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Abstract

We present an approach for simultaneous monocular 3D
face pose and facial animation tracking. The pose and fa-
cial features are estimated from observed raw brightness
shape-free 2D image patches. A parameterized 3D face
model is adopted to crop out and to normalize the shape
of patches from video frames. Starting from the face model
aligned on an observed human face, we learn the relation
between a set of perturbed parameters of the face model
and the associated image patches using a Canonical Corre-
lation Analysis. This knowledge, obtained from an observed
patch in the current frame, is used to estimate the correc-
tion to be added to the pose of the face and to the animation
parameters controlling the lips, eyebrows and eyes. Ground
truth data is used to evaluate both the pose and facial ani-
mation tracking efficiency in long real video sequences.

1 Introduction

This paper addresses the problem of tracking in a monoc-
ular video sequence the global pose of a face as well as
the local motion of its main inner features, due to expres-
sions or other facial behaviors. Face tracking poses chal-
lenging problems because of the variability of facial ap-
pearance within a video sequence, most notably due to
changes in head pose, expressions, lighting or occlusions.
Many popular learning-based or model-based approaches
have been proposed. The first ones, also called view-based
approaches, can be formulated as a classification problem
based on labeled training examples of 2D face appearances.
The second ones generally use a 3D model that is projected
into the image and matched to the face to track. Most ap-
proaches rely on image cues like key points, curves, op-
tical flow, appearance or skin color, and make use of lin-
ear/nonlinear generative or discriminative statistical models
to work with 2D facial shape or global appearance mani-
folds (AAMs, etc.). Others consider part-based statistical
representations of the face. A recent work that addresses
pose estimation from images is [?]. The method is based on
the use of kernel Canonical Correlation Analysis to learn
the dependencies between the pose and the appearance of
an object.
The idea proposed in this paper consists in combining a 3D
parameterized geometric face model, used to crop out 2D

image patches from incoming video frames, and a linear
CCA. The 3D model state (pose and internal geometry) at
a given time is efficiently estimated from the observed im-
age patches in the current frame using CCA. This approach
provides an elegant and simple way to estimate both the
3D pose of the face and the internal facial features. CCA
corresponds to a low-rank approximation of multiple lin-
ear regression: this makes the model fitting more robust to
noise, if compared to linear regression based approaches.
The training is done on synthetic images with known pa-
rameters, and needs fewer samples, if compared to other
strategies based on Active Appearance Models. In the pa-
per, we compare both the pose and the facial animation es-
timation with publicly available ground truth data to access
the method effectiveness.

2 Face representation

In this work we use the so-calledCandide-3[?] 3D generic
face model to acquire the 3D geometry of a person’s face
and the associated texture map for tracking purposes.
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Figure 1: (a) 3DCandidemodel aligned on the
target face in the first video frame with the 2D
image patch mapped onto its surface (upper right
corner) and three other semi-profile synthesized
views (left side). Three stabilized face images
used for tracking (b) the pose:SFI 1, (c) the eye-
brows and the eyes:SFI 2, and (d) the mouth:
SFI 3.

This 3D parameterized face model is controlled by Ani-
mation Units (AUs). The wireframe consists of a group of
3D interconnected vertices to describe a face with a set of
triangles. The vectorg consists of the concatenation of all



the vertices, and can be written asg = gs + Aτa, where
the columns ofA code 69 face Animation Units and the
vectorτa is used to control facial mimics so that different
expressions can be obtained.gs corresponds to the static
geometry of a given person’s face.gs andτa are initialized
manually, by fitting theCandideshape to the face shape fac-
ing the camera in the first video frame (see Figure1.a). The
facial 3D pose and animation state vectorb is then given
by:

b =
[

θx, θy, θz, tx, ty, tz, τ
T
a

]T
, (1)

where θ. and t. components stand respectively for the
model rotation around three axes and translation. In this
work, we limit the dimension ofτa to 9, in order to only
track eyebrows, eyes and lips (b ∈ R

15).
The geometric modelg(b) is used to crop out underlying
image patches from the video frames and to transform faces
into a normalized facial shape for tracking purposes. We
consider here a stabilized 2D shape free image patch to rep-
resent the facial appearance of the person facing the cam-
era and to represent observations from the incoming video
frameY. The patch is build by warping the rawbrightness
image vector lying under the modelg(b) into a fixed size
2D projection of the standardCandidemodel without any
expression (τa = 0). Depending on the face’s region of in-
terest, we use one of the patches depicted in Figure1.b,1.c,
and1.d. These patches can be written asx = W(g(b),Y),
whereW is a piecewise affine warping operator.

3 Integrated tracking framework

Our algorithm for face and facial animation tracking is
composed of three steps: initialization, learning and track-
ing. These three steps are more precisely described in the
following sub-sections.

