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Image Time-Series Data Mining Based on the
Information-Bottleneck Principle

Lionel Gueguen and Mihai Datcu, Senior Member, IEEE

Abstract—Satellite image time series (SITS) consist of a time se-
quence of high-resolution spatial data. SITS may contain valuable
information, but it may be deeply hidden. This paper addresses
the problem of extracting relevant information from SITS based
on the information-bottleneck principle. The method depends on
suitable model selection, coupled with a rate–distortion analysis
for determining the optimal number of clusters. We present how
to use this method with the Gauss–Markov random fields and the
autobinomial random fields model families in order to character-
ize the spatio-temporal structures contained in SITS. Experimen-
tal results on synthetic data and SITS from SPOT demonstrate the
performance of the proposed methodology.

Index Terms—Gibbs–Markov random field, information bottle-
neck, satellite image time series (SITS), soft clustering, unsuper-
vised clustering.

I. INTRODUCTION

NOWADAYS, huge quantities of satellite images are avail-
able thanks to the growing number of satellite sensors. A

given scene can be observed repeatedly from space, resulting in
satellite image time series (SITS). The high spatial resolution
of the sensors give access to detailed spatial structures, which
after series of revisits, are extended to spatio-temporal data
structures. It follows that SITS are highly complex data sets
that potentially contain valuable spatio-temporal information.
For example in SITS, growth, maturation, or harvest of crops
can be observed. Also, many applications for global monitoring
and security need extraction of relevant information regarding
the evolution of scene structures or objects. Specialized tools
for information extraction in SITS have been devised in order to
perform change detection, monitoring, or validation of physical
models. However, these techniques usually are dedicated to spe-
cific applications. Consequently, in order to exploit the informa-
tion contained in SITS, general analytical methods are required.
Some methods for low-resolution images acquired at uniform
sampled times have been studied in [1]. For high-resolution
and nonuniform time-sampled SITS, new spatio-temporal an-
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alyzing algorithms are presented in [2] and [3]. They are based
on a Bayesian hierarchical model of information content. The
concept was first introduced in [4]–[6] for information mining
in remote-sensing-image archives. The method is based on the
synergy of two representations of the information: objective and
subjective. The objective information extraction is a data-driven
approach, while the subjective part is user driven. In fact, the
subjective representation is obtained from the objective repre-
sentation by machine learning under the constraints provided
by a user. The advantage of such a concept is that it is free of
the application specificity and adapts to the user’s query.

This paper addresses the problem of objective representation
of the information by unsupervised clustering and model se-
lection. Based on the results of Bayesian inferences, the model
selection is approached to better explain the SITS information
content. Rate–distortion theory is used to analyze the informa-
tion content of SITS as represented by clustering in a features
space. Second, we present the models used for characterizing
the spatio-temporal patterns and the relevant information. These
models have been inspired from texture analysis and belong to
the family of parametric Gibbs Markov random fields. Finally,
we present an informational approach based on the information-
bottleneck principle to compute an unsupervised clustering.
The two methods of analysis have been unified in the frame-
work of information bottleneck in order to compute a clustering
of spatio-temporal patterns with the optimal number of clusters.
This information-bottleneck principle has been used previously
for clustering word or images [7], [8], and our approach gen-
eralizes this method by embedding a model selection and by
determining an optimal number of clusters.

This paper is organized as follows. Section II introduces
the information theoretical concept for spatio-temporal pat-
tern detection and recognition. Section III presents the spatio-
temporal patterns informational characterization. Section IV
introduces the theory about the information-bottleneck princi-
ple. Section V presents the information-bottleneck approach
for unsupervised clustering. Experiments and discussion are
detailed in Section VI. Section VII concludes this paper.

II. INFORMATION THEORETICAL CONCEPT FOR

PATTERN DETECTION AND RECOGNITION

A. Bayesian Approach

For efficient detection or recognition of spatio-temporal
patterns, it is essential to characterize information in a low-
dimensional space. To this end, features are extracted by fitting
parametric models to data. This task can be viewed as a
Bayesian hierarchical model in two stages [9], [10]. The second
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level of inference is the model selection, and the first level of in-
ference is the model fitting. Considering a stochastic process X
which models the observations, M as a parametric model ofX ,
and Θ as the parameters of the model, the Bayesian inferences
are done using the Bayes rule. The model selection is done by
maximizing the probability p(M|X) expressed in (1). Since the
parametric model M is available, expressed as p(X|Θ,M),
the model conditional likelihood usually named model evi-
dence p(X|M) is obtained by marginalization (2). The prior
distribution of the parameters is required for calculation and is
often considered to be uniform. The first Bayesian inference is
parameters’ estimation. It consists in choosing the parameters
Θ̂ that maximize the a posteriori parameters probability (3).
Finally, the signal is characterized by the estimated parameters

p(M|Xn) =
p(Xn|M) p(M)

p(Xn)
(1)

p(Xn|M) =
∫
p(Xn|Θ,M)p(Θ|M) dΘ (2)

p(Θ|Xn,M) =
p(Xn|Θ,M) p(Θ|M)

p(Xn|M)
. (3)

