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Abstract. We describe here a method to annotate satellite images with
semantic concepts. The concepts used for the annotation are defined by
the user. For each concept, the user provides a set of example images
which will be used for learning. The method uses a first step of image
processing which computes SIFT descriptors in the image. These feature
vectors are quantized using an information theoretic criterion to define
the optimal number of clusters. Then, a probabilistic modelization of
the generation of this discrete collection of low-level features is set up.
Each concept is associated to a mixture of models whoses parameters are
learned by an Expectation-Maximization algorithm. The optimal com-
plexity of the mixture is computed using a Minimum Description Length
criterion. Finally, given a new image, a greedy algorithm is used to pro-
vide a segmentation whose regions are annotated with a concept. The
performances of the system are evaluated on Quickbird images at 70cm
resolution for a set of high-level concepts.

1 Introduction

During the last decades, the imaging-satellite sensors have acquired huge quan-
tities of data. Now, the storage of image archives is getting even more enormous,
due to data collected by a new generation of high-resolution satellite sensors.
In order to increase the actual exploitation of satellite observations, it is of
highest importance to set up systems which are able to selectively and flexibly
access the information content of image archives. Most of actual content-based
image-retrieval systems directly use symbolic values, and provide rather satisfy-
ing results for problems like “query by example images”. However, these symbolic
features cannot fully satisfy the expectations of the user, because the user thinks
in term of semantic concepts (“industrial area”, “residential suburb”), and not
in terms of extracted symbolic values (“striped texture”, ”green area”). We aim
in this article to cross the gap (often called ”semantic gap” in the literature
[15]) between these symbolic features and the semantic concepts. Indeed, we are
interested in this paper to increase the ability of state-of-art systems to seman-
tically annotate satellite images. Most of actual methods of semantic annotation
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use a priori knowledge about the different kinds of concepts [11], this results
in time-costly adaptations when the user wants to use other concepts. Our aim
is to develop a statistical approach using a learning step from a set of example
images for each concept. The method uses a first step of image processing which
computes low-level features in the image. These low-level features are quantized
using an information theoretic criterion to define the optimal number of clusters.
Then, a probabilistic modelization of the generation of this discrete collection of
low-level features is set up. For each concept, a mixture of models of generation
of the low-level features is fitted on a data set consisting in a set of example im-
ages given by the user. The optimal complexity of the mixture is defined for each
concept using minimum description length criteria. Finally, given a new image,
a greedy algorithm is used to find the optimal set of semantic annotations by
defining an initial segmentation and then merging regions iteratively. The per-
formances of the system are evaluated on Quickbird images at 70cm resolution
for a set of high-level concepts.

2 State-of-art of semantic annotation of images using

learning

A brief start-of-art of semantic annotations of images is drawn her in two parts.
We first present classical modelisations to link the image to the semantic labels,
then we describe approaches which use annotation methods coming from text
retrieval.

2.1 Modelisations of the problem of semantic annotation

The easier way to annotate an image is to link a whole image to a set of keywords
meaning if the image checks or not, contains or not, the semantic concepts [16]
( ”outside” or ”inside”, ”vegetation”, ”tiger”). The actual systems proceed by
training a classifier annotating automatically an image with semantic keywords.
Recent works have been achieved to face the problem generally. The point is to
introduce a set of latent variables corresponding to hidden states of the image.
During the learning, a set of annotation is provided for each image, the image
is segmented in a collection of regions and an unsupervised algorithm processes
the whole database to estimate the joint distribution of these words and visual
features. Given a new image, vectors of visual features are extracted, the joint
probability is computed with these vectors, state variables are marginalised and
the set of labels maximizing the joint density of semantic concepts and extracted
features is computed.

Other methods aim to annotate only parts of the image, we separate them in
two main axes: the methods which first use a segmentation of the image based
on the extracted low-level features, and the methods which split the image in
tiles which are annoted seperatly. In [10], large satellite images are splited in sub-
images of size 64 × 64, and Gabor features are extracted from each sub-image.
From a manual annotation of the tiles used as learning, a Gaussian Mixture
Model is learned for each semantic label (”road”,”vegetation”,”parking lots”...).



Then, given a new image, the tiles are classified using Maximum Likelihood cri-
teria. In [6], the image is first segmented using features calculated in the image.
The learning set consists in images which are annotated globally, meaning that
the words are not corresponding to a region. The vectors of low-level features
extracted for each regions are then clustered using a ”k-means” algorithm, the
quantized vectors are called ”blobs”. A probabilistic modelisation of the genera-
tion of a blob for a region given an annotation is then defined and learned using
the Expectation-Maximisation algorithm.

