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ABSTRACT

This work demonstrates a sequential Least Squares algorithm ap-
plied to the decomposition of sounds into sines-plus-residual mod-
els. For a given basis of r distinct frequency components, the algo-
rithm derives recursively the Least Squares estimates of the associ-
ated amplitudes and phases. While a direct calculation achieves a
O(nr2) complexity the main cost of our implementation is only of
4r multiplications per sample, whatever the length n of the anal-
ysis window. The technique is extended to basis of exponentially
increasing or decreasing frequency components, which provides a
fast and enhanced decomposition of rapidly varying segments of
the sound. Finally, the proposed method is successfully applied to
a real piano note.

1. INTRODUCTION

Numerous audio signal processing systems involve a decompo-
sition stage to enable separate processing of the sinusoidal com-
ponents and the stochastic part of sounds. Often partly owing to
the early work of Serra [1], which has evolved into the referential
SMS1 framework, applications in the field of analysis/synthesis
of musical sounds, as for instance Digital Audio Effects [3], have
prospered in the past decade ; aside mentioning the successful fate
of the Harmonic-plus-Noise Model (HNM) for speech processing
(see [4] for instance). These techniques commonly compute spec-
tral estimates (e.g frequency of partials or complex poles) and am-
plitude estimates of the sinusoidal part for subsequently obtaining
the residual (e.g. the stochastic part) by subtraction. Both estima-
tion problems have widely been studied, including Fourier based
methods as in [1] and High Resolution methods [5] for the for-
mer ; spectral interpolation [6] and Least Squares (LS) approxi-
mation for the latter [7]. This last reference actually presents an
in-depth survey of LS amplitude estimation. Different aspects of
both problems are jointly discussed in [8].

If the motive which initially propelled this work forward was
to obtain the less distorted mechanical residual noise left when
removing the sinusoidal content of a piano tone, its applicability
extents to any audible scene with a piecewise steady spectral con-
tent — i.e. the frequency of the partials remain constant over their
duration while their amplitude may vary. It is thus a relevant ap-
proach for modeling a number of unsustained musical sounds2.

∗This work is supported by the Groupe des Écoles de Télécommunica-
tions, TAMTAM project and the Agence Nationale de la Recherche, under
contract ANR-06-JCJC-0027, DESAM project.

1Spectral Modeling Synthesis, see [2] for an overview.
2The sound produced by a free vibrating, linear mechanical system can

be decomposed into a sum of amplitude-modulated sinusoids

An adaptive algorithm is proposed for computing the slowly
varying amplitudes of r spectral components, assuming their fre-
quency is known in advance. The method operates at the sample
scale, and both parts of the sound are derived at a O(r) cost per
sample. , allowing an accurate estimation together with a low la-
tency processing. The novelty of the method is to account for the
sinusoidal nature of the model and the associated rotational invari-
ance property of the signal subspace to obtain a low-cost recursive
computation.

The paper is organized as follows. The parametric model and
the recursive algorithm for estimating and decomposing the signal
components are presented in section 2. Section 3 is devoted to
performance analysis, which is addressed both theoretically and
via numerical simulations. An application to a real piano note is
presented in section 4. Finally, the main conclusions of this study
are summarized in section 5.

2. MODEL AND PRINCIPLE

2.1. Least Squares estimation of amplitudes

Let x denote a complex sequence, as for instance the analytic rep-
resentation of an audio signal. It is decomposed as the sum of r
complex exponentials and an additive noise w :

x(t) =

r−1∑
k=0

bke(−δk+j2πνk)t + w(t), (1)

where t ∈ Z is the discrete time index, δk and νk respectively
being the damping factor and the frequency of the kth partial, and
bk its associated complex amplitude. We assume in addition that
the poles zk = e−δk+j2πνk , k = 0, . . . , r−1 are distinct. The LS

estimates b̂ of these amplitudes over the n-dimensional snapshot
[t, t + 1, . . . , t + n − 1], with n ≥ r, are the solution of x(t) =
VDtb + w(t)which minimizes ‖w(t)‖2 ; where

w(t) =
[
w(t) w(t + 1) . . . w(t + n − 1)

]T
,

x(t) =
[
x(t) . . . x(t + n − 1)

]T
,

b =
[
b0 b1 . . . br−1

]T
,

D = diag{z0, . . . , zr−1} and V is the Vandermonde matrix of
the poles defined as:

V =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
z0 z1 . . . zr−1

z2
0 z2

1 . . . z2
r−1

...
...

