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Abstract – Given a tournament T = (X, A), we consider two tournament solutions applied to T: 
Slater’s solution and Copeland’s solution. Slater’s solution consists in determining the linear 
orders obtained by reversing a minimum number of directed edges of T in order to make T 
transitive. Copeland’s solution applied to T ranks the vertices of T according to their 
decreasing out-degrees. The aim of this paper is to compare the results provided by these two 
methods: to which extent can they lead to different orders? We consider three cases: T is any 
tournament, T is strongly connected, T has only one Slater order. For each one of these three 
cases, we specify the maximum of the symmetric difference distance between Slater orders 
and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in 
circular tournaments, we show that this maximum is equal to n(n – 1)/2 if T is any tournament 
on an odd number n of vertices, to (n2 – 3n + 2)/2 if T is any tournament on an even number n 
of vertices, to n(n – 1)/2 if T is strongly connected with an odd number n of vertices, to  
(n2 – 3n – 2)/2 if T is strongly connected with an even number n of vertices greater than or 
equal to 8, to (n2 – 5n + 6)/2 if T has an odd number n of vertices and only one Slater order, to 
(n2 – 5n + 8)/2 if T has an even number n of vertices and only one Slater order. 
 
Keywords – Majority tournament; tournament solutions; Slater orders; Slater winners; 
Copeland orders; Copeland winners; symmetric difference distance; arc-disjoint circuits in 
circular tournaments. 
 
 
1. INTRODUCTION, DEFINITIONS AND NOTATION 
 
1.2. Introduction 
 
At the end of the eighteenth century (for the historic context, see [8], [32], [33], [34] and 
[35]), M. J. A. N. Caritat, marquis de Condorcet, studied a problem arising in voting theory: 
the aggregation of linear orders into a linear order [9]. To solve this problem, he suggested to 
apply a pairwise comparison method.  

To describe such a method, let X be a finite set of candidates; n will denote the 
number of candidates (i.e., n = |X|). We consider that m voters are asked to rank the elements 
of X. Condorcet’s method consists in computing, for each candidate x ∈ X and each candidate 
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y ∈ X with x ≠ y, the number mxy of voters who prefer x to y. The (strict) majority  relation is 
the relation T defined by: xTy ⇔ mxy > myx (for a more general presentation on this topic, see 
[5]). If there is no tie, what will be assumed in the sequel, T is then a tournament (called the 
majority tournament of the election), i.e. a complete asymmetric relation: for any pair of 
candidates {x, y} with x ≠ y, one and only one of the following two situations occurs: xTy or 
yTx. From the graph theoretic point of view, a tournament T = (X, A) is a directed, complete, 
asymmetric graph: between two distinct vertices x and y (x ≠ y), there exists one and only one 
of the two arcs (i.e., directed edges) (x, y) or (y, x) (for references on tournaments, see [30], 
[36], [39], [40], as well as [31] for a catalogue of non isomorphic tournaments with at most 10 
vertices or for some families of tournaments; more generally, see for instance [2] or [6] for the 
bases of graph theory). It is well-known that a tournament is transitive if and only if it is 
without any circuit (i.e., directed cycle) and, in this case, it is a linear order. It is also well-
known that a tournament T is strongly connected if and only if there exists a Hamiltonian 
circuit, i.e. a circuit going through each vertex of T exactly once.  

Notice that, even if we assume the preferences of the voters to be linear orders defined 
over X, the majority tournament T is not necessarily a linear order, because T may not be 
transitive: a candidate x can be preferred to another candidate y by a majority of voters, y to a 
third candidate z by another majority of voters, and z to x by a third majority of voters. Such a 
situation, discovered by Condorcet himself, is known as the « voting paradox » or also as the 
« effet Condorcet » in French (see [19]). But T can also be a linear order. A linear order O 
defined on X will be represented by a permutation (x1, x2, …, xn) of the elements of X = {1, 2, 
..., n}. In such a representation of O, a candidate xi will be considered as preferred to another 
candidate xj according to O if xi occurs before xj in the writing of the permutation i.e., for the 
permutation considered above (x1, x2, …, xn), if i is smaller than j. The candidate x1 who is 
ranked in first position of the considered order O will be called the winner of O. More 
generally, if a tournament T admits a vertex x fulfilling the following property: ∀ y ∈ X, xTy, 
then x is the winner of T. With respect to the election summarized by T, the winner of T, if 
any, is the Condorcet winner of the election, i.e. a candidate preferred to all the others by a 
majority of voters. If a Condorcet winner exists, there is only one. 