3.1 Initialization

TheCandidemodel is placed manually over the first video
frameY0 at timet = 0 and reshaped to the person’s face.
The correct alignment is obtained considering the 3D model
with the corresponding 2D image patch mapped onto its
surface, combined with three other semi-profile synthesized
views (Figure1) used mainly, if necessary, to refine the
adaptation of the face’s depth. Once the model is aligned,
we get the state vectorb0, and the reference stabilized face
image:

x
(ref)
0 = W(g(b0),Y0). (2)

3.2 Training

Due to the high dimensionality that arises when working
with images, the use of a linear mapping to extract some
linear features is common in the computer vision domain.
In our case, we are interested in identifying and quantifying
the linear relationship between two data sets: the change in
state of theCandidemodel and the associated facial appear-
ance variations. We propose to use aCanonical Correlation

Analysis(CCA) to find linear relations between two sets of
random vectors [?, ?]. CCA finds pairs of directions or ba-
sis vectors (also called canonical factors) for two sets of
m vectors,Q1 ∈ R

m×n andQ2 ∈ R
m×p, such that the

correlations between the projections of the vectors onto the
directions are mutually maximized.
Let A1 andA2 be the centered versions ofQ1 andQ2, re-
spectively. The maximum number of basis vectors that can
be found ismin(n, p). If we map our data to the directions
w1 andw2 we obtain two new vectors defined as:

z1 = A1w1 and z2 = A2w2. (3)

and we are interested in maximizing the correlationρ =
z

T

2
z1√

z
T

2
z2

√
z

T

1
z1

. The solution consists in finding vectors

w1 andw2 that maximizezT
2 z1 subject to the constraints

zT
1 z1 = 1 andzT

2 z2 = 1.
In this work, we use the numerically robust method pro-

posed in [?]. We compute singular value decompositions of
the data matricesA1 = U1D1V

T
1 andA2 = U2D2V

T
2 ,

and then, the following the singular value decomposition:
UT

1 U2 = UDVT , to finally get:

W1 = V1D
−1
1 U and W2 = V2D

−1
2 V, (4)

where matricesW1 andW2 contain respectively the full
set ofcanonical correlation basis vectors. In our case, the
matrixA1 contains the difference between the training ob-
servation vectorsxTraining = W(g(bTraining),Y0) and

the referencex(ref)
0 , and the matrixA2 contains the varia-

tion in the state vector∆bTraining given bybTraining =
b0 + ∆bTraining. Them training points were chosen em-
pirically from a non-regular grid around the vector state ob-
tained at initialization.

Once we have obtained all the canonical correlation basis
vectors, the general solution consist in performing a linear
regression betweenz1 andz2. However, if we develop the
correlation for each pair of directions with the assumptions
made above, we get‖A1w1 − A2w2‖2 = 2(1 − ρ) simi-
larly as in [?]. Based on our experiments, we observe that
ρ ≈ 1, and so, we use the relationA1w1 ≈ A2w2. If we
substitute matricesA1 andA2 by ∆bt and(xt−x

(ref)
t ) in

the last relation, we come that∆btw2 = (xt − x
(ref)
t )w1.

This is true for all thecanonical variates, so we use equa-
tions (4) to get a result for all the directions:

∆bt = (xt − x
(ref)
t )G, (5)

where G = V1D
−1
1 UVT D2V

T
2 , encodes the linear

model used by our tracker, which is explained in the fol-
lowing section.

3.3 Tracking

The tracking process consists in estimating the state vector
∆bt when a new video frameYt is available. In order to do
that, we need, first, to obtain the stabilized face image, from
the incoming frame by means of the state at the preceding
time, as:

xt = W(g(bt−1),Yt), (6)



and then make the difference between this image and the
reference stabilized face imagex(ref)

t . This gives an error
vector from which we estimate the changes in state with (5).
Then we can write the state vector update equation as:

b̂t = bt−1 + (xt − x
(ref)
t )G. (7)

We iterate a fixed number of times (5, in practice) and
estimate another̂bt according to (7) and update the state
vector. Once the iterations are done, we updatex

(ref)
t+1 =

αx
(ref)
t + (1− α)x̂t, with α = 0.99 obtained from experi-

mental results.

