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Abstract

An algorithm for combining results of different cluster-
ings is presented in this paper, the objective of which is
to find groups of patterns which are common to all clus-
terings. The idea of the proposed combination is to group
those samples which are in the same cluster in most cases.
We formulate the combination as the resolution of a linear
set of equations with binary constraints. The advantage of
such a formulation is to provide an objective function for
the combination. To optimize the objective function we pro-
pose an original unsupervised algorithm. Furthermore, we
propose an extension adapted in case of a huge volume of
data. The combination of clusterings is performed on the
results of different clustering algorithms applied to SPOT5
satellite images and shows the effectiveness of the proposed
method.

1. Introduction

In recent years many different imaging sensors for Re-
mote Sensing have appeared, delivering a huge amount of
digital images. Experiments have shown that a small part of
any satellite image may be captured in a vector of measures
which expresses the main properties : the multi spectral or
radiometric content, the textural properties, the structural
properties, etc. Thus, this small image part is well repre-
sented as a point in a high dimensional space. We are inter-
ested in exploring this space in an unsupervised way. Dif-
ferent pattern recognition methods provide different inter-
pretations of this space. For instance, partitional clustering
methods look for the very dense parts of the space and ag-
gregate the samples around them. Hierarchical approaches
do not look for a partition but for a tree-like structure be-
tween clusters, which reflects different topological relation-
ships [6]. We want to benefit from the diversity of these
points of view to code different aspects of the space and to
better reflect the complex information contained in the data.

Clearly, the different space representations are redundant
but each of them can give some specific new information
about data. Some approaches using several clusterings to
make a final decision have been presented in [1, 2, 5, 8, 10,
12, 13, 14]. The main concern is how to combine them to
obtain a final clustering solution. The contribution of this
paper is to address this problem.

A review a some of the existing approaches is given
in Section 2, the problem of combination is formulated in
Section 3, then Section 4 describes the proposed algorithm
and its improvements for real data application. Results on
SPOT5 satellite images are presented in Section 5.

2. Related works

We give a short review of several combination meth-
ods and indicate some of their limits for our application.
Some of the approaches for combining different clustering
results were proposed in [5, 12]. Fred and Jain [5] use
a co-association matrix to represent clusterings, a method
that we will also adopt: each element of this square matrix
has a mean value that corresponds to the frequency of co-
occurrence of two elements in the same cluster. At the first
step K-means is used as a clustering algorithm with a ran-
dom initialization as well as a random number of clusters
and it is run several times. A hierarchical clustering with a
single-link method is then applied to the co-occurrence ma-
trix. The final number of clusters is taken as the one that
corresponds to the longest lifetime on the dendrogram of
the hierarchical algorithm.

The method of Fred and Jain [5] is well adapted when
the number of clusters is approximately known a priori.
If the number of clusters is sequentially changed from 2
to the number of samples, the co-association matrix will
change towards a near diagonal matrix with small values
out of diagonal. So, the more clusters used to build the co-
association matrix the more clusters result from the com-
bination. The same kind of experiments but with another
combination scheme is made by Topchy et al. in [14].



The problem of clustering combination is considered as
a finite mixture model of clustering ensembles and it is
solved according to the maximum likelihood criterion by
the Expectation-Maximization algorithm.

