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ABSTRACT
Subspace methods are a powerful tool to recover unknown filters by
looking at the second order statistics of various signals originating
from the same source (also called a SIMO problem). An extension to
the multiple source case is also possible and has been investigated
in the literature. In this paper we show how the blind superresolu-
tion problem can be solved by this tool. We first present the problem
of superresolution as a multiple input multiple output (MIMO) one.
We show that the subspace method can not be used, as is, to recover
the filters affecting each image, and we present two possible solu-
tions, based on the statistical characteristics of the images to solve
this problem. Experiments are shown which validate these ideas.

1. INTRODUCTION

The subspace method has been introduced by [7] and further
investigate in a multitude of papers [1, 5, 6, 8]. The idea of the
method is to observe multiple outputs of various unknown filters
having all the same input. In this case, the second order statistics of
the received signals carry enough information to allow the recovery
of the filters and furthermore the recovery of the original signal.
The main application that authors had in mind was to conceive
wireless protocols in a varying environment, in which no training
sequence have to be transmitted. Indeed, in such an environment,
the filters that affect the signal can change and have to be re-learned
very often. Being able to learn them without the use of a training
signal would be a great asset and could save an important amount
of bandwidth.

Extensions to the case where a multitude of signals are transmitted
through the same channel have been investigated (see [1] or [5]).
In this late approach, a crucial step is the use of a source separation
technique. We investigate the possibility of using the subspace
method in the context of image superresolution. More precisely,
we observe a certain number of images of the same scene acquired
through various filters and subsampled (the subsampling accounts
for the aliasing that occurs in every image acquisition process). We
would like to recover the original image and will do so in two steps.
The first step is to recover the filters using the subspace technique.
The second step is to apply a regularized inversion to the observed
images in order to recover the original scene.

The paper is divided as follows: Section 2 presents the sub-
space method in order to provide the reader with a self contained
overview. Section 3 states the problem of superresolution as a
MIMO one, in which the multiple inputs are the various subsampled
versions of the image (they differ by a translation). This presenta-
tion allows us to understand that:
• The separation of sources is impossible in the case of superres-

olution because the sources are very correlated with each other
and have exactly the same statistics.

• The subspace method provides us with a mixture of the actual
filters. Therefore, we have to implement a method to unmix and

recover the actual filters. In the same time, the subspace method
has allowed us to restrain the search for the filters to a relatively
small affine space.

In section 4 we introduce our method to disambiguate the results
of the subspace method and recover the actual filters. Section 5
presents experimental results for both filters recovery and image
restoration based on this recovery.

2. THE SUBSPACE METHOD

In this section, we present the subspace method such as developed
by [6] for 1-D signals. This method, first introduced by [7],
considers multi output systems. This allows the use of second order
statistics of the outputs, instead of higher order statistics, to identify
blindly the filters. This method, under some mild assumptions,
estimates the noise and signal subspaces from the eigenvalue
decomposition of the autocorrelation matrix of the outputs, and
exploits the orthogonality between this subspaces to identify the
filter coefficients.

The L observed images are modeled as noisy outputs of a FIR sys-
tem H driven by an input image D :

X = H D+B (1)

where :

• X stacks the L observed images X l , l = 1 : L, more precisely, a
vectorized formulation of a processing windowed area, of size
(Ny , Nx), extracted from the observed images :

X l = [xl(Ny −1,Nx −1) xl(Ny −2,Nx −1) · · · xl(0,0)]T (2)

• D is a vectorized formulation of the related windowed area of
the original image :

D = [d(Ny +My −2,Nx +Mx −2) · · · d(0,0)]T (3)

• H stacks the L block-Toeplitz filtering matrices H l associated
with each filters H l

H l =

 hl(0,0) . . . hl(0,Mx −1)
...

...
hl(My −1,0) . . . hl(My −1,Mx −1)

 (4)

i.e. H l =


H l

0 · · · H l
Mx−1 0

. . .
. . .

0 H l
0 · · · H l

Mx−1

 (5)



where H l
j is a Toeplitz matrix of size (Ny , Ny +My −1) asso-

ciated to the jth column of H l :

H l
j =

hl(0, j) . . . hl(My −1, j) 0
. . .

. . .
0 hl(0, j) . . . hl(My −1, j)

 (6)

H l contains Nx rows of blocks and Nx + Mx − 1 columns of
blocks of size (Ny , Ny +My −1).

• and B is a white zero-mean noise,uncorrelated with D.

