
Timed-Fragmentation of SVG Documents
to Control the Playback Memory Usage

Cyril Concolato Jean Le Feuvre Jean-Claude Moissinac

Multimedia Group, Department of Image and Signal Processing, GET-ENST, LTCI UMR 5141
46, rue Barrault, 75013 Paris, France

{concolato, lefeuvre, moissinac}@enst.fr

ABSTRACT
The Scalable Vector Graphics (SVG) language allows in its
version 1.2 the description of multimedia scenes including audio,
video, vector graphics, interactivity and animations. This standard
has been selected by the mobile industry as the format for vector
graphics and rich media content. For this purpose, additional tools
were introduced in the language to solve the problem of the
playback of long-running SVG sequences on memory-constrained
devices like mobile phones. However, the proposed tools are not
entirely sufficient and solutions outside the scope of SVG are
needed.

This paper proposes a method, complementary to the SVG tools,
to control the memory consumption while playing back long-
running SVG sequences. This method relies on the use of an
auxiliary XML document to describe the timed-fragmentation of
the SVG document and the storage and streaming properties of
each SVG fragment. Using this method, this paper shows that
some SVG documents can be stored, delivered and played as
streams, and that their playback as streams brings an important
memory consumption reduction while using a standard SVG 1.2
Tiny player.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Animations; H.3.2 [Information Storage
and Retrieval]: Information Storage – File organization

General Terms
Measurement, Design, Standardization, Languages.

Keywords
Scalable Vector Graphics, Memory usage, Streaming, Timing,
Fragmentation

1. INTRODUCTION
The Scalable Vector Graphics (SVG) Working Group is currently
working on version 1.2 of the SVG language [1], which allows
describing how a set of graphical, text and media (audio, video,
images) primitives are used spatially and temporally to compose a
multimedia presentation. The "Tiny" profile of SVG 1.2 is
selected as a basis for the Rich Media format for mobile
applications. Therefore, efficient consumption of long-running
SVG animations on memory-constrained devices like mobile
phones has become a requirement for SVG and an important
challenge. Hence, some tools to improve the efficiency of the
consumption of SVG documents have been defined. Firstly, the
'discard' element enables an SVG player to perform run-time
garbage collection and reduce its memory usage during playback.
Secondly, the progressive rendering process allows an SVG
player to start rendering a scene even if the whole SVG document
is not entirely received. The conjunction of both tools enables an
SVG player to progressively render a scene when it is received
and to remove data when it is not needed.

The problem with this situation is that usually SVG documents
are transmitted as files over HTTP, where the data is sent as fast
as possible, depending on the throughput of the server. If the
bandwidth of the network is high, the whole document will be
sent at the beginning of the download session, thus yielding to an
important initial peak in the memory usage at the client side. This
is also true for local file playback. There is therefore a need for a
mechanism to control the timing of the data sent or read.

Traditional audio and video streaming offers such mechanism, but
the streaming of SVG document is not an easy task. The REX
working draft [2], the 'MORE' proposal [3] and the LASeR
standard [4] allow streaming of SVG content, but require
modifications of the SVG player at the scene level.

The method proposed in this paper only assumes a compliant
SVG Tiny 1.2 player with no modification. It consists in using an
auxiliary XML document to describe the timed-fragmentation of
the SVG document to help servers control the sending and readers
control the reading.

The rest of this paper is structured as follows. In Section 2, the
proposed approach is presented and a language to describe the
fragmentation of SVG documents is given. Some experiments
using this approach are presented and discussed in Section 3.
Finally, Section 4 concludes this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’07, August 28–31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

121

2. TIMED-FRAGMENTATION OF SVG
DOCUMENTS
In most cases, XML documents have to be fully parsed before any
interpretation can be done, like rendering, unless progressive
rendering is supported, as required by SVG and as many HTML
browsers already do. Additionally, SVG scenes can be animated
using SMIL [5] animation elements, like 'set' or 'animate'. Our
approach considers the combination of progressive rendering and
animations to envisage the timed fragmentation of SVG
documents.