The following example gives an illustration of a majority tournament. 
 

Example 1. Consider X = {1, 2, 3, 4} and m = 16. The preferences of the 16 voters are 
assumed to be the following, with the notation described above for representing the linear 
orders: 

• (1, 2, 3, 4) for 4 voters 
• (3, 4, 1, 2) for 2 voters 
• (4, 1, 3, 2) for 5 voters 
• (2, 3, 4, 1) for 5 voters. 
The majority tournament associated with this election is the tournament of Figure 1. 
 

 
 
1 
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FIGURE 1. The majority tournament of Example 1. 
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When the considered tournament is not a linear order, we can wonder how to rank the 
candidates and which candidate(s) must be or can be considered as the winner(s) of the 
election. Different answers can be brought to this question, known under the name of 
tournament solutions (see for instance [27], [30] or [37]). In this paper, we pay attention to 
two tournament solutions (of which the definitions are specified below): the solution designed 
by P. Slater [42] and the one by A.H. Copeland [16] (notice that, according to [33], Ramon 
Llull (ca 1232–1316) promoted the method of pairwise comparison and proposed the 
Copeland rule to select a winner; despite this historical discovery, we shall keep the usual 
authorships). These two methods give the possibility to construct linear orders to rank the 
candidates and to define winners of the election, called Slater winners or Copeland winners, 
from the winners of these orders. The question that we study in this paper is the following: to 
which extend can the rankings provided by these two methods be different? 

Thanks to an example with 7 vertices, J.-C. Bermond [7] already showed that the 
Copeland winners and the Slater winners can define disjoint sets. In fact, such a situation can 
occur for any n ≥ 6 (see [12] or [14]). More precisely, these two sets are equal for n ≤ 3, the 
set of Copeland winners contains the one of Slater winners for n = 4, and the intersection of 
the two sets is non-empty for n = 5 but there is no systematic inclusion between them. The 
relationships between Slater’s solution or Copeland’s solution on the one hand and other 
tournament solutions on the other have already been investigated (see [12]): it is the case for 
instance for the solution of J.G. Kemeny [22] (see [13] and [23]), for the solution of J. Banks 
[3] (see [15], [20], [25], [38]), for the solution of C.L. Dodgson (also known as Lewis Carroll) 
[17] (see [24]), or for the prudent orders [1] (see [28]). 

Last, notice that the maximum likelihood method proposed by E. Zermelo [45] (see 
also [30]) yields to the same winners and to the same rankings as Copeland’s solution. 
Consequently, all the results below between Copeland’s solution and Slater’s solution can 
also be applied for a comparison between Zermelo’s solution and Slater’s solution. 

 
 

1.2. Definitions and notation 
 
In the sequel, T will denote a tournament of order n. The vertices of T will be 1, 2, …, 

n. By definition of a tournament, for any pair {x, y} with 1 ≤ x ≤ n, 1 ≤ y ≤ n and x ≠ y, there 
exists exactly one of the two arcs (i.e., directed edge) (x, y) or (y, x). If x and y are two vertices 
of T such that the arc (x, y) exists, we say that x beats y and that y is beaten by x. 

A transitive tournament is a linear order and conversely. A tournament is transitive if 
and only if it is without circuit (i.e. directed cycle). If two circuits do not share any arc in 
common, they are said to be arc-disjoint (they may share a common vertex). If x1, x2, …, xn is 
a permutation of the vertices of T, we say that T is the transitive tournament defined by the 
order (x1, x2, …, xn) if, for any pair {i, j} with 1 ≤ i ≤ n, 1 ≤ j ≤ n and i ≠ j, xi beats xj. The 
reversed order of an order (x1, x2, …, xn) is the order (xn, xn–1, …, x1). 