2.2 Application of text retrieval methods to semantic annotation of

images

In [1], the authors propose three hierarchical probabilistic methods of genera-
tion of annotated data. The originality is that these methods are close to models
traditionnaly used for textual documents. Two datasets are in fact generated:
the features of regions which are initially segmented in the image, and the an-
notation of this data. This idea to use text-retrieval methods is exploited to a
further extent in [9] where the authors first extract features in regions of the
images and quantize them in order to work on a discrete collection. Then, the
histograms of the quantized low-level features in each regions are used to apply
”bag-words” methods like Latent Semantic Analysis and Probabilistic Latent

Semantic Analysis in order to annotate the regions.
In this paper, we keep the idea to use methods which have proved to be suc-

cessfull for text-retrieval to annotate the images. We choose to quantize features
extracted in the image so that we may work on a set of discrete low-level features.
However, we wish to avoid to apply a segmentation as a first step. Indeed, the
regions may not be segmented correctly using directly the extracted low-level
features.

3 Description of the image by a discrete collection of

low-level features

3.1 Feature extraction in the image

The first step of the method is to characterize the images using SIFT descriptors.
Since its introduction, SIFT (Scale Invariance Feature Transform) descriptor has
stirred great enthusiasm among the computer vision community and it is now
considered as a competitive local descriptor relatively to other descriptors such
as filter banks ([7],[8]). At a pixel where the SIFT descriptor is calculated, four
windows 4 × 4 are considered: each one is weighted by the gradient magnitude
and by a Gaussian circular window with a standard deviation of typical values
4 or 6. Then, the sub-local orientation histograms for each one of these four
windows are built: in our case, 4-bins histograms that cover the [0, π] range
(opposite orientations are considered to describe the same kind of objects). The
histograms are then normalized. Each one of the 4 windows is thus described
by a histogram of 4 values: the concatenation of these 4 descriptors produces a



local descriptor of size 16: the SIFT. In order to keep this descriptor rotation
invariant, the neighbourhood of the detected feature is rotated so that the local
gradient has an horizontal direction. Here, the SIFT descriptor is not extracted
at Harris points but on a regular grid of step 8 pixels. Indeed, the goal here is
not to make object matching but only to have a characterization of the image on
a regular grid. Indeed, we assume that the SIFT descriptor extracts geometrical
features which provide relevant informations about high resolution images.

3.2 Clustering of the SIFT descriptors

The SIFT descriptors thus extracted in the corpus are then quantized. We extract
a subset of the feature vectors extracted in the corpus to learn a codebook. In
order to determine the optimal number of clusters, we use an approach proposed
in [5]. A Gaussian Mixture Model of the features is made and the Minimum De-
scription Length criteria gives access to the optimal complexity of the model. On
a dataset of 60000 SIFT vectors, an optimal number of 24 codewords was found
on figure 1. We will note N the optimal number of vectors, it will correspond to
the size of the vocabulary of the discrete data.

The codewords being calculated, all the features of the corpus of images are
quantized but their location is kept. Thus, we have a new set of images whose
pixels are the index of the codewords, and whose value is in the set {1, ..., N}. An
illustration is given on figure 2. Notice that we can’t compare the values of these
pixels, because the closeness between two indexes does not implye a proximity
in the feature space.
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Fig. 1. Length of the code of the dataset depending of the number of clusters



(a)

(b)

Fig. 2. Result of quantization of the features extracted in the image: (a): raw image of
size 1040×1040, (b): image of size 130×130 obtained after the SIFT vectors have been
extracted and quantized. The grey values of the pixels of this new image correspond to
the index of the codeword in the codebook. Pixels whose grey values are closed don’t
correspond necessarily to SIFT vectors which are closed in the feature space.

4 Probabilistic modelisation used

A pixel-like regular grid of discrete low-level features being extracted, we will call
”pixels” the quantized low-level features labelled by the index of the codeword,
a generative probabilistic modelisation is set up to link these pixels to concepts.
Spatial information about the pixels lying inside the quantized pixels themselves,
only the histogram of occurrences of the values of the pixels inside this region is
modelised. The spatial repartition of the pixels inside a given region is not used.
We limit thus the number of parameters in order to have a simple probabilistic
modelisation and parameters which are easy to estimate. We sum up all the used
notations in 4.