Several combination methods need prior parameters.
Strehl and Ghosh [12] use a mutual information-based ob-
jective function to combine clusterings. This procedure
needs a predetermined number of clusters; its complexity
is exponential. In [10] the authors set a priori parameters to
combine clustering results. Ayad and Kamel [1] propose to
combine clusterings generated by K-means algorithm with
bootstrapping for different subsets of input data with the
same number of clusters. The labels of clusterings are used
to obtain a matrix of pairwise distances between clusters. A
group-average hierarchical clustering algorithm is applied
to group this matrix. An a priori fixed number of final clus-
ters should be set. In [2], an agreement matrix is used to
combine different clusterings. Assigning an element to a fi-
nal cluster is reestimated to optimize an objective function
subject to the constraint that clustered elements belong only
to one final cluster. A fixed number of clusters is used for
the final combination. Lange and Buhmann [7] optimize a
probabilistic model of the co-association matrix. The EM -
algorithm optimizes model parameters and needs O(I2) op-
erations for each iteration, where I is the number of data
samples. It makes difficult to apply this approach to a high
volume of data. Many of the presented methods need to
know a priori about data to combine clusterings or to set
manually some parameters for a combination scheme. This
provided us with the motivation to pose the problem of com-
bination in a form which will not depend on any parameter
and a priori knowledge. Our formulation of the problem is
based on a co-association matrix. It allows us to process a
huge volume of data as well as clusterings.

3. Problem statement

Let us consider the frequent case when we have no infor-
mation on the final clustering that we want to derive from a
set of initial clusterings. In order to determine the common
clusters within each clustering, we examine which samples
are associated. This is done by collecting the co-association
matrix Ap. Let P be the number of initial clusterings. For
each clustering p = 1, ..., P , A is a symmetric binary square
matrix of size I (I equals the number of samples) where
each single element Auv , (u, v = 1, .., I) is:

Ap
uv =

{
1, if u and v are in the same cluster,
0, otherwise.

(1)

We may also describe the pth clustering by a binary rectan-
gular matrix Bp with I rows and Jp columns (Jp equals to

the number of clusters in pth clustering) so that:

Bp
uj =

{
1, if a sample u ∈ j,
0, otherwise.

(2)

where u = 1, ..., I , j = 1, .., Jp. Bp is called a partition
matrix. We verify that:

Ap = BpBp′, (3)

where ′ denotes the matrix transposition. For several clus-
terings Jp, we can compute the average matrix A as:

A =
1
P

P∑
p=1

Ap =
1
P

P∑
p=1

BpBp′. (4)

For large P , we may say that two elements u and v have a
probability Auv to belong to the same cluster.

Let us denote Bs a consensus clustering. Our goal is to
obtain such a clustering Bs from the matrix A. We may
compute the square I×I matrix D as

D = BsBs′. (5)

Such a D would be a binary co-association matrix. In any
clustering problems, with P different partitions, we may ob-
serve the matrix A, but the ideal binary partition matrix Bs

is unknown as well as D.
We propose to formulate the problem of combination as

looking for the best partition Bs from the knowledge of the
co-association matrix A Eq. (4), which minimizes a square
error:

E =
I∑

u=1

I∑
v=1

(
I∑

r=1

(Bs
urB

s
rv

′)−Auv

)2

=

I∑
u=1

I∑
v=1

Duv(1− 2Auv) +
I∑

u=1

I∑
v=1

A2
uv,

subject to Bs′Bs = I,
I∑
i

Iii = I, Bs
uv ∈ {0, 1},

(6)

where I is a diagonal I×I matrix with diagonal elements
that correspond to cluster sizes. Proposed quadratic objec-
tive function Eq. (6) has a convex form for all possible con-
sensus clusterings, contrary to a mutual information crite-
rion as proposed in [5, 12].

4. Proposed solution

4.1 Combination algorithm

We consider the matrix A as the similarity matrix. To
combine different clustering results and find Bs for the min-
imum of Eq. (6) we propose a single-link based agglomera-
tion algorithm [6]. This algorithm has been experimentally



shown as giving very good results when compared to other
hierarchical algorithms like average-link, Ward, complete-
link, etc., [5]. This proposition is based on the previous
remark that the general term Auv of the matrix A may be
considered as the probability of 2 samples belonging to the
same cluster. Of course we do not know to which cluster u
and v belong and how many clusters exist, but it is reason-
able to group in the same cluster elements of A that have the
highest linkage probability. The single-link approach is also
chosen because it forms clusters on a connectedness crite-
rion [6]. The Least Square Error Combination algorithm
(LSEC) that we propose to solve Eq. (6) may now be given.