If (x1, x2, …, xn) is a permutation of the vertices of T, we say that T is a circular 

tournament defined by the order (x1, x2, …, xn) if, for any pair {i, j} with 1 ≤ i < j ≤ n, xi beats 

xj if we have j – i ≤ 






2

n
 (otherwise, xj beats xi). We may notice that, for n odd, all the vertices 

of a circular tournament play the same role (more precisely, for any given i and j, there exists 
an automorphism of the circular tournament such that the image of xi is xj). Figure 2 
represents, on the left, the circular tournament of order 5 defined by the order (1, 2, 3, 4, 5) 
and, on the right, the circular tournament of order 6 defined by the order (3, 4, 5, 6, 1, 2).  



 - 4 - 

 
1 

2 

3 4 

5 
6 

5 3 

4 

2 

1 

 
FIGURE 2. A circular tournament of order 5 (on the left) and a circular tournament of 

order 6 (on the right). 
 
The (Copeland) score s(x) of a vertex x of a tournament T is the number of vertices 

beaten by x, also called the out-degree of x. A Copeland order of a tournament T is any linear 
order obtained by sorting the vertices of T according to their non-increasing scores. A 
Copeland winner of T is the winner of a Copeland order of T. In other words, a Copeland 
winner of T is a vertex with a maximum score. For instance, the tournament of Example 1 
admits four Copeland orders: (1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3), which involves 
that 1 and 2 are the Copeland winners of this tournament. H.G. Landau [29] gave a 
characterization of the scores of a tournament: 

 
THEOREM 1. Let s1, s2, ..., sn be n integers with 0 ≤ s1 ≤ s2 ≤ ... ≤ sn. These integers can be 
the scores of a tournament if and only if the following two properties are fulfilled: 

1. 
2
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A tournament is said to be regular if n is odd and if all its vertices have a same score, 

thus equal to (n – 1)/2. It is the case for instance for the circular tournaments with an odd 
number of vertices. Notice that, for n even, there does not exist regular tournament. For the 
circular tournaments with n even, there are n/2 vertices with a score equal to n/2 and n/2 
vertices with a score equal to (n – 2)/2.  

Let T and T′ be two tournaments (which can be linear orders) with the same set of 
vertices, the symmetric difference distance (see [4] for its axiomatic properties and [5] for its 
uses in the social sciences) between T and T′ is the number of pairs {i, j} with 1 ≤ i ≤ n, 
1 ≤ j ≤ n and i ≠ j for which the arc between i and j has not the same direction in T and in T′. 

This distance will be noted dist(T, T′). This distance is always less than or equal to ( )
2

1−nn . 

We call concordance between T and T′, and we note conc(T, T′), the difference between this 

maximum and the distance between T and T′: conc(T, T′) = ( )
2

1−nn  – dist(T, T′). In this 

paper, we study concordances between orders; the distance between these orders can easily be 
deduced from the concordances. 

Let T be a tournament and O a linear order with the same vertices as T. An order O is a 
Slater order of T if, for any linear order O′ defined on the vertices of T, we have: 
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dist(T, O) ≤ dist(T, O′). So, a Slater order of T is defined as an order at minimum distance 
from T. We call Slater index of T, and we note i(T), the distance from T to any Slater order of 
T. This index can be interpreted as the minimum number of arcs of T which must be reversed 
in T to obtain a linear order (see [12] for equivalent formulations and for references on 
Slater’s problem). A Slater winner of T is the winner of a Slater order of T. It is easy to see 
that the tournament of Example 1, which is not a linear order (for example the circuit (1, 2, 4) 
prevents this tournament from being transitive), becomes transitive by reversing the arc (4, 1). 
It is also easy to check that the only way to make this tournament transitive by the reversing 
of only one arc consists precisely in reversing the arc (4, 1). Thus, the Slater index of this 
tournament is equal to 1, with only one Slater order: (1, 2, 3, 4); so, 1 is its only Slater winner.  

The computation of the Slater index of a tournament T, of the Slater orders of T, or of 
the Slater winners of T is NP-hard (see [21]). There exist anyway some tournaments for which 
these quantities are known. It is the case for instance for the circular tournaments (see [43]): 

 
THEOREM 2. Let Cn be the circular tournament on n vertices defined by (1, 2, ..., n – 1, n). 
Then we have: 

• if n is odd, i(Cn) = 
8

12 −n , there are n Slater orders of Cn which are (1, 2, ..., n), (2, 3, ..., 

n, 1), ..., (n, 1, 2, ..., n – 1), and all the vertices are Slater winners;  

• if n is even, i(Cn) = 
8

22 nn − , there is only one Slater order which is (1, 2, ..., n), and 1 is 

the only Slater winner. 
 
