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ABSTRACT

We are presenting a global scheme devoted to the management of very large databases of remote sensing
images, with a specific attention to high resolution images. We show at first the specificities of indexing satellite
images. Then we present the different stages of a global system, mostly based on textural feature detection and
SVM classification, for indexing and retrieving parts of satellite images with given properties. We show the role
of the semantic information extraction and we propose and experiment three different manners to introduce such
a semantic information in the query system and to adapt the data to the user’s demand.
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1. INTRODUCTION

A grat number of Earth Observation (EQ) satellites have yet been launched. Even recently, CosmoSkymed
I and II, TerraSar-X, were launched just the last 2 months before this paper is written; they add their high
capacity of image acquisition to the very large number of existing EO satellites which permanently orbit around
the Earth and cover our world with images. The number of available images is growing day after day, but our
capacity to process and exploit them is remaining almost constant because it mostly relies on human experts.
Human expertise being the result of a long and expensive training, is at best stagnating in many countries.

Not only the number of observing satellites is increasing, but also the satellite agility makes them more
efficient in acquiring images, and each image is richer in pixels because of the sensor integration progress, each
pixel being coded with more bits. Therefore, the volume of image archives is growing in an unconcontrolled
manner. One satellite only often delivers more than one terabyte of data a year. The storage problem itself is an
important issue, but it is not addressed here. This paper is interested in the way to allow an efficient access to
these images. In the most conventional way to access to EO image databases, the satellite is first chosen and the
acquisition mode of the sensor. Then, most of the existing systems today are using as a reference to any image,
two pieces of information only : the date/time of acquisition and the scene geographic reference. In some cases the
image may also be selected on a few criteria like its quality (in terms of contrast, saturation, acquisition defects,
etc.), or the cloud ratio. In order to make a larger use of stored images, it would be necessary to keep track
of the image content. Browsing the image descriptions, the user may select those images which are of interest
for his/her application. This problem, known as indexing, is becoming one of the central problems in managing
databases, and especially image and multimedia databases. We will concentrate on this problem in this paper.
At first we will underline the main differences between indexing multimedia databases (a very popular domain
where an abundant literature exists) and indexing satellite images (far less addressed).

In Section 2 we present the problem of EO image indexing as depending both on the user’s demand and on
the very nature of satellite images; then, in Section 3, the choice of low level primitives is discussed, as well
as classification and evaluation of performances. We also address the important issue of resolution and time
sequences. Then, in Section 4 the difficult problem of inferring high-level information from the low-level features
extracted at the signal level is covered with some first results.
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2. IMAGE INDEXING AND RETRIEVING
2.1 Multimedia image retrieval vs. remote sensing image retrieval

A vast amount of literature has been devoted to the image indexing and retrieval topic in the recent years,
mostly under the pressure of the multimedia demand. Literature may be distributed according to several different
categories. Two ways to classify these works are to distinguish, firstly :

— the exact retrieval of a given item as as for instance ”Mona Lisa” or ”Fred Astaire”, where exact may
be mitigated by possible variations (rotation, scale, illumination, affine or perspective transforms, ...);

— the categorical search, where the user is interested to retrieve a member of a family as for instance the
search for ”smiling children” or ”black dogs”.

then :
— the search in open databases as the web or personal archives, where ”open database” stands for an
a priori unlimited archive with many different kinds of documents from uncontrolled origin of unknown
format, size and quality ;
— the search in closed thematic databases as for instance medical or astronomical archives where there is
no risk to find a face of a baby, or a photo from a football player among the documents of the collection.
In the case of remote sensing images we are dealing with ”categorical search in a closed database”. The
exact search is not of great interest for remote sensing applications, since the unique position of one precise
object is usually perfectly known and easily addressed by its coordinates on the Earth. The database may be
considered as ”closed” since all the image sources are perfectly known and usually well documented, allowing to
discriminate most of the documents without opening the files. There is no confusion for the user on the type
of archive which may bring the solution to his/her query. The kind of information brought by SAR images, by
hyper spectral sensors, by meteorological or high definition satellites are so different that there is no ambiguity
on the one which may provide the correct and best answer to any well formulated demand. Moreover, using the
image references, the range of dates and the list of countries of interest may be very fast isolated, limiting even
more the candidates.

Being ”categorical” and addressing ”closed archives”, makes the query task rather different in Remote Sensing
from its counterparts in multimedia for instance. These differences are reflected by the techniques which are
employed, by the protocols to build the complete information management system, but also by the level of
confidence which are demanded to this system. For instance, in EQ, a research is made to obtain not only some
samples of the category of interest but, as most as possible, all the instances.