B. Rate–Distortion Approach

In the previous section, the choice of the model is done
first. Then, the parameters are estimated, and an optimal
clustering is calculated. Consequently, the clustering is totally
dependent on model selection. As a result, there is no review or
refinement of model selection after calculating the clustering.
Our objective is to have a methodology to jointly choose the
model and the clustering. On one hand, minimum-description-
length-like criteria [11] state that the best model minimizes the
entropy of the signal expressed with it and minimizes its own
entropy. The entropy of the model is linked to its complexity,
which is usually determined by the parametric dimension
and the number of realizations. Considering that the signal is
represented by the set of cluster centroids C in the features
space, we want to minimize the entropy of the representation
expressed as the mutual information between the signal and
the centroids, I(X,C) = H(C)−H(C|X). C is a random
variable, and the centroid c is a realization of C

H(C) = −
∑
c

p(c) log p(c) (4)

I(X,C) =
∑
x,c

p(x, c) log
p(x, c)
p(x)p(c)

. (5)

Consequently, choosing a simpler model leads to minimizing
H(C) and I(X,C), because the features space is less complex
to represent. Moreover, from a compression point of view,
a clustering can be seen as a vector quantization, where a
distortion functional d(X,C) (8) is minimized. The distortion
functional measures the quality of the signal representation
C. Combining the previous observations, the problem can be
viewed as a rate–distortion problem (6). There is a tradeoff be-
tween the amount of information conserved (distortion) and the
complexity of representation (rate). Considering the signal X ,

the features Θ, the clusters C, and the model M, the problem
can be viewed as a minimization of the following functional:

min
c, p(c|x,M),M

I(X,C) + βEX,C [d(X,C)] (6)

where

p(c|x,M) =
∫
p(c|Θ,M)p(Θ|x,M) dΘ (7)

d(x, c) = d(Θ̂(x), c) (8)

EX,C [d(X,C)] =
∑
x,c

p(x, c)d(x, c). (9)

At the minimum of the previous functional, we define the
distortion Dβ and the rate Rβ as

Dβ =EX,C [d(X,C)] (10)

Rβ = I(X,C) (11)

where β is a tradeoff weighting between the distortion and the
rate. For example, when β → 0, simpler models are chosen
to obtain only a few clusters. On the contrary, when β → ∞,
more complex models are chosen to fit data and more clusters
are obtained. Therefore, from this rate–distortion approach, a
clustering and a model can be calculated with β controlling the
tradeoff between compression and distortion.

C. Determining the Natural Number of Clusters

In this section, we give an example of a rate–distortion
approach for determining the optimal number of clusters. Such
a method has been studied in [12]. It demonstrates theoretically
and experimentally that the natural number of clusters can
be determined from the rate–distortion curve. To explain the
principle, we present the following example. Let a vectorial
signal X consist of a mixture of K Gaussians (12). The
Gaussian distributions each have distinct centroids µk and the
same variance σ. An example of the realizations of X is shown
in Fig. 1, for K = 5

p(X) =
1
K

K∑
k=1

N (µk, σ). (12)

A rate–distortion analysis is performed on data by a vector
quantization. The k-means algorithm [13] is used to process
the clustering with varying number of initial cluster centroids.
Each realization x of X is associated with the nearest cluster
centroid c(x). Consequently, the conditional probability p(c|x)
is expressed by

p(c|x) =
{
1, if c = c(x)
0, otherwise.

(13)

In our special case, the k-means algorithm minimizes the
rate–distortion criterion (6). Indeed, it calculates the cluster
centroids c and the optimal assignments p(c|x) and implicitly
select the optimal model, which is dependent on the number
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Fig. 1. Displayed are 1000 realizations of a stochastic process X generated
from a mixture of five Gaussians. The five centroids µk of the Gaussians are
represented by the big dots. The five Gaussian distributions have the same
variance.

of clusters. If l is the number of clusters, the implicit selected
model M is a mixture of Gaussian distributions defined by

p(X) =
1
l

∑
c

N (c, σc) (14)

where σc is the intracluster variance of the cluster represented
by c. The mutual information I(X,C) is deduced from the
conditional probability p(c|x). We approximate the mutual
information by (18) considering that the clusters are equally
distributed

I(X,C) =
∑
c,x

p(c|x) p(x) log p(c|x)
p(c)

(15)

=
∑
c

∑
x,c(x)=c

−p(x) log p(c) (16)

= −
∑
c

p(c) log p(c) (17)

≈−log
(
1
l

)
. (18)

We choose the Euclidean distance between the signal and
the quantizers to define a distortion measure (19) which cor-
responds to the sum of the intracluster variances

EX,C [d(X,C)] =
∑
c,x

(x− c)T(x− c)p(c|x)p(x) (19)

=
∑
c

∑
x,c(x)=c

(x− c(x))T (x− c(x)) p(x)

(20)

=
∑
x

(x− c(x))T (x− c(x)) p(x). (21)

Consequently, a rate–distortion curve can be computed. In
fact, the number of clusters l plays the role of the tradeoff
parameter β. Therefore, the parametric rate–distortion function
D(R) is defined parametrically with l. An example of this curve
is exhibited in Fig. 2, in which two distinct behaviors of the