Let RX denotes the autocorrelation matrix of the outputs X :

RX = E(XXT ) (7)

where E denotes the expectation operator. RX is of size
(LNxNy , LNxNy). From equation (1) we deduce that:

RX = H RDH T +RB (8)

where RD and RB denote respectively the autocorrelation matrices
of the input D and the noise B. We recall that the noise is assumed
to be uncorrelated with the input.

From now on, we make two assumptions:
1. H is full column rank, a necessary condition is

LNyNx > (Nx +Mx −1)(Ny +My −1),
2. and RD is full rank.
We deduce from eq. (8) and thanks to these assumptions, that the
signal part of the autocorrelation matrix RX , i.e. H RDH T , has
rank dH = (Nx +Mx −1)(Ny +My −1).

Through an eigenvalue decomposition of RX , we obtain a subspace
decomposition between the signal and noise subspaces. The
eigenvectors associated with the dH largest eigenvalues of RX span
the signal subspace, whereas the eigenvectors associated with the
LNxNy − dH smallest eigenvalues span its orthogonal complement,
the noise subspace. The signal subspace is also the subspace
spanned by the columns of the filtering matrix H .

By orthogonality between signal and noise subspaces, we deduce
that each vector of the noise subspace is orthogonal to each column
of the filtering matrix. Let Gi denotes an eigenvector associated
with one of the LNxNy −dH smallest eigenvalues of the matrix RX .
The orthogonality condition can be formulated, for i = 0 : LNxNy −
dH −1, as:

GT
i H = 0(1,dH )

(1,LNyNx)(LNyNx,dH)
(9)

Since we have only an estimate of the autocorrelation matrix, the
orthogonality condition is solved using a least square method. This
leads to the minimization of the quadratic form:

q(H ) =
LNxNy−dH−1

∑
i=0

|GT
i H |2 (10)

Thanks to the following structural lemma, we provide an expression
of the quadratic form in terms of the filter coefficients instead of the
filtering matrix :

Lemma 1 : GT
i H = HT Gi (11)

You can find a proof of this lemma in [6].

In this expression, the matrix Gi, for i = 0 : LNxNy −dH −1, de-
notes a matrix of size (LMyMx , dH).
This matrix is constructed as follows:

• Each eigenvector Gi, i = 0 : LNxNy −dH −1 is partitioned into
L vectors Gl

i of size (NyNx , 1).
• Each part Gl

i can be considered as a vectorized formulation of
the matrix: gl

i(0,0) . . . gl
i(0,Nx −1)

...
...

gl
i(Ny −1,0) . . . gl

i(Ny −1,Nx −1)

 (12)

• Let us define the block-Toeplitz matrix G l
i as the “filtering” ma-

trix associated to Gl
i . The term “filtering” points out that we

obtain G l
i from Gl

i in the same way we obtain H l from H l (eq.
(5) and (6)).

• Finally, Gi stacks the L G l
i matrices.

The quadratic form is now expressed in terms of the filter coeffi-
cients:

q(H) = HT QH where Q =
LNxNy−dH−1

∑
i=0

GiG
T
i (13)

The filter coefficients are identified, up to a constant, by the minimal
eigenvector of Q.

3. SUBSAMPLING

3.1 Problem Statement
We now extend the subspace-based method to the case of sub-
sampled observed images. The purpose is to estimate, from the
low-resolution observed images, a deconvolved image at a higher
resolution: this problem is called super-resolution. To this end,
we assume that the original image is filtered by L high-resolution
filters, and the L output images are then subsampled by a factor
P. The estimation is blind, i.e. we do not know the filters. In this
section, we focus on the filter identification, the image restoration
step will be developed in section 5.2.

After the convolution step, each observed image X l , l = 1 : L, is
modeled as a noisy output of a FIR system H l driven by an input
image D (see section 2):

X l = H lD+Bl (14)

Then, the outputs are subsampled by a factor P:

X l
LR = H l

LRD+Bl
LR (15)

where :
• X l

LR is a subsampled component of X l , of size (nxny,1), where
nx = Nx

P and ny = Ny
P ,

• D is the same as in equation (14), apart from the last P−1 rows
and columns which are truncated,

• H l
LR is defined by extracting one row every P from

the matrix H l and is of size (nxny,dh), where
dh = P2(nx +mx −1)(ny +my −1), where mx = Mx

P and
my = My

P , as we discard all the null columns.