F1G. 1 — Some instances of two classes of images : sport-places (top) and planes on airports (bottom) as seen
with SPOT 5 at 5 m resolution

2.2 What is a request in Remote Sensing ?

The Remote Sensing domain is supporting a large number of different applications with various possible
demands : defense and security, forest and agriculture, land management, natural and man-made risk survey,
ecology, meteorology, ...are typical fields where the demand for efficient information management systems is



strong. What kind of questions may be asked ? Here are some instances which demonstrate the variety of possi-
bilities :

— the oak forests degraded by a given parasite or disease,
the parts of mega-cities suffering from an uncontrolled growth,
— the area where it would be possible to build a water purification station or a provisional landing terrain,
the list of open-air cultures which have been replaced by green houses in the last year,

— the candidate implantations of a gas-pipe or a power-line,

— the localization of all the golf-greens, close from a marina and a beach.

The first and very important remark which has to be done, is that the field of possible demands is not limited
and not known before-hand. The purpose of satellite image indexing is to allot to every acquired image this layer
of indexes allowing an efficient future access to the data.

There are two different ways to ask a question in image data mining, which are being differently addressed
by the information management system :

1. query by example, where the user is providing an instance of the kind of image he/she is looking for (for
instance an agricultural region with green houses) ;

2. query by language, where the user expresses his/her demand with words. Language may be natural (if
the user is allowed to write his request in his own words, with sentences and free vocabulary) or constrained,
with constraints varying from a fix menu of chosen words to more complex systems where words may be
qualified with attributes or associated together with syntactic rules.

In the following, we will be interested in both strategies. The former allows to derive purely automatic methods
without recurse to any kind of semantics. Most of the methods presented in Section 3 will be convenient for it.
But it is obviously limited to the search for items which have at least one known example. ” Query by example”
allows the use of abstract descriptors which are selected by the machine as the most efficient but are not required
to be understood by the user.

It is not the case when querying by language, at least in the most evoluted case where the user is allowed
to formulate his request in his own words. To facilitate query by language, a simple solution is to make use of
annotations, i.e. to add a set of keywords to describe the image content. Widely used in multimedia where each
image only contains a few number of items of interest, annotation is inefficient in remote sensing because of the
extremely large number of different objects which may be distinguished in the very large satellite scenes. For
some applications, captions may extend the concept of annotation introducing richer descriptions than isolated
words. Captions require some syntactical analysis of the text which makes their automatic interpretation less
simple than annotation. Both annotations and captions are today mostly made by human interpreters and not
automatically deduced from image analysis. Therefore, ” querying by language” is much more complex and Section
4 will mainly devoted to provide possible solutions to solve it.

2.3 A channel coding approach to image indexing

Within the scope of the project here reported, the link between an image and the user, is considered as a
communication channel.? The flow of information is dictated by Shannon theory : each step is a coding which is
supposed to convert the incoming flow into another one with a smaller bit rate but almost the same information
content. This idea was developed using a two stage scheme by Datcu! (Fig. 2). The two-stage process is introduced
in order to take into account the two aspects of information : in a first stage, the best of the signal information
is extracted and coded in an efficient way, in the second stage, the specific demand from the user is translated
into requirements which drive the query. While the first stage is mostly image and signal processing, the second
one is syntactical and semantical.

3. TOWARDS AN EFFICIENT LOW LEVEL IMAGE INDEXING

: In the sequel, we will concentrate on visible range satellite images with a main focusing on high to very high
resolution images (i.e. better than 10 m).
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Fic. 2 — Image processing as a two-stage communication channel as proposed by M. Datcu. The first stage takes
into account the low level image processing operations when the second translates the high level user’s demand.*

3.1 Indexing features

The choice of indexing features received a great attention in the image processing literature. Features depend
on the type and resolution of the sensor, as well as on the task we want to achieve.

In the domain of multimedia for instance, features like SIFT descriptors® associated with strong interest
points* have been widely used® when looking for an exact retrieval. For categorical retrieval one often prefers
shape and color descriptors issued from segmented regions.’

With multi-spectral or hyper-spectral low resolution sensors (Noaa, Landsat, Vegetation), efficient features
are issued from the radiometry of pixels and often combine channels in complex indexes like Vegetation index
(NDVI), Brightness index (BI) or Urban index (ISU), and even more complex when more channels are involved.