Fig. 2. Rate–distortion curve D(R) and its second derivative (∂2D)/(∂R2).
The rate–distortion curve has been obtained by clustering the signal generated
with a mixture of five Gaussians. Two behaviors of the curve are noticeable: a
strong decrease followed by a slow decrease. The second derivative highlights
this change of behaviors, which corresponds to find the natural number of
clusters. The second derivative has been computed with the differences which
generate the effect of oscillations.

curve are noticeable. First, when l ≤ K, D decreases rapidly
with the rate. This behavior reveals that clusters fail to correctly
represent the signal. Second, when l ≥ K, D decreases very
slowly with the rate which means that there are too many
clusters for low distortion gains. Experimentally, the point of
D(R) obtained for l = K is a critical point that corresponds
to a maximum of the second derivative of D(R). Indeed, due
to the change in the decreasing behavior [12], at the critical
point, a gap appears in the first derivative that corresponds
to a maximum of the second derivative. Therefore, we can
estimate the natural number of clusters from the parametric
rate–distortion curve by maximizing the second derivative

K̂ = argmax
l

∂2D

∂R2
(22)

= argmax
l

∂2D

∂l2
∂2l

∂R2
. (23)

III. SPATIO-TEMPORAL PATTERN

INFORMATIONAL CHARACTERIZATION

In the following sections, we present two families of
Gibbs–Markov random fields. SITS are high-complexity data;
however they preserve spatial and temporal dependencies.
Thus, the interest of Gibbs–Markov random fields is to discover
and characterize these patterns. In addition, these parametric
models are used to represent the relevant information, which is
extracted in the information-bottleneck framework.

A. Gauss–Markov Random Fields (GMRF)

GMRF have interesting properties for characterizing textures
in satellite images [10], [14]. GMRF are parametric models,
which we use to model a 3-D random field. We consider that the
random variable X is a random field defined on a rectangular
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Fig. 3. Symmetric 3-D neighborhood. The pixel Xs is black. Pixels corresponding to Xs+r are white, and pixels corresponding to Xs−r are gray. dt is the
time dimension, and (dx, dy) is the spatial dimension.

Fig. 4. Lattice Ω is mapped to a 1-D index i(s). The squares represent
the spatial grid evolving in time. s is a pixel location, while i(s) is the
corresponding location in the vector representation.

grid. Let Xs be the observations, s belonging to a 3-D lattice
Ω, and N the half of a symmetric 3-D neighborhood (Fig. 3).
Therefore, GMRF are defined as follows:

Xs =
∑
r∈N

θr(Xs+r +Xs−r) + es (24)

where es is a white Gaussian noise of variance σe and θr is a
scalar associated to each direction in the neighborhood. This
Markov random field can be written in a probabilistic way by
(25), and the corresponding Gibbs random field is expressed by
the following expression [15], [16]:

p(Xs|{Xs+r,Xs−r, θr, r ∈ N})= 1√
2πσ2

e

exp−1
2
e2s
σ2
e

(25)

p(X)=
∏
s∈Ω

p(Xs|{Xs+r,Xs−r, θr, r ∈ N}) . (26)

In order to simplify the notation, we propose to introduce
mapping functions from the lattice Ω and the neighborhood
N to some 1-D indexes i(s), j(r), respectively, as shown in
Figs. 3 and 4. Then, the parameter set Θ̂ and the noise variance
σ̂ are estimated by least minimum squares, thus corresponding
to a maximum-likelihood estimation when considering a white
Gaussian error model. Equation (24) is expressed vectorially
in (27) by introducing a matrix G expressed from X . The
vectors X and E are formed by the values Xi(s), Ei(s), re-
spectively. The vector Θ is composed of the values θj(r).
The matrix G is defined by G(i(s), j(r)) = Xs+r +Xs−r.

Hence, the estimated parameters are expressed by the following
equations:

X =GΘ+ E (27)

Θ̂ = (GGT )−1GTX (28)

σ̂2 =XTX − (GΘ̂)T(GΘ̂). (29)

With the previous equations, the problem is formulated as a
linear system. From the estimated parameters, it is possible to
approximate the model evidence (30), in the case of GMRF. A
general formulation of the model evidence for linear systems
is given in [17] and [18]. Considering N,Q being the respec-
tive dimension of X,Θ, the model conditional likelihood is
given by

p(X|M) ≈
π−N/2Γ

(
Q
2

)
Γ
(

P−Q
2

)
|GTG|−1/2

4RδRσ(Θ̂TΘ̂)Q/2σ̂P−Q
(30)

where Rδ, Rσ are arbitrary constants. Then, by a two-stage
Bayesian approach, it is possible to characterize spatio-
temporal patterns. First, we choose the order of the model
(Q) and the analyzing window size (N) by selecting the
greatest model evidence. Then, the parameters are estimated.
By introducing a distance in the features space, it is possible
to efficiently compare spatio-temporal structures through their
representatives. By doing this space transposition, the dimen-
sionality of data to be treated is mainly reduced while the
similarity between spatio-temporal structures is retained.