By switching on purpose the columns of H l
LR (and at the same time

the rows of D) in equation (15), the subsampled output images can
be related to the subsampled components of the original image:

X l
LR =

(
H l

0,0 H l
0,1 . . . H l

P−1,P−1

)
D0,0
D0,1

...
DP−1,P−1

+Bl
LR

(16)



• where Dp1,p2 is a vectorized subsampled component of the input
image D, i.e., if

D =

 d0,0 . . . d0,Sx−1
...

...
dSy−1,0 . . . dSy−1,Sx−1

 (17)

where Sy = Ny +My −1 and Sx = Nx +Mx −1,
thus, for all p1, p2 = 0 : P−1,

Dp1,p2 =


dp1,p2 . . . dp1,p2+(sx−1)P

dp1+P,p2 . . . dp1+P,p2+(sx−1)P
...

...
dp1+(sy−1)P,p2 . . . dp1+(sy−1)P,p2+(sx−1)P


(18)

where sy = ny +my −1 and sx = nx +mx −1,

• and H l
p1,p2 is the block-Toeplitz matrix of size (nynx,sysx) as-

sociated to the filter

H l
p1,p2 =


hl

p1,p2 . . . hl
p1,p2+(mx−1)P

hl
p1+P,p2 . . . hl

p1+P,p2+(mx−1)P
...

...
hl

p1+(my−1)P,p2 . . . hl
p1+(my−1)P,p2+(mx−1)P


(19)

one of the P2 polyphase components of the high resolution
filter H l (see eq. (4)).

By stacking all vectors and matrices coming from equation (16) for
all l = 1 : L, we obtain the following model:X1

LR
...

XL
LR

 =


H 1

0,0 . . . H 1
P−1,P−1

...
...

H L
0,0 . . . H L

P−1,P−1


 D0,0

...
DP−1,P−1

+BLR (20)

The superresolution problem is now expressed like a multiple in-
put multiple output problem. In multiple input systems, the inputs
usually come from different sources, and are considered as inde-
pendent from each other [5]. In our case, the inputs are the different
subsampled components of the same source image and are therefore
strongly correlated.

3.2 Limits of the Subspace Method

In this section, we show that, for subsampled images, the subspace
method is not sufficient to determine the filters, but provide an
identification up to a (P2,P2) mixing matrix.

Let us call RLR
X the autocorrelation matrix of the L subsampled im-

ages X l
LR. If we apply the subspace method, we find that the eigen-

vectors, denoted Gi, associated to the Lnynx−P2(ny +my−1)(nx +
mx − 1) smaller eigenvalues of RLR

X span the noise subspace. The
orthogonality condition between noise and signal subspaces is ex-
pressed by:

GT
i Hp1,p2 = 0(1,sysx)

(1,Lnynx) (Lnynx,sysx) (1,sysx)
(21)

where i = 0 : Lnynx − dh − 1, 0(1,sysx) is a null vector of size
(1,sysx), and Hp1,p2 a block column of the filtering matrix in
equation (20).

The structural lemma (see eq. (11)) provide an expression of the
orthogonality condition in terms of the polyphase components of
the filters instead of the columns of the filtering matrix:

HT
p1,p2Gi = 0(1,sysx) where Hp1,p2 =


H1

p1,p2
...

HL
p1,p2

 (22)

where Gi is a (Lmymx,sysx) filtering matrix defined from the eigen-
vectors Gi, and p1, p2 = 0 : P−1.
By stacking the contributions of all the polyphase components of
the filters, we obtain:

HT Gi = 0(P2,sysx) where H =
(
H0,0 . . . HP−1,P−1

)
(23)

The minimization of the quadratic form associated to the orthogo-
nality condition provide a set of P2 vectors, denoted V. We can not
distinguish these eigenvectors using only the orthogonality condi-
tion. Indeed, each column of V is in the null space of the quadratic
form, therefore H is a combination of the P2 columns of V. We can
identify the filters H only up to a reversible (P2,P2) mixing matrix
denoted MX , such as:

H = VMX (24)

Source separation methods have been used to estimate such a matrix
[1, 5], but these methods usually state the assumption that the input
signals are uncorrelated. This is not our case, as the inputs are the
different subsampled components of the same source image.

4. EVALUATION OF THE MIXING MATRIX

The determination of the matrix MX is, as we showed theoretically,
impossible in the case where the mixed sources (here the polyphase
components of an image) have the same distribution. Despite
this fact, we try to estimate the mixing matrix by introducing
some prior knowledge on the statistics of the image or the filters.
Indeed, natural images have a spectrum which is far from constant
(as in the case of a white noise or a compressed signal). On the
other hand, filters that are encountered in image processing are
often very smooth with a single local (and global) maximum at
the origin, whereas a multi-reflection filter, that affects wireless
communications, can be irregular and display a multitude of local
maxima. The subspace method was designed to deal with such
irregular filters, with the counterpart that the sources are of different
statistical nature, allowing an efficient separation of sources.