With high resolution pan-chromatic images (resolution better than 10 m per pixel, like SPOT), textural
properties are known to be highly discriminating.”® We obtained very good performances with features reflecting
the image textural properties. Moving a window with fixed size (typical size of 64 x 64 pixels or 128 x 128)
at regular places through the image (Fig. 3), a vector of textural descriptors is measured. Several features have
been compared which behave almost the same :

— Haralick cooccurrence matrix descriptors,?

— Gabor filters,'0-12

— Quadratic Mirror Filters (QMF).1314

TAB. 1 — A typical classification result on the dataset of 6 x 600 high resolution images (SPOT 5), using textural
features when using Gaussian kernel SVM with 80 % cross-validation and 145 features per vector.

‘ ‘ city ‘ clouds ‘ desert ‘ fields ‘ forest ‘ sea, ‘

city 98.8 0.5

clouds 99.3 0.2

desert 99.0 0.3

fields 0.5 0.2 0.8 98.1 0.3 04
forest 0.2 98.0 | 14
sea 0.7 0.3 1. 1.7 | 98.2




Used in conjunction with radiometric features, textural features provide excellent performances as may be seen
for instance on Tab. 1.

F1G. 3 — In the proposed scheme, the image is decomposed in overlapping windows (of typical dimension 64 x
64 or 128 x 128). From each window a vector of texture is measured which describes the image content. In this
case a regular set of feature vectors is obtained.

In the case of very high satellite images (Ikonos, Quickbird), texture features are not the most efficient.
Features reflecting the structure of objects in images are more adequate to describe the image content, especially
in case of man-made objects. Experiments are still under development for this problem, but promising results
have been obtained with structural features reflecting for instance the road network density,'® (see an instance
in Fig. 4).

F1G. 4 — Structural features are very convenient to describe man-made sceneries for very high resolution images.
Here a graph representation is used to reflect the road network. Contrary to the case of Fig. 3, an irregular
description results from this detection. From.!®

3.2 Classification of features

A description of the image content in satellite imaging makes use of a very large number of different concepts :



F1G. 5 — Consensual classification of cities. The original clustering algorithms were : K-Means, Kernel-K-Means,'%

Spectral K-Means,!” Ward hierarchical clustering, AutoClass.'® The four cities here presented are (from left to
right and top to bottom) : Barcelona, Istanbul, Los Angeles and Madrid (images from SPOT 5 with a 5 m
resolution - Copyright CNES). The 2 samples on the left present an enlargement of the two classes in blue,
present for instance on Barcelona. From.!?



— geomorphological landscapes like desert, savannah, mountains, water occupations, etc.,
— vegetation, either natural : various forests, meadows, bushes, or man-made : fields, cultures, vineyards,
orchards, wastelands, ...
— various types of cities, villages and settlements, and man-made plants : factories, sport-camps, transporta-
tion networks, factories.
In such a hard context, it is difficult to propose an ideal set of classes and categories which would cover all these
concepts. On the contrary, the description requires to use a more complex description as for instance provided
by an ontology. The development of such an ontology for satellite image processing has been developed in some
domains like for instance in the Cosem project®, but is not yet available for general purpose remote sensing.

The recurse to many different classifiers to exploit a vast amount of attributes issued from a very large set
of samples is natural. Different classifier have different criteria to select clusters : some are looking for compact
masses of samples, some other are looking for separation frontiers, some other are based on hierarchical description
or exploit proximity links between clusters. When no statistical model is consistent to describe the set of data,
we may expect that every classifier is making the best of a part of the existing information on the data. A nice
track is to look for a consensus in the classifiers to reveal the most stable classes existing in the data. Such a
project has been followed for instance by Fred and Jain?® or Lange.2! We followed the idea in?® to make use of
the coassociation matrix which represent in a single matrix the probability of a sample to be clustered with any
other sample by any of the classifiers. But instead of using an information theoretic criterion to extract the most
consensual clusters from this matrix, we have chosen to use a root mean square distance to an ideal classifier.!®
The benefit of such a criterion is the possibility to determine the optimal classification without storing the very
large coassociation matrix in the case where we have millions of samples (as in the satellite imaging case). On
Fig. 5 is presented the result of consensual classification of several urban centers in a study which was interested
in extracting the most typical urban tissues from 10 different cities in the world.