More generally, it is easy to show that, for a regular tournament (thus, with n odd), all 

the vertices are simultaneously Copeland and Slater winners (see Lemma 3 below). A 
tournament solution which systematically selects all the vertices of a regular tournament as its 
winners is sometimes said to be regular (see for instance [30]); thus Slater’s and Copeland’s 
solutions are regular.  

Notice that the so-called Copeland value of a tournament solution is based on 
Copeland solution (see [26] or [30]). Let Sol be a tournament solution and, for any tournament 
T = (X, A), let Sol(T) be the set of the winners of T according to Sol. The Copeland value 

SolVC  of Sol for T is defined as the ratio { }
{ }Xxxs

TSolxxsTVCSol ∈
∈=

for  )(max
)(for  )(max)( . We obviously 

get the bounds 0 ≤ )(TVCSol  ≤ 1 for any tournament solution Sol and any tournament T. The 

Copeland value of the tournament solution Sol is defined as inf{ )(TVCSol : T ∈ T}, where T 

denotes the set of all the tournaments; this value is also between 0 and 1 for any tournament 
solution. For Slater’s solution, the Copeland value is equal to 0.5 (see [30]). In other words, 
the score of a Slater winner of a tournament T is between the maximum score of the vertices 
of T and half this maximum score, and we can get as close as desired to these two values. 

 
 

1.3. Contribution of the study 
 
The aim of this paper is to compute, for any given integer n ≥ 3, the maximum distance or, 
equivalently, the minimum concordance between a Slater order and a Copeland order of a 
same tournament T with n vertices. In more formal terms, we want to compute the following 
quantity, for any n ≥ 3: 
max{dist(OS(T), OC(T)): T is any tournament on n vertices, OS(T) is any Slater order of T and 

OC(T) is any Copeland order of T}, 
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or, equivalently: 
min{conc(OS(T), OC(T)): T is any tournament on n vertices, OS(T) is any Slater order of T 

and OC(T) is any Copeland order of T}. 
 

In Section 2, we compute this maximum distance when T is any tournament or, thanks 
to a decomposition of the set of the arcs of a circular tournament with an odd number of 
vertices into arc-disjoint circuits, when T is strongly connected. Section 3 is devoted to the 
case for which T has only one Slater order. The results are summarized in Section 4, which is 
the conclusion. In order to make the paper more reader-friendly, the proof of a theorem of 
Section 3 (Theorem 9) has been moved in an Appendix (Section 5). 

 
Notice that the study for which there would be only one Copeland order is 

uninteresting: from the characterization provided by H.G. Landau [29], it appears that the 
uniqueness of the Copeland order can be observable only for transitive tournaments; in this 
case, there is also only one Slater order, which is the same as the Copeland order, i.e. the 
tournament itself. For this reason, we assume in the sequel that n is greater than or equal to 3. 

 
The following lemmas will be useful in the sequel (see [7], [10], [11], [41]) : 
 

LEMMA 3. Let OS = (x1, x2, …, xn) be a Slater order of T. For any i between 1 and n, xi beats 
at least half the vertices xi + 1, …, xn and at most half the vertices x1, x2, …, xi – 1. If xi beats 
exactly half the vertices xi + 1, …, xn, the order (x1, x2, …, xi – 1, xi +  1, xi +  2, …, xn, xi) is also 
a Slater order of T; similarly, if xi beats exactly half the vertices x1, x2, …, xi – 1, then the 
order (xi, x1, x2, …, xi – 1, xi +  1, xi +  2, …, xn) is also a Slater order of T. 