In this section we will use a continuous notation, and the Fourier
transform of a sampled signal at rate 1 will live in [−1/2,1/2]
whereas the Fourier transform of a subsampled version at rate P,
will live in [−1/2P,1/2P]. The H̃ l will refer to the estimated filters
we are trying to define.

4.1 Imposing Regularity of the Filters
First, let us see what happens when some regularity is imposed to
the filters. We do so by minimizing a certain regularity measure of
the filters under the constraint that the integral of each filter is one1.

Two principal choices have been proposed for the measure of
filters regularity. The first one (which presents the advantage of a
low computational cost) is the integral of the squared norm of the
gradient (the H1 norm [10]). The other one is the integral of the
gradient (the total variation norm [9]).

1This is a physical requirement for imaging filters. It may not be true if
different images have been acquired under different illumination conditions.
In this case, the mean of each image gives a very accurate estimation of the
integral of the filter that generated it.



The first choice may lead to smooth solutions and disadvantages the
non continuous filters (such as motion blur). Nevertheless, we use
this H1 criterion, for two reasons:
• We search for the best solution in a small-dimensional affine

space (namely the vector space in which MX lives intersected
with the affine space represented by the constraint

∫
H l(x)dx =

1). In such a case, the smoothing effect of the H1 norm com-
pared to the TV norm could be ignored.

• The computational cost of such a minimization is much smaller
than the TV one (see for example [2] for the numerical intricacy
of TV minimization, although recent advances have been made
[3] but are not, as is, applicable to our problem).

J1(H̃1, ..., H̃L) = ∑
l

∫ ∥∥∥∇H̃ l
∥∥∥2

2
. (25)

4.2 Imposing Similarity of the Double-Filtered Images
In the following we take advantage of the fact that we have multiple
views of the same original scene to recover the filters (which implies
the estimation of MX ).
Let’s assume that we have two versions of the same image I1 and
I2 formed after being filtered by H1 and H2, and that we have two
candidates H̃1 and H̃2: we can check easily if these candidates are
reasonable or not. Indeed filtering I2 using H̃1 should yield the same
result as filtering I1 using H̃2. Based on this simple observation, we
define a functional which should be minimized by our computed
filters:

J2(H̃1, ..., H̃L) =
k,l=L

∑
k,l=1

∥∥∥H̃ l ∗Xk − H̃k ∗X l
∥∥∥2

2
. (26)

where Xk are the observed images and H̃k are the estimated filters.
Note that we don’t have access to a fully sampled version of the Xk,
thus we interpret the convolutions that occur in (26) as the product
of the low frequencies of the filter H̃ with the Fourier transform of
X , squaring the result and summing over the low-frequency domain.
We define2∥∥∥H̃ l ∗Xk − H̃k ∗X l

∥∥∥2

2
=

∫ 1
2P

− 1
2P

∣∣∣∣ ˆ̃
H l(u)X̂k(u)− ˆ̃

Hk(u)X̂ l(u)
∣∣∣∣2

du

(27)
This last functional could be the perfect criterion if no subsampling
were present. Indeed, J2 is null in a noise-free, well-sampled set-
ting only if the filters are the real filters (after checking that J2 is
a positive definite quadratic form). Unfortunately the subsampling
that affects our images is expressed by :∣∣∣Ĥ l(u)X̂k(u)) − Ĥk(u)X̂ l(u)

∣∣∣2

=

∣∣∣∣∣Ĥ l(u)
P−1

∑
n=0

X̂0(u+
n
P

)Ĥk(u+
n
P

)

− Ĥk(u)
P−1

∑
n=0

X̂0(u+
n
P

)Ĥ l(u+
n
P

)

∣∣∣∣∣
2

=

∣∣∣∣∣P−1

∑
n=1

X̂0(u+
n
P

)
(

Ĥk(u)Ĥ l(u+
n
P

)

− Ĥ l(u)Ĥk(u+
n
P

)
)∣∣∣2

(28)

for u ∈ [− 1
2P , 1

2P ], where the Hk are the actual filters and X0 is the
original image.