...
...

zn−1
0 zn−1

1 . . . zn−1
r−1

⎤
⎥⎥⎥⎥⎥⎦

. (2)
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Since the zk’s are distinct, V is full rank, VHV and Dt non-
singular, and b̂ is well known to satisfy the relation x̂(t) = VDtb̂
where x̂(t) is the projection of x(t) onto the range space of V
(which is also the range space of VDt∀t). This leads to:

b̂ = D−t(VHV)−1VHx(t) = D−tV†x(t), (3)

where the superscript † denotes the pseudo-inverse. At each itera-
tion, assuming that V† has been derived once and for all, the main
cost of the operation described in (3) is the nr MACs3 involved by
the product V†x(t), which achieves a O(τnr) complexity when
processing a τ -sample long fragment.

2.2. Recursive computation of amplitude estimates

In an adaptive context, the amplitudes are assumed to slowly vary,
e.g. they become bk(t) and are considered as quasi-constant over
the analysis window duration of n samples. We thus look for

solving d(t) = V†x(t),where d(t) = Dtb̂(t), recursively at
each time step. Note that if this problem bears a resemblance to
that of the adaptive estimation of FIR filters and its well known
RLS (Recursive Least Squares [9]) solution, in our case the ma-
trix R = VHV does not depend on time4. The derivation below
indeed uses the classical rewriting of the pseudo-inverse

d(t) = R−1p(t), (4)

where
p(t) = VHx(t). (5)

Let now define V↓ (resp. V↑) as the submatrix of V obtained by
deleting its last (resp. first) row. Then we can rewrite either V =
[u VH

↑ ]H or V = [VH
↓ v]H . Using the first identity while taking

into account the rotational invariance property of the Vandermonde
matrix V↓D = V↑, (4) leads to:

p(t) = x̂0(t)u + S D d(t), (6)

where x̂0(t) indicates the first coefficient of x̂(t), equating the
sum of the d(t) coefficients, and where S = VH

↑ V↓. The
second form for the writing of the matrix V, together with the
Sherman-Morrison formula (also known as the matrix inversion
lemma [10]), leads to

R−1D−H =

(
Ir − R0

−1vvH

1 + vHR−1
0 v

)
S−1, (7)

where R0 = VH
↓ V↓ and D−H = (DH)−1 = (D−1)H . To

obtain a recursion on p(t), the data vector is decomposed into
x(t) = [x(t) x↑(t)T ]T and one sample ahead as x(t + 1) =
[x↑(t)T x(t + n)]T . The relation (5) then results in

p(t + 1) = D−H(p(t) − x(t)u) + x(t + n)v. (8)

Incorporating finally (6), (7) and (8) in (4) leads to

d(t + 1) = Dd(t) − e0(t)q1 + en(t)q2, (9)

where ek(t) = x(t + k) − x̂k(t), k = 0, . . . , n, q1 =

R−1D−Hu, q2 =
R0

−1v

1 + vHR−1
0 v

= R−1v. It can be noted

that the predicted value of x at time t + n, taking into account the

estimated amplitudes at time t, amounts to x̂n(t) = vHDt+1b̂(t).

3Multiplication and ACcumulation
4Such recursive methods are sometimes referred to as sequential least

squares in the literature.

Remark 1. The recursive computation of d(t) following equation
(9) implies only O(r) operations, if the fixed quantities D,q1 and
q2 have been computed ab initio. Besides, it is worth noting that
the same recursive computation using the recursion on p(t) given
by equation (8) incorporated in (4) without any further processing
leads to a O(r2) complexity.

Remark 2. Equation (9) takes the form of an update of d(t) in-
volving the updated value of the vector for constant amplitudes
(first term) and correction terms related to past and future samples.

2.3. Recursive decomposition of the signal

x̂(t) is the LS estimate of the sinusoidal component associated
to the snapshot data vector x(t). At time t, an estimate of the
sinusoidal signal is thus obtained by taking the first coefficient of
x̂(t), in short xs(t) = x̂0(t). The derivation below will emphasize
the benefit of the obtained recursion on d(t) since it will achieve a
O(r) complexity for the recursive decomposition. This algorithm
is simply obtained by noticing that x̂0(t) = uHd(t), leading to
the pseudo-code given in table 1.