2.1 Principles of the approach
In our approach, we consider that SVG documents are made of
timed rendering instructions, described by XML elements, and to
each element, we associate a time instant. For graphical elements,
this time instant is the first time it gets visible. For timed elements
(animations or media), it is the first time they begin animating or
playing. For discard elements, it is the time of execution. For
other elements (e.g. scripts), it is the first time they are used.
We define an SVG Access Unit (AU), whose timestamp is T, as
an XML document fragment (not necessarily well formed), where
all the elements have timing information greater or equal to T.
The timing information T associated with such SVG AU can be
viewed as a transport time and used in MPEG-2 or in RTP. It
describes when, at the latest, the elements are needed by the
player. With this definition, an SVG scene is therefore "time-
fragmentable" if 1) the XML document that describes it can be
split into more than one SVG AU, each AU with a unique
timestamp and, if 2) when sorted in increasing timestamp order,
the concatenation of the sorted SVG AUs produces a document
whose result is equivalent to the original document. This last
condition is needed because SVG documents rely on the painter's
algorithm for the rendering order.
Examples of "time-fragmentable" SVG scenes are vector graphics
cartoons, video stream with subtitles, video with dynamic
graphical overlay, or dynamic live scenes. Such scenes can be
easily fragmented, as follows, because they have an inherent
frame-based structure: an AU starts when a frame starts and ends
when the next frame starts. This fragmentation can be described
by the author, or could, in this case, be easily found by a simple
analysis. Figure 1 illustrates the fragmentation of a simple SVG
document into an SVG stream, made of four SVG AUs.

Reversely, it is clear that some SVG scenes are not fragmentable,
for instance, if all elements are visible and all animations start
from the beginning of the scene and if there is no deletion of
elements. An interesting work would be to investigate static
analysis algorithms to determine if and how a generic SVG scene
can be fragmented, but such analysis is out of scope of this paper.

2.2 An XML language to describe the timed
fragmentation
Following the previous approach, we have defined an XML
language called NHML "Network Hint Markup Language" to
describe, in an auxiliary document, the timed fragmentation of
SVG documents. This auxiliary document can be used by
multimedia packagers to store SVG content in the form of a
stream. It may be also exploited by servers (like HTTP servers) to
control the sending of file chunks. Finally, it may also be used
directly by SVG players to determine how and when to read an
SVG file. It may be compared to SMIL, or more generally to
'timesheets' as proposed in [6] with the following major
differences: 1) the timing described in the NHML document is the
transport timing of each AU, not the presentation timing; 2) the
addressing mechanism identifies chunks of the XML document
not necessarily well-formed. A simplified example of NHML
document is given in Figure 2.

<stream timeScale="1.0" timeIncrement="1"
baseMediaFile="flash2.svg">

<sample isRAP="yes" xmlFrom="doc.start"
 xmlTo="aFrame.end"/>
<sample isRAP="no" xmlFrom="aFrame.end "
 xmlTo="aDefs.start"/>
<sample isRAP="no" xmlFrom="aDefs.start"
 xmlTo="aDiscard.start"/>
<sample isRAP="no" xmlFrom="aDiscard.start"
 xmlTo="doc.end"/>
</stream>

Figure 2 – Example of NHML code
The stream element declares a stream made from the SVG file
referred to by the baseMediaFile attribute. The timeScale
and timeIncrement attributes allows determining
automatically the timestamps of all AU when the stream uses a fix
frame rate, such as cartoons. Then, for each AU, a sample
element is used. Each sample element indicates a timestamp in
the TS attribute (optional) and the start and the end of AU

<svg>
<g id="aFrame" visibility="hidden">
<rect id="aRect"/>
</g>

<set xlink:href="#aRect" attributeName="fill" to="red" begin="1s"/>
<set xlink:href="#aFrame" attributeName="visibility" to="visible"
begin=1s"/>

<defs id="aDefs">
<circle id="aCircle"/>
</defs>
<use id="aUse" xlink:href=""/>
<set xlink:href="#aUse" attributeName="xlink:href" to="#aCircle"
begin="2s"/>

<discard id="aDiscard" xlink:href="#aRect" begin="3s"/>
</svg>

AU #1,
TS = 0s

AU #2,
TS = 1s

AU #3,
TS = 2s

AU #4,
TS = 3s

<svg>
<g id="aFrame" visibility="hidden">
<rect id="aRect"/>
</g>
<set xlink:href="#aRect" attributeName="fill" to="red" begin="1s"/>
<set xlink:href="#aFrame" attributeName="visibility" to="visible"
begin="1s"/>
<defs>
<circle id="aCircle"/>
</defs>
<use id="aUse" xlink:href=""/>
<set xlink:href="#aUse" attributeName="xlink:href" to="#aCircle"
begin="2s"/>
<discard xlink:href="#aRect" begin="3s"/>
</svg

fragmentation

SVG Document SVG Stream

Figure 1 – Time fragmentation of an SVG document into SVG Access Units

122

payload using the xmlFrom and xmlTo attributes respectively.
The syntax of these attributes uses an IDREF, with a special
IDREF for the document root node (doc), followed by SAX-event
names: start or end. A possible improvement could use XPath
expressions instead of IDREF.