2We use a one dimensional notation to simplify the equations, we con-
sider an infinite-size discrete signal subsampled at rate P. The hat denotes
the time-discrete Fourier transform of a signal

J2 being not null when applied to the actual filters prevents us from
concluding that its minimum is obtained for those filters. Neverthe-
less, images have a strong low-frequency component. This means
that the minimizing filters for J2 must reduce as much as possible
the terms of the form | ˆ̃Hk(u)X̂0(u)− ˆ̃H l(u)X̂0(u)|2, because these
terms dominate the others (see [11] for a review of proposed statis-
tical models of images).
As the experiments will show it, the error introduced by the aliasing
is negligible and does not lead to a noticeable error in the recov-
ery of the filters. One can also say that the high frequency com-
ponents of the filters are not taken into account. Although this
point is correct, the filters, thanks to the subspace method, are con-
strained to live in a small-dimensional affine space, thus controlling
the low frequency part of them is sufficient to yield a positive defi-
nite quadratic form on the subspace the filters live in.
In the next section we see how these two ideas can be applied to the
disambiguation of the mixing matrix MX .

5. APPLICATIONS

5.1 Blind Filters Identification
We want to estimate a deconvolved image, at a resolution increased
by a factor P = 2, from a set of L = 6 low-resolution images of the
same scene, filtered by 6 different unknown filters. This can be
expressed as a 4 input 6 output system.

To evaluate the results with an objective criterion, the psnr (see eq.
(29)), we have to simulate this case: we filter a known original im-
age D with 6 known filters H and then subsample the outputs by a
factor P = 2 in each directions.
The psnr is given by:

PSNR(D,Dest) = 10 log10
(max(D)−min(D))2

MSE(D,Dest)
(29)

where MSE is the mean squared error between the images D and
Dest .
The original image D is (576,720), and the windowed area of study
(10,10). The filters are (6,6) 2D-Gaussian centered at a random
point with standard deviations: 0.7,0.9,1,1.1,1.3,1.5.
To recover the filters, we use a weighted sum of the two criteria
αJ1 +(1−α)J2. We obtain a psnr of 22.12 dB for α = 1, and a
psnr of 21.46 dB for α = 0. The results are better when the two
criteria are mixed, in our case for α = 0.04, the filters are recovered
with a psnr of 26.17 dB (J1 and J2 are normalized so their minimal
eigenvalue is 1).

5.2 Image Restoration
Once the filters are estimated, the recovery of the original image
can take place. The recovered image X̃ must satisfy some straight-
forward conditions, namely :
• The image filtered by the estimated filters and subsampled must

be close to the observed images, which yields the first data-
driven functional:

A(X̃) =
L

∑
l=1

∥∥∥SP(X̃ ∗ H̃ l)−X l
∥∥∥2

2
, (30)

SP being the subsampling operator at rate P.
• Since the observed images are affected by noise and, most im-

portantly, the filters we computed are estimates of the actual
ones, a regularization functional must also be minimized:

R(X̃) =
∫ ∥∥∇X̃

∥∥2
2 (31)

These two criteria sum up to the minimization of a single functional
given by:

J3(X̃) = A(X̃)+λR(X̃), (32)



Figure 1: The restored image with λ = 10−3 in eq. (32)

Figure 2: upper left : the 1st observed image; upper right: the re-
stored image; down left : the bilinear interpolation; down right : the
original image

the minimization of which requires the inversion of P2 × P2

matrix for each point of the Fourier transform of the image as a
straightforward computation may show it.

We present experimental results obtained with the observed output
subsampled images and the filters estimated in section 5.1.
Figure 1 shows the restored image (psnr = 26.78 dB). To better
display the results, we focus on a window area of the less blurred
output image, and the related window area in the superresolved im-
age, and display them at their exact size (figure 2). For comparison
purposes, a bilinear interpolation of the output image area and the
related window in the original image are also given.

6. CONCLUSION

In this work we showed how the subspace method may be applied
to image superresolution. We showed that this method is intrinsi-
cally ambiguous when presented with multiple sources which are,

in fact, subsamples of the one same image. We showed how statis-
tical properties of images can be used to disambiguate the problem
and achieve a satisfactory recovery of the filters and of the original
image. The advantage of using this method is that it can be ap-
plied to a wide range of filters without further assumption than their
smoothness. In future work, one may want to apply other types of
regularization to the image or the filters. The most promising lead
is the TV regularization [3] which would be available as a usable
technology very soon. The other possibility of improvement is the
extension to the case where the made algebraic assumptions fail to
be true, in such cases subspace method happens to be very unstable.
We may apply the ideas presented here to stabilize the problem.
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