LSEC-algorithm

Step 1 Set Bs as the identity matrix, i ← 1 and compute

the error E(i) ←
I∑

u=1

I∑
v=1

(
I∑

r=1

(Bs
urB

s
rv

′)−Auv

)2

Step 2 For all pairs (u, v) find indices of maximal proba-
bility of connectedness (r, t) = max{Auv : u, v =
1, ..., I, u �= v}

Step 3 If Art = 0, then Bs is the optimal partition, stop.

Step 4 Set Art ← 0, Bh ← Bs. Merge the rth

and tth clusters by 4 a) summing column k to r
Bh

kr ←
(
Bh

kr + Bh
kt

)
and 4 b) setting to zero column

k: Bh
kt ← 0, where k = 1, ..., I .

E(i+1) ←
I∑

u=1

I∑
v=1

(
I∑

r=1

(Bh
urB

h
rv

′
)−Auv

)2

if E(i+1) ≤ E(i), then i ← i + 1, Bs ← Bh, A ←
A. ∗ (1−BsBs′).
Go to Step 2

The expression A← A.∗(1−BsBs′) in Step 4 is needed to
delete connection between elements belonging to the same
cluster and to keep the other connections unchanged, where
’.∗’ is the pointwise product of matrices. The optimal num-
ber of clusters is found when the error E Eq. (6) has its
minimum.

An experiment of a combination was carried out on syn-
thetic data with Jp = 30 clusters of sizes from 1 to 30 sam-
ples. 20% of cluster labels were changed randomly with
uniform noise. The matrix Bp Eq. (2) is constructed for
each of P = 40 noisy clusterings. The matrix A Eq. (4)
was estimated by Bp, p = 1, ..., P . After the combination
of A by LSEC-algorithm all the clusters were found exactly.
Matrix A is computed in I(I − 1)/2 iterations. To combine
clusters I iterations are needed where the error E is calcu-
lated in I(I − 1)/2 iterations for each combination. The
time complexity of such an algorithm is approximately:

O(I2 + I3). (7)

4.2. Initialization

Our combination algorithm begins by a simple initializa-
tion of the matrix Bs as the identity matrix. A good initial-
ization can accelerate the convergence of the algorithm. Let
us consider a gradient like method which iteratively modi-
fies Bs and minimizes the error E, Eq. (6). An optimiza-
tion technique may be in a random selection of one sample
q, and its allocation to a cluster j instead of its initial cluster
j0. Let Bj0 and Bj be partitions before and after the alloca-
tion of sample q respectively. The variation of the criterion
E Eq. (6) is:

∆E(q|j0 → j) =
I∑

u=1

I∑
v=1

(Dj
uv −Dj0

uv)(1− 2Auv), (8)

where Di = BjBj ′ and Dj0 = Bj0Bj0 ′ as in Eq. (5). The
change is accepted if and only if ∆E(q|j0 → j) is not posi-
tive, and the process is iterated until no change improves E.
As the variation of the error E Eq. (8) depends only on the
difference between Dj

uv and Dj0
uv it could be rewritten as:

∆E(q|j0 → j) = 2
∑

k

(1−2Aqk)−2
∑

l

(1−2Aql), (9)

where index k runs for indexes of samples of cluster j with-
out the index q, and l for indexes of samples of cluster j0
without the index q. Let us look at the initial step when all
samples are alone in their cluster: matrix Bs is the identity
matrix. We move sample q to the cluster, which minimizes
the error Eq. (9). In this case cluster j0 has only one sam-
ple q and l is an empty set. Then the error Eq. (9) has the
following form:

∆E(q|j0 → j) = 2(1− 2Aqk). (10)

As each possible cluster j has only one sample, then j
equals k. The minimization of the error Eq. (10) is equiv-
alent to finding the maximum of Aqk, excepting diagonal
elements of A. Using the nonpositiveness condition of the
error variation Eq. (10), the necessary condition to examine
points Aqk is:

Aqk ≥ 0.5. (11)

The condition (11) means that two points could be com-
bined if they are in the same cluster in more than half of the
cases. This optimization procedure is equivalent to building
nearest-neighbour subgraphs. It permits to avoid the stor-
age of the square matrix A. It is very important when we
process a huge amount of data. Points of each subgraph are
assigned to the same cluster. Such clusters form the initial-
ization matrix Bs for LSEC-algorithm which optimizes the
criterion Eq. (6).