 
Proof. Let α be the number of vertices among xi + 1, …, xn beaten by xi and β = n – i – α the 
number of vertices among xi + 1, …, xn who beat xi. Consider the order O = (x1, x2, …, xi – 1, 

xi +  1, xi +  2, …, xn, xi). We get: dist(T, O) – dist(T, OS) = α – β. As OS is assumed to be a 

Slater order, we obtain α – β ≥ 0, or also α – (n – i – α) ≥ 0. Hence α ≥ 
2

in − : xi beats at least 

half the vertices xi + 1, …, xn. Moreover, if we have α = β, then we get dist(T, O) = dist(T, OS) 
and O is also a Slater order.  

We can prove the results with respect to the vertices x1, x2, …, xi – 1 in a similar way.♦ 
 

COROLLARY 4. Let OS = (x1, x2, …, xn) be a Slater order of T. The score of x1 is at least 
equal to (n – 1)/2 and the one of xn is at most equal to (n – 1)/2.  
 
Proof. Apply Lemma 3 with i = 1 or i = n. ♦ 
 
 The result of Corollary 4, already used by J.-C. Bermond [7], was generalized by 
A. Guénoche [18] who designed a way to compute bounds of the ranks that a vertex x may 
occupy in a Slater order according to the score of x. 

The following lemma (see [41]) shows that each Slater order (x1, x2, …, xn) of T 
induces a Hamiltonian path, namely the Hamiltonian path made of the arcs (xi, xi + 1) 
for 1 ≤ i < n (notice that Lemma 5 shows a certain similarity to what is called Condorcet 
property for preference functions in [44]). 
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LEMMA 5. Let OS = (x1, x2, …, xn) be a Slater order of a tournament T. For each integer i 
between 1 and n – 1, xi beats xi + 1. 

 
Proof. If the statement of Lemma 5 was wrong, we would obtain a better order by switching xi 
and xi + 1 in OS, a contradiction with the optimality of OS. ♦ 
 
 
 
2. CASE WHERE T IS ANY TOURNAMENT OR IS STRONGLY CONNECTED 
 
2.1. Case where T is any tournament 
 
Let T denote any tournament. We want to show that, for any given odd n ≥ 3, the minimum 
concordance between a Slater order and a Copeland order of a tournament with n vertices is 
equal to 0 while, for any given even n ≥ 4, this minimum concordance is equal to n – 1. 
Theorem 6 provides a slightly stronger result. 

 
THEOREM 6. Let n be an integer greater than or equal to 3. 
1. If n is odd, there exists a tournament T on n vertices such that, for any Slater order OS of T, 
there exists a Copeland order OC with conc(OS, OC) = 0. 
2. If n is even, let T be a tournament on n vertices and let OS be any Slater order of T and OC 
any Copeland order of T. Then conc(OS, OC) ≥ n – 1. Moreover, there exists a tournament T 
such that, for any Slater order of T, there exists a Copeland order with conc(OS, OC) = n – 1. 
 
Proof. 
1. For n odd, any regular tournament T allows to conclude, since then any linear order is a 
Copeland order, in particular the reversed orders of the Slater orders of T. 
2. Assume now that n is even and consider a tournament T of order n, a Slater order OS of T 
and a Copeland order OC of T. Let (x1, x2, …, xn) be the Slater order. A vertex is said to be 

large if its score is at least equal to 
2

n
 and is said to be small otherwise.  

According to Corollary 4, x1 is large and xn is small. Let nl denote the number of large 
vertices and ns the number of small vertices. The vertex x1 is ranked in the same way with 
respect to the small vertices in OS and in OC; so x1 brings ns to the value of the concordance. 
Similarly, xn is ranked in the same way with respect to the large vertices in OS and in OC; if 
we do not consider x1 anymore (x1 is already considered above), xn adds nl – 1 to the 
concordance. Hence: conc(OS, OC) ≥ ns + nl – 1. As ns + nl is equal to n, we get the relation 
conc(OS, OC) ≥ n – 1 for any tournament T, any Slater order OS and any Copeland order OC 
of T. 

Let us show now that there exist tournaments with conc(OS, OC) = n – 1 for any even 
n. For this, consider the tournament T obtained from the circular tournament on n – 1 vertices 
defined by the order (1, 2, …, n – 1) by adding the vertex n in such a way that n is beaten by 
all the other vertices. Figure 3 represents such a tournament for n = 6. Then the order (1, 2, 
…, n – 2, n – 1, n) is a Slater order and the order (n – 1, n – 2, …, 2, 1, n) is a Copeland order 
of the constructed tournament. The concordance between these two orders is equal to n – 1. ♦ 
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FIGURE 3. A tournament with conc(OS, OC) = n – 1 for n = 6. 