Table 1: Recursive sinusoidal+noise separation

Initialization :

zk
Δ→ vk =

[
1 zk . . . zn−1

k

]T
, k = 0, . . . , r − 1, D = diag{zk},

V = [v0 v1 . . . vr−1] , d(0) = V
†
x(0),

R = V
H

V, u = 1r×1, q1 = R
−1

D
−H

u, q2 = R
−1

(D
H

)
n−1

u,

x̂0(0) = u
H

d(0), x̂n(0) = u
H

D
n
d(0) → {e0(0), en(0)}

For each time step do⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Input sample : x(t + n + 1)
main section Cost
d(t + 1) = Dd(t) − e0(t)q1 + en(t)q2 3r MAC
x̂0(t + 1) = uHd(t + 1) r Add
x̂n(t + 1) = uHDnd(t + 1) r MAC
e0(t + 1) = x(t + 1) − x̂0(t + 1) 1 Add
en(t + 1) = x(t + n + 1) − x̂n(t + 1) 1 Add

3. TUNING OF THE ALGORITHM PERFORMANCE

3.1. Variance of the estimates

Since we are dealing with non stationary signals, the question
arises of choosing the snapshot length n. On one side it should
be kept under a typical temporal value representing the duration
where the signal parameters can be considered as roughly constant
and on the other side the longer n, the more accurate the estima-
tion of modes and particularly that of neighboring modes. Further-
more, in contrast to much frame-based processing, for instance
those which use a Short Time Fourier Transform (STFT) frame-
work, the computational burden in our case is decoupled from the
accuracy and resolution issues since it does not depend on n.

In this section, the noise w is assumed to be white circular
Gaussian, N (0, σ2I). Thus, for a given set of r distincts poles
zk, k = 0, . . . , r − 1, the estimate of the amplitudes obtained
by equation (3) is both that of the maximum likelihood for the
considered sliding analysis window and minimum variance unbi-
ased [11]. Following [11] the covariance matrix of the LS esti-
mates d can be expressed as

Cd = σ2(VHV)−1 = σ2R−1. (10)
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When the poles are on the unit circle, equation (10) indicates that
the estimation becomes poor for frequencies close to each other;
since the matrix R then tends to be singular. The calculation of the
Cramer-Rao lower bound for parameter estimates or the analytical
derivation of their covariance matrix is in fact a broadly investi-
gated field (see for instance [7]) and we will here only stress the
case of two components of respective frequencies ν1 and ν2. R is
then 2 × 2 and this leads to the expression of the variance for the
component amplitudes:

var d1 = var d2 =
σ2n

|R| , (11)

where the determinant of R is given by

|R| = n2 − sin2(πn(ν1 − ν2))

sin2(π(ν1 − ν2))
. (12)

The interest of this last formula is to assess the asymptotic vari-
ances when δ = ν1 − ν2 tends towards zero. By developing the
expression (12) it follows:

var d1 ∼
δ→0

3σ2

π2δ2n(n2 − 1)
. (13)

On the other hand, when n becomes large for a fixed δ, equa-
tions (11) and (12) show that the variance reduces to

var d1 ∼
n→∞

σ2

n
. (14)

The commutation between both asymptotic regimes occurs for (as-
suming n � 1) δ n =

√
3/π2 = 0.55 and thus is interpretable in

terms of resolution: the estimation accuracy of two spectrally close
components becomes dubious when the frequency discrepancy is
of order n−1. The following section exemplifies the consequent
summary of these comments: n has to be tuned as large as possi-
ble taking into account the characteristic temporal variation of the
model parameters, since there is no additional cost associated to
its growth.

3.2. A tricomponent exemple

Figure 1 represents the amplitude of three cisoids at 400, 430 and
2000 Hz, sampled at 8 kHz and which are respectively exponen-
tially decaying, Hann window modulated and oscillating (tremolo
musically compliant at 5 Hz) with finite duration. n has been
chosen on purpose as low as 30 samples (3.7 ms) with an overall
SNR of 20 dB (here σ = 0.1), so that the estimates’ variances are
clearly noticeable. The estimates are drawn in gray solid line while
the true values are depicted in black. In dashed black are sketched
the standard deviations of the estimates, the one for the first com-
ponent (400 Hz) being derived following equation (13) and that
for the third component (2000 Hz) following equation (14). This
shows the usefulness of these asymptotic formulae for evaluating
uncertainties in practical cases. Note that in this exemple, the ba-
sis5 used is the Vandermonde matrix. This basis will be herein
referred to as steady in contrast to those where at least one pole
lies inside or outside the unitary circle. As a remark, it should