4.3. Improvements for real data

In the proposed algorithm we should compute matrix A
at Step 4. It makes difficult to apply the algorithm for real
applications such as images or large database clustering, be-
cause of the dimensional issue of matrix A. In image pro-
cessing we want to cluster an image of size n×n on a pixel
basis thus with n2 samples, we have to build a matrix A of
size n2 × n2, i.e. with n4 terms. It produces a huge volume
of data for large n and can not be processed in a reason-
able time for our experiments. However, we can find the
solution to this problem in analyzing the error of combina-
tion Eq. (6). Instead of calculating the error at each step of
the optimization procedure and comparing several errors,
we may use the optimization error gradient, and follow a
descending approach as an optimization strategy. The er-
ror gradient will very much reduce the computation time as
well as the volume of stored and processed data.

We present the principle on the generic term of the iter-
ative process. We want to find an error gradient ∆E after
a combination of two clusters. Let k and l be indexes of
samples of two clusters j0 and j respectively where nj0 and
nj are their numbers of samples. Let Dj0 be a binary co-
association matrix with two clusters and Dj is a matrix after
combination as in Eq. (5). In this case all elements of Dj

equal 1. Let Ej0 be an error of two clusters and Ej be an
error after their combination as in Eq. (6). We obtain the
difference ∆E between errors Ej , Ej0 by substituting ma-
trices Dj0 and Dj in the error Eq. (8):

∆E = 2nj0nj − 4
I∑
k

I∑
l

Akl. (12)

We find a new condition for the subcluster combination
from the property of the error gradient ∆E ≤ 0 Eq. (12)
which simplifies calculations:

I∑
k

I∑
l

Akl

nj0nj
≥ 0.5. (13)

The interpretation of the property (13) is: two subclusters j0
and j are combined if the sum of their connection probabili-
ties is greater than a half of all possible connections of their
points. We say that the normalized sum of their connections
is greater than 0.5.

Now let see us the results presented in Section 4.2. The
main advantage of the proposition is the good initialization
of our algorithm by clusters of the nearest neighbour graphs.
Let Jg be the number of these clusters. From Jg , we build
a binary matrix Bg according to Eq. (2) and a matrix Bc as
a concatenation of Bp. We derive A by Eq. (4) as:

A =
1
P

BcBc′. (14)

We can find a matrix S of size JgxJg as a sum of connec-
tions between all pairs of clusters Jg:

S = Bg ′ABg =
(

Bg ′Bc

√
P

)(
Bg ′Bc

√
P

)′
. (15)

Let each element Nkl of a matrix N correspond to the num-
ber of all possible connections of two clusters k and l:

Nkl = nknl, (16)

where k, l = 1, ..., Jg and nk,nl are the numbers of samples
in cluster k and l, respectively. Then the normalized sum of
connections of two clusters k and l is the matrix S each
element Skl is expressed as:

Skl = Skl/Nkl, (17)

where 0 ≤ S ≤ 1. The matrix S is a generalization of
condition (13): if Skl ≥ 0.5, two clusters k and l should
be combined. The condition (13) indicates which two clus-
ters should be combined to reduce the error E Eq. (6) for
LSEC-algorithm. The element Art at Step 2 indicates the
order of clusters which should be grouped. It significantly
reduces computations and allows it to be applied to large
volumes of data. The bootstrapping is one of possible ap-
plications of the LSEC-algorithm. For the experiment, we
take randomly 60% of samples with initial clustering labels
and 40% as unclassified labels for which we set the same
label. After 100 times of boosting the combination returns
initial clustering. It could be one of the ways for a parallel
clustering of huge amounts of data.