 
 
2.2. Decomposition of a circular tournament with an odd order 
 
In a directed graph, we call arc-disjoint circuits any set of circuits such that any two circuits 
of this set have no arc in common. We call arc-decomposition of a tournament T into arc-
disjoint circuits, or simply a decomposition of the arcs of T, any set Z of arc-disjoint circuits 
such that any arc of T belongs to one and only one circuit of Z. Such a decomposition will be 
used in the sequel to study the distance between Slater orders and Copeland orders of 
tournaments. 

 
THEOREM 7. Let T be a circular tournament with an odd number n of vertices. The number 

of arc-disjoint circuits in T is at most equal to 
8

)1)(1( +− nn
. Any set of arc-disjoint circuits 

reaching this bound is a decomposition of the arcs of T into arc-disjoint circuits. 
 
Proof. 

We set n = 2p + 1 and we assume, without loss of generality, that T is the circular 
tournament defined by the order (1, 2, 3, ..., n). 

Let C = (c1, c2, …, cq) be any circuit of T. We first show that there exists a vertex x1 of 
C with 1 ≤ x1 ≤ p + 1 and a vertex x2 of C with p + 2 ≤ x2 ≤ 2p + 1. We suppose that the 
vertices of C are numbered in such a way that c1 is the smallest integer; T owns the arc (cq, c1) 
and so (c1, cq) is not an arc of T. As T is the circular tournament defined by the order (1, 2, 3, 
.., n), we have cq – c1 ≥ p + 1. From c1 ≥ 1, we deduce the inequality cq ≥ p + 2 and, from 

cq ≤ 2p + 1, we obtain c1 ≤ p. So any circuit of C owns an arc (cq, c1) with 1 ≤ c1 ≤ p + 1 and 

p + 2 ≤ cq ≤ 2p + 1 and thus, conversely, C must own an arc (x1, x2) with x1 between 1 and 
p + 1 and x2 between p + 2 and 2p + 1. 

Thus, the number of arc-disjoint circuits of T is at most equal to the number of arcs of 
which the head is between 1 and p + 1 and the tail is between p + 2 and 2p + 1. If we consider 
the vertex i with 1 ≤ i ≤ p + 1, i beats the p vertices i + 1, i + 2, ..., i + p. Among them, there 
are p + 1 – i vertices lower than or equal to p + 1 and so i – 1 vertices between p + 2 and 
2p + 1. The number of arcs with their heads between 1 and p + 1 and their tails between p + 2 

and 2p + 1 is hence equal to 
2

)1()1(
1

1

+=−∑
+

=

ppi
p

i
 = 

8
)1)(1( +− nn .  
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Suppose now that there are exactly 
2

)1( +pp
 arc-disjoint circuits. Then, the previous 

proof shows that all the arcs with their heads between 1 and p + 1 and their tails between 
p + 2 and 2p + 1 are involved in these circuits. Let now (i, j) be any arc of T. We can perform 
a circular permutation on the numbers of all the vertices of T so that i takes the number p + 1 
(remember that all the vertices play the same role); in this case, T is still defined by the order 
(1, 2, 3, .., n) with respect to the new numbering of the vertices. Then the new number of j is 
between p + 2 and 2p + 1. The result obtained previously shows that the arc (i, j) belongs to 
one of the considered arc-disjoint circuits. This completes the proof of Theorem 7. ♦ 

 
For n = 3, the upper bound of Theorem 7 is equal to 1 and is clearly reached. For 

n = 5, this upper bound is equal to 3 and is reached for instance by the decomposition given 
by the following three arc-disjoint circuits: (1, 2, 4), (2, 3, 5), (1, 3, 4, 5). If n = 7, the upper 
bound is equal to 6 and is reached for instance by the decomposition given by the following 
six arc-disjoint circuits: (1, 2, 3, 4, 5, 6), (1, 4, 7), (3, 6, 7), (2, 5, 7), (2, 4, 6), (1, 3, 5). For 
n ≥ 9, we prove that the upper bound is reached in Theorem 8, with a sharper result, which 
will be used in the proof of Theorem 9. 