3. EXPERIMENTS AND RESULTS
3.1 Software environment and case studies
We have implemented the parsing and interpretation of the
NHML language in the tool called MP4Box of the GPAC Open
Source software [7]. This has allowed us to create ISO files with
SVG tracks and to prepare them for streaming. The resulting files
played locally as well as streamed from an unmodified Darwin
Streaming Server [8]. We also used the Osmo4 player of the
GPAC project, which includes streaming protocols support (e.g.
RTP), SAX-based XML parsing capabilities; and SVG rendering
capabilities compliant with SVG Tiny 1.1 (including progressive
rendering) and with some SVG Tiny 1.2 features, like the 'discard'
element and the 'audio' and 'video' elements. We have applied the
proposed method to fragment SVG content into SVG streams on
long-running animated vector graphics cartoons, resulting from
the transcoding of Flash content, as described in [9] or in [10].
We have also applied it to the streaming of audiovisual content
augmented with synchronized graphical overlays like subtitles or
advertising. In both cases, NHML descriptions were generated
automatically by the cartoon or subtitle transcoders.

3.2 Results
We measured the memory consumption during the reception and
playback of SVG content. Figure 3 shows the memory usage as a
function of time for four scenarios. In all cases, the same SVG file
is read and in networking cases, a network which has a bandwidth
of 800kbps is used. In this example, the content is a 14 seconds
long cartoon sequence, with an average data rate of 500 kbps, and
peaks at 1 Mbps. The time axes of the plots have been aligned so
that rendering time of the first frame, named t0, coincide.
We can see that, in all scenarios involving a non-fragmented
XML file, the memory usage shows an initial peak and then starts
decreasing. The initial peak is due to the loading of objects not
needed at that time. It is at its highest when the full file is loaded
before rendering and it is lower with the loading/reading speed.
Obviously, the bigger the file (the document) is, the higher this
peak is. The memory consumption decreases during playback due
to the use of SVG 'discard' elements.

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000 14000

Full File Loading Then Rendering
Progressive File Loading and Rendering
HTTP Progressive Loading and Rendering
Streaming and Progressive Rendering

t 0
Figure 3 – Memory Usage (kB) vs. Scene Time (ms)

We can see that the scenario which requires the smallest amount
of memory is the “Streaming and Progressive Rendering”. The
memory consumption peak is reduced by 64%. We have made the
same experiments on 23 SVG documents (cartoons and subtitles
with various sizes, durations, and complexity) with a gain ranging
from 10% to 93%, with an average of 64 %. This reduction is due
to the fact that the objects are loaded only when they are needed,
rendered and then deleted.
It has to be noted that, in this experiment, we have used the RTP
protocol to deliver the SVG fragments to show that real streaming
of SVG content is possible. However, the results are the same 1) if
the HTTP protocol is used provided that the HTTP server uses the
instructions given in the NHML, and 2) in the context of local file
playback (i.e. without networking), if the SVG player is modified
to read the SVG content either from a stream stored in a
multimedia container file or if the SVG content is read directly
using the NHML file.

4. CONCLUSION
In this paper, we have defined the notions of timed-fragmentation
of SVG documents, of SVG Access Unit and of SVG stream. We
have presented a new XML language which allows describing this
timed-fragmentation as well as storage and streaming properties.
We have shown that, using a timed-fragmented distribution of the
SVG content, the required memory is greatly reduced (either from
multimedia container files or streams) and that the SVG 'discard'
element provides great help in keeping the memory usage low.

5. REFERENCES
[1] Scalable Vector Graphics (SVG) Tiny 1.2, W3C Working

Draft, Dec. 2005, http://www.w3.org/TR/SVGMobile12
[2] Remote Events for XML (REX), W3C Working Draft 13

October 2006, http://www.w3.org/TR/rex/
[3] V.Setlur et al., "More: A Mobile Open Rich Media

Environment", IEEE International Conference on
Multimedia and Expo, July 2006, pp. 2029-2032

[4] J.-C. Dufourd, O. Avaro, C. Concolato, "An MPEG Standard
for Rich Media Services", Multimedia, IEEE, Volume 12,
Issue 4, pp. 60-68, Oct.-Dec 2005. 2005.

[5] D. Bulterman and L. Rutledge, "SMIL 2.0: Interactive
Multimedia for Web and Mobile Devices", Springer-Verlag,
Heidelberg, May 2004.

[6] W. ten Kate et al., "Timesheets – Integrating Timing in
XML", WWW9 Workshop: Multimedia on Web, 2000

[7] GPAC Open Source Project, Multimedia Framework,
http://gpac.sourceforge.net

[8] Darwin Streaming Server,
http://developer.apple.com/darwin/projects/streaming

[9] S. Probets, J. Mong, D. Evans, D. Brailsford, "Vector
graphics: from PostScript and Flash to SVG", ACM
Symposium on Document Engineering 2001, pp. 135-143

[10] C. Concolato, J.-C. Moissinac, J.-C. Dufourd, "Representing
2D Cartoons using SVG", Proceedings of SMIL Europe
2003, Paris, Feb. 2003

123