To compute Jg clusters of the nearest neighbour graph
for the initialization of our algorithm as described in
Section 4.2 we need I(I − 1)/2 operations at maxi-
mum. The combination of these clusters as presented in
Section 4.3 needs Jg − 1 operations, where Jg	I . The
time complexity of optimized LSEC-algorithm is approxi-
mately:

O(I2 + Jg). (18)

Note, that our method only needs about O(I2) operations
at maximum for the complete optimization comparing to
the method in [7] which has near O(I2) operations at each
step of optimization. Moreover, LSEC-algorithm can have a
linear complexity if we take only nearest-neighbours (e.g.,
in image processing applications).

5. Preliminary results

Remote sensed images of Earth Observation (EO) are
used by the experts of various domains (ecology, agricul-
ture, defence, etc.). Along with the image, the expert gets a
description of an image in terms of sensor type, geograph-
ical coordinates, time of reception, spectral bands. This



information gives a rough description of the image, but
it characterizes the whole image and cannot give answers
about the precise content of the image. However, such in-
formation which would describe the exact content in terms
of imagery may facilitate image understanding, discover
new information and improve the management of image
databases. We are interested in applying different cluster-
ing algorithms to analyze satellite images. In this section
we show only preliminary results of clustering combination.
The goal of these experiments is to show that the combina-
tion of different points of view on the data derives common
informative clusters. For the future we will use this combi-
nation as well as relationships between clusters to get a new
information.

We do experiments on clusterings obtained on 6 different
SPOT5 satellite images at a resolution of 5 meters per pixel.
Each image has a size 1024x1024 pixels. They represent
6 cities: Copenhagen (Denmark), Istanbul (Turkey), Los
Angeles (USA), La Paz (Mexico), Madrid (Spain), Paris
(France). We assume that because of geography, culture and
history each image has different surface textures. Samples
of images are presented in Figure 1. We form a database

a b c

d e f

Figure 1. Samples of SPOT5 images: a -
Copenhagen (Denmark), b - Istanbul (Turkey),
c - Los Angeles (USA), d - La Paz (Mex-
ique), e - Madrid (Spain), f - Paris (France).
c©Copyright CNES

of samples by cutting each image in 400 samples, each of
size 64x64 pixels. Samples overlap by 13 pixels in both
directions. It produces a database composed of 2400 sam-
ples, 6 cities and 400 samples per city. From each sam-
ple several features have been extracted: statistics issued
from Quadratic Mirror Filters filtering, statistics from Ga-
bor filters and from Haralick co-occurrence matrix descrip-
tors. 10 features were automatically selected from the 185
initial features using a Fisher selection [3]. Different un-
supervised clustering algorithms were used to cluster a ma-
trix data of size 2400x10: a classical K-means algorithm

[6], Spectral K-means algorithm [9], Kernel K-means algo-
rithm [11], Ward’s hierarchical clustering algorithm [6] and
Expectation-Maximization algorithm with a Gaussian mix-
ture model implemented in AUTOCLASS [4]. To cluster
data we set the fixed number of clusters to 6. We leave the
determination of the optimal number of clusters for each al-
gorithm out of the scope of this paper.

Clustering results are presented as confusion matrices in
Tables 1 a-f. Each column of a table corresponds to a city
in the same order that in Figure 1. Each line represents a
cluster. As the number of clusters was set equal for ev-
ery algorithm an estimation of the clustering’s quality is the
percentage of samples which were wrongly clustered. The
largest number of samples in a cluster was set as the true
clustered and all other samples in this cluster are set as mis-
classified. From the confusion matrices in Tables 1 a-f we
can see that for certain classes different algorithms give dif-
ferent clustering solutions. All clusterings have redundant
information but at the same time their intersections can gen-
erate new informative clusters. To analyze all intersections
between clusters is a difficult task. The combination will
allow us to derive a criterion to find stable clusters and sta-
ble representing samples of each cluster. LSEC-algorithm
was used to combine 5 different clusterings. After initializa-
tion presented in Section 4.2 we obtain 63 subclusters. Pro-
posed combination schema determines the optimal number
of clusters equal to 6 in much less than 1 second. We see
from Table 1 f that the combination generates appropriate
common results with the performance as good as the best
classification alone. Moreover, it provides clusters which
reflect groups simultaneously proposed by different algo-
rithms based on different criteria. The clustering error is
better than such separate clusterings as in Table 1 d or in
Table 1 e. Note, that the higher optimal number of clusters
for each algorithm would decrease this error.