For general purpose classification, several powerful tools have been investigated. However, SVM classifier??
proved to be quite efficient to learn discriminant rules in large decisional spaces from very small numbers of
samples. As our experiments deals with feature spaces of dimension 10 to 200, and as training is a quite tedious
task, in the following, when no mention is made, classification is obtained using SVM with Gaussian kernels.

3.3 Performance testing

In order to test the efficiency of these descriptors and to optimize the choice of parameters, a database of
samples with homogeneous and known content is built, from images issued from SPOT 5 satellite with resolution
5 and 2.5 m. This database has two components :

1. a large set (600) of images belonging to a small number (6) of broad and well distinct classes (i.e. desert,
fields, forest, clouds, city, sea);

2. a small set (between 20 and 100) of images belonging to a large (about 50) set of narrow classes, providing
typical instances of very characteristic sceneries (for instance : commercial mall, parking lot, cemetery, green
houses, stone quarries, ...) (a typical sample set of such images is presented on Fig. 1).

The total database contains more than 7500 samples and it is regularly augmented. Performance testing results
in detection error rate (a typical error rate of 1.4 % + 0.4 % for the experiment reported in Tab. 1), confusion
matrices (as in Tab. 1) or Receiver Operational Characteristic ROC curves (as in Fig. 9), depending on the need.

3.4 Feature selection

As said before, using in conjunction radiometric and textural features provides excellent results for data mining
tasks. However, the obtained vector has about 150 dimensions, therefore storage is heavy and computation time
consuming. In order to reduce the dimensionality one is used to proceed with feature reduction. Several techniques
have been known as efficient for feature reduction, either as wrappers or as filters.?%2* Filters are mostly based
on the statistical properties of data, without reference to any classification, when wrappers are attached to
the performances of a given classifier. While the second are often more efficient, the first ones present many
advantages for satellite image indexing since they are unsupervised and able to deal with very large amounts

*COSEM : Semantics for the Coastal Zone - http ://cosem.erc.msstate.edu



of data. We have developed a very efficient filter method, called KMeans-FS!? which consists in grouping the
features (and not the data) by a conventional K-means algorithm, then replacing a set of features contained
in a cluster by its centroid. This method is easily extended to kernel K-means?® (providing the KK-Means-FS
method) and may also be used in conjunction with Support Vector Clustering (SVC) techniques.?6 A typical
example of effect of the K-Means-FS method is presented on Fig. 6.
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FiG. 6 — Experiment of feature reduction using the KMeans-FS method or the Fisher-FS method (based on
Fisher discriminant analysis®). Starting with 68 features, KMeans-FS allows to reduce the number of feature to
10 without degrading too much the performances.

3.5 Role of scale in image indexing
3.5.1 Interpolating textural features

The many observation satellites orbiting around the Earth have different resolutions and even when high
resolution or very high resolution images are concerned, the size on the ground of a pixel ranges from half a
meter to ten meters. How is it possible in these conditions to retrieve a given type of landscape which may have
been seen by different satellites ? How is it possible to train a classifier with images of different resolutions or,
when training with one resolution only, to retrieve with similar performances images from another satellite ?
Using textural features to index images implicitly involves the image resolution in the indexing vector, and
therefore a solution to convert a feature measured at a resolution to the one which would have been seen at
another.

Indeed it is possible to efficiently interpolate features?® from one scale to another, making the retrieval
almost as efficient as if the training were done at the final resolution. We have shown that, in order to get good
performances, we have to know, not only the satellite resolution, but also the PSF of the camera (or at least
should we have some good guess of this PSF). This point is well illustrated in Tab. 2, where the training stage was
made with a linear SVM classifier on SPOT5-TMA Images, and the recognition stage transported on Quickbird
(both panchromatic or multi-spectral images) or THR-SPOT5 images.



TAB. 2 — Correct classification scores with wavelets or Haralick cooccurrence matrices. A linear SVM classifier
is used with different satellites (QuickBird with Panchromatic or Multispectral images, or SPOT 5 with Very
High Resolution or TMA images) on the same regions, after a training on SPOT 5 TMA images only. In the
case where p = 0, we ignore the PSF of the satellite, in the case where p = 0.5, we consider as a PSF a Gaussian
function with ¢ = 0.5r, where r is the ground resolution.