4.1 Global generative modelisation of an image

Let n be the number of the different concepts (“dense urban area”, “railway
node”) introduced to annotate the corpus of images we consider. Let also I be
an image of the corpus, and OI the pixels of the image. We define a semantic
region Sl by a concept and a 4-connex set of pixels Sl(OI) which are supposed



Symbol meaning

N number of codewords in the codebook
m number of regions found in an image
n number of concepts (defined by the user)
s concept index
Ks number of models in the mixture set-up for the concept s

Ni number of pixels in the image of index i in the dataset of a specific
concept

Nij number of pixels whose value is j in the image of index i in the dataset
of a specific concept

pks
j probability of generation of a pixel of value j in the model of index k

for the concept s

Ns: num-
ber of pix-
els in re-
gion S

j index of value of a pixel
O set of pixels in an image whose values are the index of the codewords

after quantization of the SIFT descriptors
i index of an image in a dataset of a specific concept
k index of a model in the mixture of a specific concept
Sl semantic region of index l found in an image
Z latent variable corresponding the mixture model
ns number of images given by the user for the learning of the mixture of

the concept s

Ms model of mixture for the semantic s

Xs set of images given by the user for a concept s

Xsi i-th image of the image dataset Xs

Fig. 3. Used notations in the paper

to be generated by this region. We assume here that each pixel must be linked
to a single region, it implies that the sets Sl(OI) have to define a partition of
OI .

In order to define the set of semantic regions GI = {S1, S2, ..., Sm} which
describes best I with the available annotations, m standing for the number of
regions found in the image, we choose the set GI which maximizes the likelihood
P (OI |GI). The sets of pixels Sl(OI) being assumed to be independant given the
region which generated them, we get the following expression:

P (OI |GI) =

m∏

l=1

P (Sl(OI)|Sl) (1)

We don’t use the probability P (GI), which corresponds to the prior of a
configuration of regions in an image. Defining such a probability does not appear
straightforward, and seems also difficult to learn, as the user does not provide a
segmented image as dataset. However, we plan to suggest an expression for this
term and to expose a learning procedure in future work.



4.2 Mixture model corresponding to a concept

For a given concept s, we define a mixture of models: a latent variable Z is
chosen which defines which parameters will be used to compute the probability
of generation of the pixels between Ks possible sets. Ks can thus be interpreted
as the complexity of the model for this concept. The parameters for this concept
s are the probabilities pks

j of generation of the pixels of value j for the model
k and the prior πks = P (Z = k) of the latent variable. The total number of
parameters for the concept s is then (N + 1) · Ks. More precisely, it is assumed
here that a semantic region of index i whose type of concept is s generates the
low-level features in the following way:

– The number Ni of pixels in the region is generated with a Poisson’s law of
parameter λs

– The model k is chosen with probability πks

– Each pixel of the region is chosen independantly from the others with prob-
ability pks

j , where j stands for the type of the pixel.

Thus, {Ni1, ...., NiN} being the histogram of the value of the pixels generated
by a region of index i corresponding to the concept s, the probability of this
generation is:

P (O = Oi|s, Z = k) = Poissλs
(Ni)πks

N∏

j=1

(pks
j )Nij (2)

By conditionning on the possible values of the latent variable:

P (O = Oi|s) =

Ks∑

k=1

P (Z = k)P (O = Oi|s, Z = k)

By definition, P (Z = k) = πks. Moreover, P (O = Oi|s, Z = k) is the prob-
ability of generation of the pixels given the concept and the latent variable.
Replacing this probability by its expression in Equation 2, we can write:

P (O = Oi|s) = Poissλs
(Ni)

Ks∑

k=1

πks

N∏

j=1

(pks
j )Nij (3)

The likelihood of a set of observations O is thus expressed as a mixture of
models over latent variables.

5 Model learning

We assume that, for each concept s, the user provides as learning data a set
of sub-images Xs corresponding either to semantic regions of type s or to part
of the region. We detail here how to learn the best mixture of models Ms to
maximize the likelihood of the learning dataset Xs while avoiding overfitting.
Notice that as these sub-images may only be a part of a region corresponding to



a concept, it is not possible to estimate the paramater λs of the Poisson’s law
from this dataset. We suppose in this paper thus that the user can choose a value
of λs corresponding to three typical scales of regions: intermediate, large, and
very-large. We plan to make an unsupervised learning scheme of this parameter
in future work.

5.1 Expectation-Maximisation algorithm

In this section, we assume that the number of sets of parameters Ks correspond-
ing to a concept s is fixed, the algorithm detailed in this section is used to
determine the Ks sets of parameters maximizing the likelihood P (Xs|Ms). The
parameters which maximize the likelihood of the learning data are estimated
using an Expectation-Maximization algorithm (EM). Indeed, the EM algorithm
introduces a hidden variable whose knowledge allows easy computation of the
maximum of likelihood [3]. Here, the hidden variable can be chosen naturally as
the latent variables Z corresponding to the choice of the model for each image
i, thus, we can have a tractable computation of the parameters corresponding
to a local maximum of the likelihood of the learning data.