B. Autobinomial Gibbs Random Field

Autobinomial Gibbs random fields belong to the family of
Gibbs stochastic processes. Like GMRF, they have interesting
properties for characterizing textures [10], [19]. The field is
defined as in the previous section. The maximum gray value in
the image is G and

(
n
k

)
= (n!)/(k!(n− k)!). The autobinomial
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model is defined by introducing an energy function H and a
partition function PF

H(Xs, N,Θ) = −log
( G
Xs

)
−Xsη (31)

η = θ0 +
∑
r∈N

θr
Xs+r +Xs−r

G (32)

PF(N,Θ) =
∑
xs

e−H(xs,N,Θ). (33)

The probability distribution of the Gibbs random field is linked
by (26) to a Markov random field described by the following
equations:

p(Xs|{Xs+r,Xs−r, θr, r ∈ N}) = 1
PF(N,Θ)

e−H(Xs,N,Θ)

(34)

p(Xs|{Xs+r,Xs−r, θr, r ∈ N}) =
( G
Xs

)
qXs(1− q)G−Xs

(35)

q =
1

1 + e−η
. (36)

The parameters are computed with a conditional least squares
estimator (CLSE) [20]. By making some approximations, the
problem is reduced to a system of linear equations as in (27)
with a different definition of X and G [10]. Therefore, the
parameters are estimated as in (28) and (29). Since the system
is linear, the model evidence can be approximated by (30)
(see appendix for details of the calculation). An interesting
property of autobinomial models is that they converge to GMRF
when G tends to infinity. In consequence, the autobinomial
model family is a richer class of parametric models that can
approximate GMRF.

IV. INFORMATION-BOTTLENECK PRINCIPLE

The marginal Bayesian inference and the rate–distortion ap-
proach are integrated in the information-bottleneck framework
described in this section. Following, a theoretical introduction,
we describe an algorithm of soft clustering derived from the
principle. Finally, we show how to use this algorithm to cluster
spatio-temporal events in SITS. In this section, uppercase letters
are used to name random variables, and lowercase letters are
used to indicate realizations of a random variable.

A. Problem Formulation

The information-bottleneck criterion emerged from rate–
distortion theory. The problem is stated as follows [21]. We
would like a relevant quantizer X̃ to compress X as much as
possible under the constraint of a distortion measure between
X and X̃ . In contrast, we also want to capture as much
information as possible about a third variable Y . For example,
we would like to capture information from a set of models M.
In effect, we pass the information that X provides about Y
through a bottleneck formed by the compact summary in X̃ .
An equivalent formulation is that we want to minimize the loss

of mutual information caused by the compact representation
of data, while the mutual information between X̃ and X is
minimized too. There is a tradeoff between these two quantities
that is controlled by the parameter β

min
p(x̃|x)

I(X̃,X) + β
{
I(X,Y )− I(X̃, Y )

}
. (37)

It is equivalent to the following criterion, because I(X,Y )
does not vary with p(x̃|x):

min
p(x̃|x)

I(X̃,X)− βI(X̃, Y ). (38)

The assumption of the following Markov chain is made:
Y ↔ X ↔ X̃ . Banerjee demonstrated in [22] that information
bottleneck can be viewed as a rate–distortion problem based
on Bregman divergence [22]. He considered Z = p(Y |X) and
Z̃ = p(Y |X̃) as sufficient statistics for X and X̃ , respectively.
Z takes its values over the set of the conditional distributions
{p(Y |x)}, and Z̃ takes its values over the set of the conditional
distributions {p(Y |x̃)} = Z̃s. First, as Z and Z̃ are suffi-
cient statistics, it is demonstrated that p(x̃, x) = p(z̃, z) and
I(X, X̃) = I(Z, Z̃). Second, considering the Markov chain
described above, the following equations are obtained:

p(y, x̃|x) = p(y|x) p(x̃|x) (39)

p(y, x̃) =
∑
x

p(y|x) p(x̃|x)p(x) (40)

d(x, x̃) =
∑
y

p(y|x) log p(y|x)
p(y|x̃) (41)

I(X,Y )− I(X̃, Y ) =
∑
x̃,x

d(x, x̃)p(x̃, x). (42)

d is a Bregman divergence defined forZ and Z̃ that corresponds
in this case to the Kullback–Leibler divergence d(x, x̃) =
d(z, z̃). Therefore, the Bregman divergence is equal to the
information loss

EZ,Z̃ [d(z, z̃)] =EX,X̃ [d(x, x̃)] (43)

EZ,Z̃ [d(z, z̃)] = I(X,Y )− I(X̃, Y ). (44)

Consequently, the problem equivalent to the information-
bottleneck criterion is written as the following rate–distortion
problem using the Kullback–Leibler divergence to define the
distortion measure on Z̃s and Zs spaces:

min
Z̃s,p(z̃|z)

I(Z, Z̃) + βEZ,Z̃ [d(z, z̃)] . (45)