Image type QB-Pan | QB-Mul | SPOT5-THR | SPOT5-HMA
resolution 0.61 m 2.44 m 2.5 m 5m (c.v.)
wavelets

p=20.5 84.1 % 83.0 % 92.0 % 96.4 %
wavelets

p=0 84.1 % 78.7 % 92.0 % 96.4 %
Haralick

cooccur. matrix | 714 % | 72.3 % 88.0 % 95.8 %

3.5.2 Resolution independent characteristic scale

However, if it is possible to retrieve correctly objects of a given scale in satellite images whatever the satellite
resolution, it is of course necessary that the satellite resolution be better than the dimension of the object of
interest. The determination of the scale of the objects contained in an image is therefore an important problem
in image indexing. When the objects have a unique and fixed size, this problem is not too difficult. More
challenging is the case of many different objects with almost similar sizes, which give raise to the characteristic
scale determination problem which provides a unique figure to characterize a homogeneous area. It is a problem
of great interest to provide size information for instance for the houses in a suburb or the gardens or fields in
countryside.

On this problem also we provided a very robust solution. Starting from the linear scale space determination
method as proposed by Lindeberg,?? we proposed to modify it by using a Total Variation norm3° instead of £2
norm, and taking into account the optical PSF of the sensor.3!
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F1G. 7 — The city of Toulouse (as seen by SPOT 5 with 5m resolution Copyright CNES) and its :characteristic
scale as measured from satellite images with resolution ranging from 1m to 8 m. Taking into account the satellite
resolution and its PSF, the :characteristic scale appears almost the same for all the satellites.?! A value of 2.4
corresponds to a characteristic scale of 15 m.



3.5.3 Map of scales

Characteristic scale is an average measure on a homogeneous area. We may also provide local measure of
scale at each pixel position. What we call the local scale is the scale of the homogeneous region which contains
this pixel. The proposed method is based on the decomposition of the image into its level set, using the fast level
set transform,®? and the estimation of the most significant object which contains each pixel.? A result of such
a map is presented on Fig. 8.

F1a. 8 — Around Toulouse (as seen by SPOT 5 with 5m resolution Copyright CNES) and its map of scales. The
color chart ranges from 3.5 m (deep blue) to 50 m (red).

3.6 Time series

In the Earth Observation literature most of the events of interest are issued from the analysis of successive
images in time : evaluation of earthquake damages, pollution survey, city growth planing, agricultural planning,
etc. Therefore, a great interest emerges from indexing, not only still images, but also time series as obtained, for
instance, by repetitive satellite pass over a region. A great attention was paid to the tracking of region in time,
to the modeling of their evolution and the detection of the most characteristic events which appeared along the
successive observations.?*3¢ Here again an information theoretic approach, combined with a spatio-temporal
analysis of well registered images allows to determine the most efficient coding as a compromise between the
fidelity to information content and the volume of representation.

4. FROM LOW LEVEL TO HIGH LEVEL : ACCESS TO SEMANTICS

Low level satellite image processing is rather efficient. It allows the extraction of features of interest for
indexing and retrieval, but as said in Section 1, it hardly fits the user’s demand to access to data at a natural
language level. To improve the information adaptation to a human expert, we should progress in the identification



of the extracted signal with known and used concepts as manipulated by this expert, and to translate most of
the detected elements into their semantic counterparts. There exist several ways to achieve this evolution :

1. one is to improve the refinement of the categorization of each detected object by using more powerful reco-
gnition tools (using context dependency and specific knowledge) ; in this way we may go from a contrasted
rectangular blob of 10 m? to a vehicle on a road and finally to a private cor.

2. another is to create new concepts, not detected at low level, by grouping local pieces of information to
address descriptions at a larger scale; for instance an airport is made of detected objects like planes,
barracks, runway, etc. which may be locally detected by low-level features.

3. and of course a mix of both approaches.

When indexing satellite images it is necessary to gain in two directions : spatial grouping is necessary for
obvious efficiency reasons (a modern satellite image size is typically 20 000 x 20 000 pixels and its description
must cover very large areas with a few words to allow efficient queries), semantic coding is necessary because
of the appropriateness of words to cover rich and subtle concepts in good agreement with the user’s demand (a
fishing port is definitively different from a sailing port but just differs in one word which carries all the differences
for any expert).

The access to the semantic level requires ”the man to enter in the loop”, since meaning (in the sense we are
interested in) is only the result of man’s activity. We propose below 3 different ways to access to the semantic
level, where both refinement and contextual grouping are used to access at higher level descriptions.