We introduce the latent variable zik whose value is 1 if Z = k for the image
i and the quantity γk(Oi) = EZ|Xsi,Ms

(zik), where k stands for the index of
the model, and i stands for the index of the image. The interpretation of this
quantity is the fitting of the model k to the image i relatively to the other models.

The EM algorithm draws the following scheme to find a local maximum of
the likelihood:

– E step: computation of γk(Xsi), for every model k and every image i by the
Bayes inversion rule.

γk(Xsi) =
πk

∏N

j=1(p
ks
j )Nij

∑Ks

m=1 πm

∏N

j=1(p
ms
j )Nij

This expression is written as the probability of generation conditionnaly to
the model k over the likelihood of the observations in the image i. It seems
logical as γk(Xsi) stands for the interpretation of this quantity is the fitting
of the model k to the image i.

– M step: maximisation of EZ|Xs,Ms
(logP (Xs, z|Ms)). The Lagrange multipli-

ers method is used to maximize this quantity. The following upgrade formula
is thus found :

pks
j =

∑ns

i=1 γk(Xsi)Nij∑ns

i=1 γk(Xsi)Ni

πks =

∑ns

i=1 γk(Xsi)

ns

Notice that the estimation of pks
j corresponds logically to the ratio of the

occurrences of the pixels j in all the images by the total number of pixels,
weighted by the quantities γk(Xsi). The prior has also a very intuitive ex-
pression as the ratio of the sum of the quantities γk(Xsi) over the number
of images in the dataset for the concept s.



5.2 Minimisation of stochastic complexity

We wish to find the optimal complexity of the model for the fitting of the learn-
ing data, meaning the optimal value of Ks. Indeed, the more complex is the
model, the highest is the likelihood, but it may result in overfitting. The model
selection is a classical problem in pattern recognition, and a lot of criteria have
been suggested. In this paper, we select the model by using the algorithm of
minimisation of the stochastic complexity [12]. This principle, introduced by
Rissanen, assumes that the best model is the one which enables the shortest
coding of the learning data. If Ms is noted as the model used to describe the
learning data Xs for the concept s, the length of the code can be separated in
two terms:

C(Xs,Ms) = C(Xs|Ms) + C(Ms) (4)

Ms being a set of real parameters, the length of the code to code should be
infinite, but, as the parameters are estimated with a finite number if samples,
Rissanen suggests in [13] the following expression for C(Ms):

C(Ms) =

ns∑

i=1

α

2
log(Ni)

where α stands for the number of parameters to code.

As for the probability of generation of the pixels, the property:
∑N

i=1 p
js
i = 1

is checked for each jε{1, ..., ks} since p
js
i is a set of probabilities. Thus, N −

1 parameters need to be coded for each model of index k for the generative
probabilities of the mixture.

And as for the prior π, which stands for the prior of the values of the latent

variables, we have the relation:
∑Ks

i=1 πis = 1. Thus, Ks − 1 parameters have to
be coded.

For the term C(Xs|Ms), Shannon proposes the following formula, linking
directly the length of coding of a sequence to its probability of apparition ([14]):

C(Xs|Ms) = −logP (Xs|Ms)

By using the expression of P (Xsi|Ms) detailed in Equation 3, the Equation
4 can be written as:

C(Xs,Ms) = −

ns∑

i=1

ks∑

j=1

πjs

Ni∏

i=1

p
js

m(li)
+

Ks∑

i=1

N − 1

2
log(

ns∑

k=1

γkNk) +
Ks − 1

2
log(ns)

(5)

We have to minimize this expression on the models which have less than ns

sets of parameters.



5.3 Complete algorithm

The EM algorithm described above determines the maximum of likelihood for
a fixed number of models. In order to find the optimal mixture for a number of
models ranging from 1 to ns, we apply the EM algorithm for a number of models
varying from 1 to ns, and we compute the stochastic complexity defined in 5.
The chosen model Ms is the one which corresponds to the minimal stochastic
complexity:

Ms = argminM [C(Xs,Ms)]

6 Procedure of semantic annotation

6.1 Method of semantic annotation of a test image

I being an image to annotate with a given set of concepts, and the parameters
of the mixtures for each concept being calculated, finding the optimal set GI =
{S1, ..., SmI

} in the set G of all the possible configurations of semantic regions
in the image is a very complex problem. Indeed, an exhaustive search of all
possible configurations is impossible, because of the huge cardinal of G. Thus,
we detail here a tractable algorithm which explores a path in the set G in the
following way: we start from an initial and complex configuration, and then we
simplify it by merging regions iteratively, choosing at each step the best fusion
at the sense of the maximum likelihood until there remains only one region for
the whole image. This is a greedy algorithm as the best configuration is chosen
at each step but no backtrack is allowed, and the algorithm may be stuck in a
local maximum of the likelihood.