B. Optimal Solution

The optimal solutions for minimizing the information-
bottleneck criterion have been expressed analytically in [21].
More general solutions have been found to solve the problem
of (45). Cover and Thomas gave the solutions in [24]. They
considered the Lagrangian L expressed as

L = I(Z, Z̃) + βEZ,Z̃ [d(z, z̃)] +
∑
z,z̃

λ(z, z̃)p(z̃|z) . (46)
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Deriving the Lagrangian L and finding the roots leads to find a
local optimum of the problem

∂L
∂p(z̃|z) = 0 (47)

∂L
∂z̃

=0. (48)

First, for a fixed set Z̃s, the solution to (47) is given by

p(z̃|z) = p(z̃)
N(z, β)

e−βd(z,z̃) (49)

N(z, β) =
∑
z̃

p(z̃)e−βd(z,z̃). (50)

Second, for fixed probabilistic assignments p(z̃|z), the solution
to (48) is given by

z̃ =EZ|z̃[Z]

=
∑
z

zp(z|z̃). (51)

It should be noted that (49) and (51) are interdependent, thus,
making the solutions difficult to compute.

C. Algorithm

Using the two properties (49), (51), Banerjee proposed in
[22] and [23] an iterative algorithm to compute Z̃s and p(z̃|z).
This algorithm is used to solve the problem and to reach a local
optimum of the functional. This section presents the proposed
algorithm. Moreover, this method makes it possible to compute
the divergence Dβ and the rate Rβ . The algorithm takes in
input {p(zi)}ni=1, the set Z = {zi}ni=1, the tradeoff parameter
β, and the number of z̃ denoted k. It returns the optimal
set Z̃s = {z̃h}kh=1 and the optimal conditional distribution
{p(z̃h|zi)} 1≤h≤k

1≤i≤n
. In the following description, we denote by

V t a variable V at the step t of the algorithm. The following
procedure is iterated until convergence after initializing z̃h and
p(z̃h). It is demonstrated that the method converges to a local
minimum

(a1) ∀i N t(zi, β) =
∑
h

pt(z̃t−1
h )e−βd(zi,z̃

t
h
)

(a2) ∀i, h pt+1
(
z̃th|z

)
=

pt(z̃t−1
h )

N t(zi, β)
e−βd(zi,z̃

t
h
)

(a3) ∀h pt+1
(
z̃th

)
=

∑
i

pt+1
(
z̃th|zi

)
p(zi)

(a4) ∀h z̃t+1
h =

∑
i

pt+1
(
zi|z̃th

)
zi.

The rate and the distortion are computed using (52) and (53).
Then, by varying the parameter β, the following rate–distortion
curve is computed. In addition, to obtain consistent calculus
when increasing β, the following algorithm should be derived
in a simulated annealing process [25] in order to avoid local
minima:

Dβ =
∑
i,h

p(zi)p(z̃h|zi)d(zi, z̃h) (52)

Rβ =
∑
i,h

p(zi)p(z̃h|zi) log p(z̃h|zi)
p(z̃h)

. (53)

V. INFORMATION-BOTTLENECK

APPROACH FOR CLUSTERING

The information-bottleneck principle has been used for clus-
tering in a variety of contexts. For example, a word-clustering
method is presented in [7], and an image-clustering method is
presented in [8]. These methods take into account the relevant
information contained in a feature space of a predetermined
parametric model. Our method presents a general framework
of these ideas, where the relevant information is contained in
a model space. This generalization highlights the embedded-
model selection and enables to compare models of different
dimensions.

A. Information Bottleneck Used for Data Characterization

We consider that X contains the observations, and X̃ is the
summary of X . The SITS is partitioned in parallelepipeds of
fixed size, which are the realizations of the random field X .
Let the model M = Y be the random variable that contains the
relevant information. M takes its values in the set of models
composed of GMRF and autobinomial models of three first
orders. These models represent the relevant information that
we want to extract from SITS. Given these models, we focus
on the spatio-temporal texture information extraction, and the
information will be represented as a clustering of the real-
izations of X . Therefore, the information bottleneck gives a
formalism to express the tradeoff between compression (short
summary) and the relevant information contained in the sum-
mary. Thus, this principle indicates how much information can
be extracted from the data by a predetermined set of models.
Consequently, the problem to be solved is

min
p(x̃|x)

I(X, X̃)− βI(X̃,M). (54)

Considering z = p(M|x) and z̃ = p(M|x̃), this may be rewrit-
ten as in (45). To solve this problem, we need to evaluate
p(z) and z. The other variables are evaluated with the Banerjee
algorithm presented in the previous section.