4 Implementation

The algorithm has been implemented on a PC with a
3.0 GHz P4 processor and a NVIDIA Quadro NVS 285
graphic card. Our non optimized code uses OpenGL for
texture mapping and OpenCV for video capture. We use a
standard desktop Winnov analog video camera to generate
the sequences for tests. We retain the following nine
animation parameters, for facial gesture tracking:

(1) upper lip raiser
(2) jaw drop
(3) mouth stretch
(4) lip corner depressor
(5) eyebrow lowerer

(6) outer eyebrow raiser
(7) eyes closed
(8) yaw left eyeball
(9) yaw right eyeball

Based on the algorithm described in section3, we have
implemented a tracker that uses three stabilized face im-
ages (see Figure1) sequentially: one to track the head pose
(SFI 1), one to track the lower face animation parameters
(SFI 3), and a last one (SFI 2) to track the upper face
animation parameters.SFI 1, SFI 2 andSFI 3 are re-
spectively composed of96 × 72, 86 × 28, and88 × 42
pixels. For training, we use317 state vectors with the cor-
responding appearance variations for the pose,240 for the
upper face region and200 for the mouth region. We chose
these points empirically, from a symmetric grid centered on
the initial state vector. The sampling is dense close to the
origin and coarse when getting far from it. Due to the high
dimensionality of our state vectors, we did not use all the
combinations between the selected points.

5 Experimental results

For validation purposes, we use the video sequences de-
scribed in [?] for pose tracking, and the talking face video
made available from theFace and Gesture Recognition
Working Group, for both pose and facial animation track-
ing. These sequences are supplied with ground truth data.
In this section, we show and analyze quantitatively the per-
formance of the tracker over the two types of video se-
quences.

3D pose tracking. Video sequences provided in [?]1 are
200 frames long, with a resolution of320 × 240, 30 fps.,

1www.cs.bu.edu/groups/ivc/HeadTracking/

taken under uniform illumination, where the subjects per-
form free head motion including translations and both in-
plane and out-of-plane rotations. Ground truth has been
collected via a “Flock of Birds” 3D magnetic tracker. Fig-
ure2 shows the estimated pose compared with the ground
data. Temporal shifts can be explained because the center
of the coordinate systems used in [?] and ours are slightly
different. In our case, the three axes cross close to the nose,
due to theCandidemodel specification, and in the ground
truth data, the 3D magnetic tracker is attached on the sub-
ject’s head. We check experimentally on all the provided
video sequences the stability and precision of the tracker
and do not observe divergences of the tracker.
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Figure 2: 3D pose tracking: the graphs show
the estimated 3D pose parameters during track-
ing (dashed lines) compared to ground truth (solid
lines).

Figure 3: Sample frames at times 16, 40, 54, 67,
106, 128, 146, 185 and 197.



Simultaneous pose and facial animation tracking. The
talking face video sequence consists of 5000 frames (about
200 seconds of recording)2, with a resolution of720× 576,
taken from a video of a person engaged in conversation.
For practical reasons (to display varying parameter values
on readable graphs) we used 1720 frames of the video se-
quence, where the ground truth consists of characteristic 2D
facial points annotated semi-automatically. From68 anno-
tated points per frame, we select52 points that are closer to
the correspondingCandidemodel points. In order to eval-
uate the behavior of our algorithm we calculated for each
point the standard deviation of the distances between the
ground truth and the estimated coordinates.
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Figure 4: Left: mean standard deviation of the52
facial points for each frame. Right: video frames
from top to bottom: 476, 993, and 1107.

Figure 5: Tracking results using a webcam.

Figure?? depicts the standard deviation over the whole
video sequence for each point. We can see that the points
with the greater standard deviation correspond to those on
the contour of the face. The precision of these points is
strongly related to the correctness of the estimated pose pa-
rameters. We see that the mean standard deviation of the52
facial points stays approximately constant with some peaks.
These peaks correspond to important facial movements. In
case of frame 993 the rotation around they axe corresponds
to 36.62◦. In frame 1107, the rotations around on thex, y

2www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/

andz axes are respectively−13.3◦, 18.9◦ and−10.5◦. We
observe on the whole video sequence that even if peak val-
ues are large, the tracker still performs correctly.
The average time for pose and facial animation tracking is
about 46 ms per frame if we exclude the time for video
read, decompression and write/display operations. The av-
erage time for training is23.2 seconds.
Experiments have been conducted to evaluate the sensitiv-
ity of the facial animation tracker in case of unprecise 3D
pose estimations. We added some random noise to the six
pose estimated parameters before estimating the facial an-
imation, within the following intervals:±10% of the esti-
mated head width added to the three translation parameters,
and±3◦ added to the three rotation parameters. Such per-
turbations not not introduce visible effects on the tracking
results. Figure?? displays sample frames from other video
sequences, to show the robustness of the tracker even in
case of cluttered backgrounds.

6 Conclusion

We have presented a method to track both 3D pose and fa-
cial animation parameters from persons in monocular video
sequences. The approach is simple, from the training and
tracking point of views, robust and accurate in case the out-
of-plane face rotation angles stay in the interval±30◦. The
method can still be improved. As regards immediate ex-
tensions, the method will be combined with a facial feature
detection algorithm to re-synchronize the tracking in case
of divergence.
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