More precisely, we proceed with the following steps:

– Initialisation of the algorithm: each pixel l of the image I is linked to a
concept considering its type and its neighbourhood NE(l) by choosing the
concept s minimizing the quantity (cf Equation 3):

P (NE(l)|S = s) =

ks∑

j=1

πjs

∏

lfεNE(l)

p
js

m(lf)

To define the neighbourood, we consider a square centered on l whose edge
is of size t and take NE(l) as the set of pixels wich are in this square. Then,
semantic regions are created as 4-connex sets of pixels to make an initial set
of semantic regions G0. The likelihood P (XI |G0) si calculated (cf Equation
1). We notice that the larger the value of t is, the fewer regions there are in
G0, and so, the faster is the algorithm.

– Let i be the number of the step of iteration the loop, as long as the number
of regions is more than 1:
• We consider all the possible merging of adjacent semantic regions.

∗ For each possible merging, we consider the n cases where the merged
region has the concept of index s, sε{1, ..., n}. Then, for each case, if
semantic regions are adjacent and have the same concept, they are
merged. We compute the likelihood for all these resulting configura-
tions.



• The configuration maximizing the likelihood is kept and noted Gi.
– We keep the configuration maximizing the likelihood among all the found

Gi at each step.

The number of iterations of the loop is less than card(G0), the number of
semantic regions found during the “initial guess”. Indeed, for each iteration, at
least two regions are merged, we thus have: card(Gi) ≤ card(Gi)−1, this ensures
that the algorithms ends within a finite number of iterations.

6.2 Experiments

We made evaluations of this method on a database of Quickbird images of Beijing
at 0,7cm of resolution. The database contains 16 images of size 16000 × 16000
pixels and covers thus a square whose edge is of size 11 kilometers. We use the
followings concepts: dense urban area, residential housing area, industrial area,
railway node, residential area, commercial area, working area, wasteland, fields,
greenhouses, water.

Classification of sub-images We made classifications of extracted sub-images
to have quantitative results. The database contains around 150 sub-images as
shown on figure 4 corresponding each one to a concept among those listed above.
We proceeded by cross-validation with 80% of learning and 20% of test. The size
of the images vary from one 400×400 to 1000×1000. We get a result of 96,4% of
good classification. We intend to evaluate this algorithm on a bigger databases
of different cities in future work.

Segmentation of large images We performed semantic annotation of test
sub-images using the chosen concepts. The models are learnt for each concept
using our database of examples sub-images. For a test image of typical size
6000×6000, the whole process of feature extraction, quantization and annotation
lasts around 5 minutes on a 3,2GHz processor. The results are satisfying as we
can see on figure 5. Notice that as the algorithm has to annotate the whole
image, the concepts have to cover all the possible kinds of areas in the database.
We plan to add a reject class for areas found in the test images not correponding
to any kind of example images given in the learning dataset.

7 Conclusion

We presented in this paper a probabilistic approach to semantically annotate
images of a corpus with concepts using a learning step. For each concept, the
user provides a data set and a mixture of models is fitted on this data by adapt-
ing the complexity of the model to this dataset. Inside a region annotated by
a given concept, only the histogram of the value of the pixels is used. This ap-
proach can be linked to probabilistic methods using ”bag-of-words” description
of text documents [4] [2]. This is a strong hypothesis because the spatial rela-
tionships between pixels is overlooked and only the spatiality between the pixels
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Fig. 4. Examples of semantics considered for evaluation: (a): building site, (b): railway
node, (c): commercial place, (d): dense urban area, (e): wasteland, (f): industrial place,
(g): housing area, (h): residential big buildings area



housing area dense area fields greenhouse wasteland

Fig. 5. Results of segmentation on a Quickbird image of Beijing of size 7000 × 5000
pixels



of the raw image captured during the feature extraction is thus considered. This
simplification choice enables us to limit the number of parameters in order to
have a simple probabilistic modelisation and parameters which are easy to esti-
mate. This method has proved to be efficient for segmentation of large images
by experimental results.
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