B. Calculus of Model Evidence

Calculating model evidence is not an easy task and requires
some precautions. Indeed, only the logarithm of the evidence
is calculable, and some preprocessing is required. First, in the
case of a general linear model, model evidence (30) is known
proportionally to a constant RδRσ . However, this constant may
vary with the models. Therefore, we normalize the model ev-
idence by assuming that the conditional probabilities integrate
to unity for each realization m of the model M

∀ m,
∑
x

p(x|m) = 1. (55)

Then, we evaluate z = p(M|x) by using the Bayes rule. We
assume that p(M) can be calculated and that the conditional
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probability p(M|x) integrates to one for each realizations x of
the random variable X∑

m

p(m|x) = 1 (56)

p(M|x) = p(x|M) p(M)∑
m p(x|m) p(m)

. (57)

To compute p(M), the first possibility to consider is that
M follows a uniform distribution. In other words, no prior
knowledge on models is introduced. A second possibility to
evaluate p(M) is done by counting occurrences of Bayesian
choice. After normalization (55), the best model mx is chosen
by maximum likelihood for each x. For each realization m of
M, we count the number of times it has been chosen. Then,
p(M) is derived from occurrence counts by normalizing with
the number of realizations of X , denoted by Nx

∀ x, mx = argmax
m

p(x|m) (58)

∀ m, p(m) =
1
Nx

∑
x

δ(m,mx) (59)

δ(m1,m2) =
{
1, if m1 = m2

0, otherwise.
(60)

However, computing p(x|M) is not feasible because of the
required precision. Only the log-evidence log p(x|M) can be
calculated. We shift the log-evidence in order to be able to cal-
culate quantities proportional to the evidence (30) before nor-
malizing by considering that conditional probabilities integrate
to one (55). For example, the shift is done to set the maximum
log-evidence to zero. Finally, since we have computed z, we
estimate p(z) using a histogram based on a Parzen window
defined as follows:

K(z) = 1√
2π

exp
(
−zTz

2

)
(61)

p(z0) =
1

Nz∆

∑
z

K
(
z0 − z

∆

)
(62)

where a Gaussian kernel K is used to compute probabilities
and Nz is the number of realizations of Z. The parameter ∆
is chosen to be small compared to the values of Z in order to
have a good estimate. Finally, we compute the probability p(z)
for each z by (62).

C. Unsupervised Clustering

Unsupervised clustering using Bregman divergence has been
studied in [23]. Our approach makes use of this general frame-
work. The novelty resides in the choice of the variable that
contains the relevant information. By making this assumption,
our method calculates the optimal clustering while taking into
account the relevance of the models. If we consider z̃ being
the cluster centroids, the Banerjee algorithm makes it possible
to calculate p(z̃|z) that is a soft clustering that quantifies the
probability that z belongs to the clusters z̃. Moreover, we know
that p(z̃|z) = p(x̃|x). Therefore, the clustering is based on
the features X̃ that are not accessible. This clustering method
makes use of all models in the set, unlike the techniques that

Fig. 5. Variation of the number of centroids with beta. The number of
centroids varies almost exponentially with log β, which means that the number
of centroids varies linearly with β. Therefore, the parameter β determines the
number of centroids obtained by the clustering method.

are constrained to the best model. All models contribute to
extract distinguishable types of information from data. Finally,
to obtain a hard clustering from p(z̃|z), a centroid z̃∗ is linked
to each z by maximum a posteriori

z̃∗ = argmax
z̃

p(z̃|z) . (63)

D. Choice of the Optimal Number of Clusters

In the algorithm of the information bottleneck, the number
k of z̃ is preset. However, the real number of distinguishable
z̃ obtained after optimization is constrained by β. Therefore,
the initial number k is chosen to be equal to the number
of realizations z. Then, β influences the effective number of
clusters found (Fig. 5). As these two quantities are linked, we
give a criterion for the optimal choice of β. This criterion is
based on the rate–distortion curve D(R), which is a parametric
function of β. The optimal β̂ maximizes the second derivative
of D(R) (64), as previously discussed in the Section II-C. This
is the critical point on the curve that corresponds to the natural
number of clusters. Moreover, local maxima of (∂2Dβ)/(∂R2

β)
are also critical points in the sense that they highlight sub-
cluster structures contained within clusters. Hence, a natural
hierarchical clustering could be derived by calculating cluster-
ings at each local maxima in increasing order. This point is
described in [12]

β̂ = arg sup
β

∂2Dβ

∂R2
β

= arg sup
β

∂2D(β)
∂β2

(
∂2R(β)
∂β2

)−1

. (64)

VI. EXPERIMENTS AND DISCUSSION

A. Experiments on Synthetic Markov Random Fields

For method evaluation, in this section, we compare
the k-means and the AutoClass [26] clustering to the
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Fig. 6. Rate–distortion curve D(R) and the second derivative of D(R) ob-
tained for the information-bottleneck clustering done on causal autoregressive
signals. The curve is discrete, and the second derivative is computed with
the differences. The first local maximum determines the optimal number of
clusters, which is equal to three. This number is equal to the number of model
orders. The second local maximum reveals the existence of subclusters.

information-bottleneck-based clustering on synthetic causal au-
toregressive signals. Unlike k-means, the AutoClass algorithm
has been designed to find the optimal number of clusters. We
use three different models to generate the signals. An example
of a second-order process is given in (65) with the parameters
θ1, θ2, and a white Gaussian noise en. The first method consists
in choosing the best model by comparing model evidences, then
processing the k-means algorithm in the parameters space. The
second method consists in applying the method presented in
Section V and the AutoClass algorithm on the model evidences.
In order to generate the signal, we computed the parameters
of each model following uniform distributions. Then, from a
generated white Gaussian noise, we compute several signals
for each model characterized by its order. Since the parametric
distribution is known, we compute the model evidence by (2)

xn = θ1xn−1 + θ2xn−2 + en. (65)

