusters by MDL (solid line) and KMDL
(dashed line) criteria for SPOT 5 image textures.

Kernel K-means give almost the same clusters. But EM-algorithm finds cluster 4
as a mixture of two cities (Los Angeles and Paris), although these cities exhibit
rather different structures Fig. 2. The classification matrix of Kernel K-means
(Table 2) shows that these two cities are separated (clusters 3 and 8). Even if
we set the number of clusters to 12 for the EM-algorithm the confusion between
these cities remains. This confusion disappears when the number of clusters is
15, but it will not be an optimal clustering in terms of MDL. We consider that
Kernel K-means better clusters data than EM-algorithm because clusters better
correspond to cities. Some texture examples of clustered cities (4 textures per

Table 1. Clustering matrix for 6 cities with EM-algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
P

1 2 3 2 4 155 6 172
2 117 14 0 0 0 0 131
3 86 131 1 0 5 6 229
4 6 3 253 20 24 251 557
5 131 221 0 0 0 0 352
6 0 0 5 256 7 32 300
7 28 11 7 20 32 48 146
8 30 17 132 4 177 56 416
9 0 0 0 96 0 1 97

400 400 400 400 400 400

cluster) by Kernel K-means are presented in Tables 3 and 4. The samples clos-
est from the centre of the corresponding clusters have been chosen. Each row of
Table 3 has 4 texture examples for clusters from 1 to 6 and Table 4 for clusters
from 7 to 11. We analyze visually this examples using classification matrix in
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Table 2. The first and sixth rows of Table 3 correspond to 4 textures of La Paz.
These clusters show two different surfaces for this city. The second row has sam-
ples from every city and corresponds to large places which are likely to be similar
almost everywhere around the world. The third column is a typical examples of
Paris city blocks and we see from the classification matrix in Table 2 that cluster
3 collects nearly all samples of this city. Cluster 4 has mixed samples from Is-
tanbul and Copenhagen with a domination of Istanbul (see cluster 4 in Table 2).
These textures represent both urban and rural areas. Cluster 5 has also similar
urban textures from these cities but with a domination of Copenhagen. Cluster
7 in Table 4 has mainly textures from Madrid but also from other cities. Los
Angeles is represented by cluster 8 with its typical square streets. Half textures
of Madrid are represented by cluster 9. Dense areas of Istanbul correspond to
cluster 10. Cluster 11 has textures which contain wide roads. From this early

Table 2. Clustering matrix for 6 cities with Kernel K-means algorithm

Cities

Clusters Copenhagen Istanbul Los Angeles La Paz Madrid Paris
P

1 0 0 0 94 0 1 95
2 28 10 6 22 31 49 146
3 0 0 19 24 9 259 311
4 67 123 1 0 4 6 201
5 112 27 0 0 1 0 140
6 0 0 4 252 5 28 289
7 20 16 72 4 172 34 318
8 13 2 296 0 35 19 365
9 2 2 2 4 142 4 156
10 114 208 0 0 1 0 323
11 44 12 0 0 0 0 56

400 400 400 400 400 400

interpretation of classification results, we are quite satisfied by the way the tex-
tures have been grouped and the homogeneity of the obtained classes. Results
of clusterings in Tables 1 and 2 show that several clusters have redundant in-
formation. It means that for different clusterings there are clusters which have
the same samples. It will be useful for data mining to combine samples that
always belong to common clusters that may reduce redundant information and
find some interesting particular clusters in data [7].

7 Conclusions

In this paper we proposed a new criterion called Kernel MDL (KMDL) to es-
timate the optimal number of clusters for the Kernel K-means algorithm. This
criterion is derived from a simplified formulation of the classical MDL for the
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Table 3. Texture examples of clusters, Kernel K-means

Clusters Texture examples

1

2

3

4

5

6
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Table 4. Texture examples of clusters, Kernel K-means

Clusters Texture examples

7

8

9

10

11
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Gaussian Mixture Model. Both KMDL and the simplified MDL allow to deter-
mine the optimal number of clusters using simply the error function between
the data and the model of clusters. To adapt the criterion to the Kernel K-
means algorithm we defined this error function as the corresponding optimized
criterion.

The error can be calculated on the kernel function with the Kernel K-means
algorithm. The advantage of this approach is that Kernel K-means can linearly
separate data which are non linearly separable in the original space. As we can
see from experimental results the two criteria MDL and KMDL work well and
give optimal numbers of clusters each for its own algorithm. Kernel K-means
algorithm with KMDL shows superior results than EM with MDL for synthetic
data as well as real data.

Acknowledgements: This study1 was done with the financial support of
Centre National d’Etudes Spatiales (CNES-France). The authors1 would like to
thank M. Datcu and O. Cappé for fruitful discussions.
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