5In most cases the signal does not actually globally fit a sines+noise
model and the term of basis denotes here the linearly independant subset
of vectors spanning the signal subspace locally defined by the model.
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Figure 1: Estimation of 3 component amplitudes, n = 30.

be mentioned that, taking into account the steadiness of the ba-
sis, the obtained estimates are delayed by (n − 1)/2 samples to
be relocated in the middle of the analysis window. Finally, if n
is increased to 200 samples (40 ms), the results are represented in
figure 2. The variance for the first component (and thus for the
second) is given by equation (11), reaching a standard deviation
of 0.007. This does not explain the oscillations appearing for in-
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Figure 2: Estimation of 3 component amplitudes, n = 200.

stance on the first decaying component. These are caused by the
non stationarity of the component amplitudes over the observation
duration and are thus interpretable as a deterministic bias.

3.3. Dealing with unsteady partials

Unsustained musical sounds often demonstrate decaying ampli-
tudes after an attack portion where they rapidly increase in most
cases. As a sequel, arises the idea of replacing the steady basis
(as used in the preceding exemple) by an unsteady one. Figure 3
illustrates the estimation performance on a single component mod-

ulated by a function f of the form f(t) = tαe(t/τ)β

, normalized
and starting at t = 0.1 s. The SNR is taken as high as 90 dB in or-
der to assess the deterministic modeling error when projecting the
original amplitude onto an exponential basis. Logically, the error
obtained when using a 3-dimensional basis with damping factors
{−0.1n−1, 0, 0.1n−1} (represented in gray) is much lower than
that obtained when the basis is chosen 1-dimensional and steady
(dashed), even if we can notice a slightly longer pre-echo effect.

4. APPLICATION TO A NOTE DECOMPOSITION

The application demonstrated here considers an E6 piano tone.
The high register has been elected for simplicity’s sake. To be
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Figure 3: Residual magnitude for a single component, presenting
both attack and decay phases; α = 2, β = 0.8, τ = 20 ms and
n = 500 (63 ms).

more accurate, medium and low registers are better processed after
a subband decomposition (an example is given in [5]). The com-
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Figure 4: Original and residual power spectrum (gray). n = 882
(20 ms), unsteady basis. The black circles indicate the results of
the peak picking step.

plete routine includes a first preprocessing step whose purpose is to
whiten the original spectrum by means of an autoregressive (AR)
modeling of the background power density, subsequently inverted
by a Finite Impulse Response (FIR) filtering. This step is compen-
sated at the end, by an AR-filtering. This preemphasis is useful
since for real recorded data the background noise is seldom white
and the results of the section 3 do not apply. In addition, the re-
sulting power distribution between the low frequency components
(usually more prominent) and the high frequency components is
more balanced, leading to a better accuracy for the estimation of
the latter.

In such a real-world case, the set of frequencies needed to

compute the basis has to be estimated at first, independently from
the studied processing. Consequently, a different and much longer
analysis frame can be used to obtain this set, leading to a fine
resolution (here 2 Hz). More precisely, the values are found by
peak-picking a zero-padded modified Welch periodogram, reach-
ing a precision of 0.3 Hz. The results are depicted in black circles
in figure 4. Then the sequential LS is applied with the unsteady
basis mentioned in the section 3.3, over a 20 ms long analysis win-
dow. The results shown in figure 4 can be regarded as satisfactory
for the background PSD is well respected by the processing : no
broad notching effect is noticeable and the frequency content has
been almost totally removed. Furthermore, the temporal charac-
teristics (not presented here) are well captured and, when listened
to, the residual noise seems to well restitute the characteristics of
an impact mechanical noise.

5. CONCLUSION AND ISSUES

In this paper, a sequential Least Squares method has been ap-
plied in the context of sinusoidal modeling. It benefits from the
rotational invariance property for finally achieving a O(r) com-
plexity per sample while estimating the r components amplitudes
and computing the harmonic part and the residual. An applica-
tion on a piano note is demonstrated which includes a careful pre-
emphasizing of the sound. The results are encouraging but some
important unachieved studies are still on the work table, among
which the extent of the algorithm to a forgetting analysis window
and the estimation performance when the unsteady basis is used.
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