By the first method, the selected model order is the first one.
Then, we estimate parameter for each signal by least minimum
squares (28). Finally, we process the k-means algorithm in the
feature space taking k = 3. By the second method, we apply
the method described in Section V-D to calculate the optimal
number of clusters. The resulting rate–distortion curve is shown
in Fig. 6, and at the critical point, the optimal number of clusters
is equal to three. In a sense, the first maxima of the second
derivative of D(R) gives the number of models that generate
the signals. Then, the following maxima of (∂2D)/(∂R2)
reveal the existence of subclusters. In Table I, we present the
confusion matrix between the results of clustering and the
real class of signals, which correspond to the orders of model
chosen to generate the signals. We observe that our method per-
forms better than the k-means and AutoClass clustering, indeed
these last methods do not distinguish the signals generated by
different models. Consequently, for this study case, our method
is better suited to extract information from data generated by
several parametric models, like GMRF and autobinomial Gibbs

TABLE I
CONFUSION MATRIX FOR THE k-MEANS, THE AUTOCLASS, AND THE

INFORMATION BOTTLENECK CLUSTERINGS. THE RESULTS SHOW THAT

THE k-MEANS AND THE AUTOCLASS CLUSTERING DO NOT EXPLOIT THE

INFORMATION CONTAINED IN THE MODELS BY GIVING A CONFUSED

MATRIX. AUTOCLASS FINDS THREE CLUSTERS AS THE INFORMATION

BOTTLENECK, WHILE GIVING A CONFUSED MATRIX

random fields. To conclude, this experiment underlines the fact
that the information-bottleneck-based method seems to exploit
the whole set of parametric models to extract the relevant
information.

B. Experiments on Sits

For this paper, we have worked on the ADAM1 data set
provided by the Centre National d’Etudes Spatiales (French
Aerospace Center). The images, constituting the SITS, have
been acquired by three instruments: SPOT 1, 2, and 4 and have
a resolution of 20 m. This SITS comprises 38 images of size
3000 × 2000 and each image contains three spectral bands. The
SITS is not uniformly time-sampled, meaning that the elapsed
time between two images ranges from one day to one month.
The SITS has been intercalibrated to take into account the use of
different instruments. In addition, the images have been coreg-
istered with a subpixel precision. As a remark, the information
visible in data is the evolution of spatial structures. Therefore,
we want to characterize spatio-temporal patterns of this series.
For our experiments, we only used the first spectral band and
two subsequences of sizes 100 × 100 × 7 and 200 × 200 × 7.
We considered the SITS as a realization of a stochastic process.
We partitioned the series in time-overlapping parallelepipeds
of size 10 × 10 × 5 and we considered each parallelepiped
as an independent realization of a stochastic process X . Note
that the parallelepipeds do not overlap spatially. Therefore, we
have 10× 10× 7 = 700 realizations of the process for the first
sequence and 20× 20× 7 = 2800 realizations for the second
series. The set of models chosen is composed of autobinomial
Gibbs random fields (three first orders) and Gauss–Markov
random fields (three first orders). Then, we applied the method
to compute the rate–distortion curve using the algorithm of
Section IV-C with varying β, and we made it vary exponen-
tially. By finding the first local maximum of the second deriva-
tive of the rate–distortion curve (Fig. 7), we selected the optimal
β linked to the optimal number of clusters. From the soft
clustering obtained using the Information Bottleneck principle,
we derive a hard clustering using (63). Thus, parallelepipeds
are characterized spatially and temporally by their belonging
to a cluster. The clustering results are displayed for the two
sequences in Figs. 8 and 9.

1The ADAM data set is in free access at http://medias.obs-mip.fr/adam/. The
set is composed of 57 images. Images SPOT: copyright CNES, 2000–2003.
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Fig. 7. Rate–distortion curve D(R) and the second derivative (∂2D)/(∂R2)
obtained. This curve has been obtained in the rate–distortion analysis of the
stochastic process modeling the second subsequence shown in Fig. 9. The two
local maxima underline the existence of a subclusters structure.

C. Results and Discussion

As shown in Figs. 8 and 9, the algorithm succeeds in char-
acterizing spatio-temporal structures in three or four classes.
First, the stable frontiers have been detected where a frontier
is a border between two different regions. Second, stable linear
structures also constitute a class, which could be roads or talus
delineating two similar areas. Third, a class contains the punc-
tual changes. It reveals the existence of small object dynamics.
Finally, slow temporal variation areas are gathered. In con-
clusion, we are able to extract relevant information contained
in SITS regarding spatio-temporal dependencies. This paper
shows in this case that four classes are meaningful in the SITS
using Gibbs–Markov random fields models. In addition, the ad-
vantages of our clustering method can be summarized in three
remarks. First, the calculus of clustering and the selection of
model are done jointly, unlike hierarchical Bayesian methods.
Indeed, the selection of the model is embedded in the method
by using the model evidence. Second, from the rate–distortion
analysis, the optimal number of clusters is selected automati-
cally. Using this criterion, we try to find the natural number of
clusters, and at the same time, we try to extract the significant
part of the information contained in SITS. Finally, more than a
clustering technique, our method gives a way to quantify and to
qualify the information contained in data. On the one hand, the
information is quantified by the compression or the clustering.
On the other hand, the information is qualified by the third
variable containing relevant information. Indeed, we assumed
that the relevant information is contained in the spatio-temporal
dependencies. However, spectral or geometrical information
was not taken into account in this paper. Our method can be
generalized by considering spectral and geometrical models.
Thus, the problem can be viewed as a multi-information-
bottleneck problem [27].