4.1 Relevant feedback

Relevant feedback is a classical way to benefit from the user’s experience in the training stage of supervised
recognition. It often starts from presenting some samples of the kind of landscape or objects we want to retrieve.
At this level, the user may explicitly introduce some form of semantic (for instance the name of the objects he
is looking for, its relation with existing objects or categories of objects, etc.). The system builds a first classifier
from its own knowledge of what exists in the database and presents some results which are supposed to answer
the demand. The user is asked to confirm (relevant positive answer) or infirm (irrelevant negative answer) the
correctness of each sample classification. According to an internal strategy, the machine corrects its classification
and presents new results. The training stage is repeated until the user is satisfied with the results. The final
classification is done with the last optimized parameters.

Within this project an efficient relevance feedback system has been developed,®” based on SVM and Bayesian
classification and making use of a memory to keep track of the yet recognized classes. Every new object is
modeled in the multi-dimensional feature space as a mixture of Gaussians, the number of Gaussians is decided
by MDL3® (Minimum Description Length) or Kernel MDL3? and the parameters of each Gaussian are optimized
by EM (Expectation Maximization).? Fig. 9 presents a typical ROC curve for such a learning engine.

4.2 Semantic information hiring from existing maps

A lot of semantic information is also contained in maps which provide interpreted elements available to enrich
an indexing system as soon as a bijection is made between each element on the map and its existing counterpart
in the image. Cartographers have established rules and norms to attribute words to represent most of the natural
or man-made objects which appear in satellite images. Moreover they extracted the network of concepts which
allows efficient reasoning with these concepts. In our experiment, we benefited from this approach by using the
Corine LandCover database*!*42 as a source of semantic knowledge,*? Fig.10.

4.3 Inference of high level information from examples

The last and most difficult way to derive semantic level information from low level information is through
examples. This track has been explored for remote sensing applications thanks to the KIM system by a speci-
fication of the clustering.” Following some approaches which emerged some years ago in the text processing
context,* it is also possible to infer semantic information by spatial reasoning, grouping local low level features
in larger concepts.?® In such an approach, instances of high level concepts (as for instance industrial suburbs or
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F1G. 9 — Left : Receiver Operational Characteristic for the relevance feedback system,?” we see the improvement
of the classification after 1, 5 and 9 iterations. The result is the average for a classification problem on 16 classes
with 100 samples per class, each sample being used once as a prototype. 3 samples of each class are presented
on the right. From top to bottom, middle columns : Traffic turnaround, boats, Savannah, village, airport, fields,
forest, right columns : clouds, sea, desert, city (Copenhagen), city (Istanbul), city (Los Angeles), city (La Paz),
city (Madrid), city (Paris).

residential suburbs are given to the machine which determines the most relevant low-level features, their probabi-
lity, their spatial distribution (by learning model parameters) by EM mechanisms. After having learned the most
frequent models, the system is able to describe an unknown scene as a mosaic of models each model being the
most adequate to fit the local properties and to propagate through a greedy algorithm. The arbitration between
models is made using an information theoretic criterion, combined with MDL. An instance of such a classification
is presented on Fig. 11.

5. CONCLUSION

Satellite image indexing is a vast and difficult problem. It requires a series of cascaded algorithms based firstly
on a clever determination of where information lies, and secondly on an efficient use of the extracted information
to meet the user’s requirements. Unfortunately, satellite images, because of their number and volume will not
be indexed several times in their life-time, and certainly not at the user’s demand. Indexing must be performed
when the image is received and should be adapted to a question which will only be formulated 5 or 10 years
later. Therefore, indexing is not prepared for a specific query but it should be open to a broad type of questions.

The proposed scheme here presented is made of hierarchical layers of information. The lowest layer is very close
from the image, regularly distributed, dense and abstract. Additional layers are introduced to gather spatially
neighboring low-level features forming by the way areas with a more informative content, where semantic may
be added to help the user searching in the database. Above this intermediary level a global description of the
image is necessary, which could be used for a query in natural language. The articulation between the top levels
is to be made on the ground of concepts linked together as words in an ontology representing the observed world.
This difficult task is under development.



F1G. 10 — Super imposition of two SPOT 2 scenes with a Corine LandCover map (in red) of the French department
of Loiret.*® The training is made on the blue region and extended to the whole images.

FiG. 11 - SPOT 5 image over the region of Marseilles (Copyright CNES) - Inference of high level semantics
information from the low level. The recognized regions are : Industrial areas (grey), Residential areas (green),
Fields (red), Quarry and Vast lands (yellow), Mountains (dark blue), Rural areas (light blue). The images on
the right present some instances of each class. From.*?
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