6. Conclusions

In this paper, we proposed an efficient optimization al-
gorithm for the combination of optimal clusterings which
avoids the use of any parameter, does not depend on initial-
isation, determines the number of clusters in an unsuper-
vised way and significantly reduces redundant information.
We showed the objective function and conditions for its op-
timization. Moreover, the method is able to work with very
large set of samples, without facing problems of memory or
time complexity.

The combination of different clusterings is able to im-
prove unsupervised data mining which can produce new in-
formation about data. We did not consider the detection of
the optimal number of clusters for each algorithm in this pa-
per. To analyze data it is possible and even preferable to use
different clustering algorithms. In such a way we can com-



Cities
1 2 3 4 5 6

∑
273 134 0 0 3 0 410
89 246 1 0 5 5 346
30 12 335 0 138 20 535
8 1 2 314 9 6 340
0 7 20 5 226 30 288
0 0 42 81 19 339 481

400 400 400 400 400 400

Cities
1 2 3 4 5 6

∑
237 116 0 0 3 0 356
132 266 1 0 7 6 412
20 8 329 0 105 9 471
11 1 3 327 9 11 362
0 9 36 5 260 46 356
0 0 31 68 16 328 443

400 400 400 400 400 400

Cities
1 2 3 4 5 6

∑
233 113 0 0 3 0 349
139 269 1 0 7 6 422
17 8 333 0 101 2 461
11 1 4 333 9 12 370
0 9 39 5 262 35 350
0 0 23 62 18 345 448

400 400 400 400 400 400
a b c

Cities
1 2 3 4 5 6

∑
297 317 0 0 0 0 614
102 77 3 4 18 13 217
0 0 296 0 7 254 557
0 0 1 325 0 3 329
0 0 12 0 299 0 311
1 6 88 71 76 130 372

400 400 400 400 400 400

Cities
1 2 3 4 5 6

∑
136 91 0 0 0 0 227
205 223 0 0 3 1 432
22 66 1 0 4 6 99
0 0 2 307 8 3 320
0 12 86 5 281 27 411
37 8 311 88 104 363 911
400 400 400 400 400 400

Cities
1 2 3 4 5 6

∑
240 116 0 0 3 0 359
132 266 1 0 5 6 410
17 8 336 0 107 14 482
11 1 2 333 9 10 366
0 9 36 5 262 27 339
0 0 25 62 14 343 444

400 400 400 400 400 400
d e f

Table 1. Confusion matrices and clustering errors for 6 classes. a - K - means algorithm 28%, b - Spectral
K - mean algorithm 27%, c - Kernel K - means algorithm 26%, d - EM - algorithm 38%, e - Ward’s hierarchical
clustering algorithm 42%, f - clustering combination by LSEC-algorithm 26%. Note, that one city is
often distributed in 1 or 2 classes only, reflecting a strong homogeneity in textures.

pare and process different metrics which are not comparable
in an original form. We note, that the number of clusters af-
ter the combination by LSEC-algorithm can differ from the
number of clusters that is in each clustering.

This method can be used for many different applications
of data mining tasks: clustering of nominal data (e.g. text
documents), combination of different clusterings or seg-
mentations of the same scene (e.g. by clustering different
groups of features or clustering time-series images), video
clustering and motion detection. The combination can sta-
bilize clustering result for an algorithm which depends on
the choice of the set of initial parameters.
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