Nevertheless, one of the drawbacks of the method is the
computation of the model evidence. The computation of log-
evidence produces large nonpositive numbers, and the exponen-
tial of these numbers is not always representable on computers.

However, this tricky step has been solved by the normalization
described in Section V. Another drawback of the method is
the computational cost. Indeed, 9 and 36 h, respectively, are
required to compute the results shown in Figs. 8 and 9. The
computational cost of the algorithm is proportional to the num-
ber of realizations, which is of 700 in the first case and of 2800
in the second. The high computational cost is due to reiterating
the algorithm described in Section IV-C for varying β in order
to compute the rate–distortion curve. To speed up the algorithm,
one can compute the rate–distorsion curve with less samples
of β, thus loosing precision in the estimation of the optimal
number of clusters. Another way to speed up the algorithm is
by relaxing the criterion of convergence of the information-
bottleneck algorithm, thus loosing precision of the clustering.

VII. CONCLUSION

We have presented a novel method to cluster spatio-
temporal parameters of a random field for modeling a SITS.
This informational method enables to characterize spatio-
temporal structures based on the GMRF and autobinomial
Gibbs random fields models. As these models highlight spatio-
temporal dependencies in SITS, the information-bottleneck
method extracts this type of information. Then, by coupling the
information-bottleneck principle to a rate–distortion analysis,
the method leads to find the natural number of classes con-
tained in SITS by determining the critical number of clusters.
Finally, our experiments show that the method is suited to
cluster Gibbs–Markov random fields. Thus, highly informative
structures have been extracted from SITS. Future work will
be done in the multi-information-bottleneck framework to take
into account spectral and geometrical information. Then, from
the characterization results, other work will be done in order
to provide a short length index for spatio-temporal structure
retrieval in large SITS databases.

APPENDIX I
LSE OF THE GMRF

Equation (24) is expressed vectorially by (27), in which the
matrix G is introduced. Here, we give the formulation of G. For
each pixel s and each parameter index r, G is expressed as

[G]s,r = Xs+r +Xs−r. (66)

For simple notation, we make the confusion between the index
of parameter and r that represents a displacement in the neigh-
borhood N on the field.

APPENDIX II
CLSE OF THE AUTOBINOMIAL MODEL

The mean and variance of Xs are expressed as

E[Xs] =
G

1 + e−η
(67)

E
[
(Xs −E[Xs])

2
]
=

Ge−η

(1 + e−η)2
. (68)
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Fig. 8. Sequence represents the harvest of a field. The clustering results are presented on series of size 100 × 100 × 7, and the optimal number of clusters
is three. In the first cluster, the stable frontiers and the linear structures have been gathered. In the second cluster, we observe punctual changes. This cluster
represents the object dynamics. We can see that humidity patches have been detected. Finally, the third cluster contains slow background changes, which represent
stable vegetation. In addition, this cluster has detected the linear artifacts caused by the instruments.

The CLSE is defined as

Θ̂ = argmin
Θ

∑
s

(xs − E[Xs])
2 (69)

= argmin
Θ

∑
s

(
xs − G

1 + e−η

)2

. (70)

We can perform a Taylor expansion and obtain

η ≈ − log
( G
xs

− 1
)
+ es (71)

where es is a Gaussian noise of zero mean and small variance.
By replacing η in (71) by its exact formulation (32), we obtain
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Fig. 9. Clustering results are presented on series of size 200 × 200 × 7, and the optimal number of clusters is four. In the first cluster, we observe the stable
frontiers between two different types of vegetation. In the second cluster, the slow temporal variation regions have been gathered. The third cluster represents the
punctual and small-object dynamics. Finally, the fourth cluster contains the stable linear structures, such as roads or talus between two similar types of vegetation.
In addition, thin fields belong to this cluster, as shown on the right part of images.

the following linear system:

GΘ = d+ E (72)

with the vector of unknown parameters Θ, the vector d of
transformed pixel values obtained from the right terms of (71),

a Gaussian noise vector E, and the matrix G of neighboring
pixel values.

[d]s = −log
( G
xs

− 1
)

(73)

[G]s,r =
{
1, if r = 0
Xs+r+Xs−r

G , if r ∈ N. (74)
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Then, the minimum mean squared error estimate of Θ is

Θ̂ = (GTG)−1GTd. (75)

Finally, p(X|M) is expressed with the (30).
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