 
THEOREM 8. Let T be a circular tournament on an odd number n of vertices with n ≥ 9, 
defined by the order (1, 2, 3, .., n). There exists a decomposition of the arcs of T into 

8

)1)(1( +− nn
 arc-disjoint circuits with the circuit (1, 2, 3, …, n) as one of them, the others 

circuits being of length 3 or 4. 
 
Proof. 

We set n = 2p + 1 and we prove the result by induction on p. Notice the equality: 

8

)1)(1( +− nn
 = 

2

)1( +pp
. 

For p = 4, we have the desired decomposition, given by the 10 circuits (1, 2, 3, 4, 5, 6, 
7, 8, 9), (1, 3, 7), (1, 4, 6), (1, 5, 8), (2, 4, 8), (2, 5, 7), (2, 6, 9), (3, 5, 9), (3, 6, 8), (4, 7, 9). 

Let p ≥ 5. We assume that the result is true for p – 1 and we prove it for p. Let T be the 
circular tournament with 2p + 1 vertices and defined by the order (1, 2, 3, ..., 2p + 1). It is 
easy to check that the subgraph of T obtained by removing the two vertices p + 1 and 2p + 1 is 
also a circular tournament T′, defined by the order (1, 2, …, p, p + 2, p + 3, …, 2p – 1, 2p). 

According to the induction hypothesis, there exist, in T′, 
2

)1( pp −
 – 1 circuits which are arc-

disjoint and which do not use, for i ∈ {1, 2, …, p – 1, p + 2, p + 3, … , 2p – 1}, the arcs 
(i, i + 1), nor the arc (p, p + 2), nor the arc (2p, 1). In addition to these circuits, consider the 
following extra circuits of T: 

• for i ∈ {2, 3, …, p – 2}, the circuit (2p + 1, i, p + 1, 2p – i + 1); 
• the circuit (1, p + 1, 2p) ; 
• the circuit (p – 1, p + 1, 2p + 1) ; 
• the circuit (p, p + 2, 2p + 1).  

Thus we obtain 
2

)1( pp −
 – 1 + (p – 3) + 3 = 

2

)1( +pp
 – 1 arc-disjoint circuits which 

do not use, for any i between 1 and 2p, the arcs (i, i + 1) nor the arc (2p + 1, 1). Hence the 
statement of the theorem, by adding the Hamiltonian circuit (1, 2, …, 2p, 2p + 1) to the 
previous circuits.  ♦ 
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2.3. Case where T is strongly connected 
 

We consider now the distance, or rather the concordance, between a Slater order and a 
Copeland order of a strongly connected tournament. 

 
 
Let T6 denote the tournament on 6 

vertices of Figure 4. It is easy to check that 
the Slater index of T6 is equal to 4 and that 
(1, 2, 3, 4, 5, 6) is one of its Slater orders. 
On the other hand, the order (5, 3, 1, 6, 4, 2) 
is a Copeland order of T6. The concordance 
between these two orders is equal to 6. 

 

6 

5 3 

4 

2 

1 

 
FIGURE 4. The tournament T6 

 
THEOREM 9. Let n be a positive integer greater than or equal to 3. 
1. If n is odd, there exists a strongly connected tournament T on n vertices such that, for any 
Slater order OS of T, there exists a Copeland order OC of T with conc(OS, OC) = 0. 
2. If n is equal to 4, the only strongly connected tournament on 4 vertices is the circular 
tournament, and the minimum concordance between its unique Slater order and its Copeland 
orders is 4. 
3. If n is equal to 6, the minimum concordance, over the set of strongly connected 
tournaments T on 6 vertices, between the Slater orders of T and the Copeland orders of T is 
equal to 6; this minimum can be reached only for the tournament T6 of Figure 4. 
4. If n is even and is greater than or equal to 8, the minimum concordance, over the set of 
strongly connected tournaments T on n vertices, between the Slater orders of T and the 
Copeland orders of T is equal to n + 1. 

 
 In order to make the paper more reader-friendly, the proof of Theorem 9, rather long, 
has been moved to the Appendix. 
 
 
 
3. CASE WHERE T HAS ONLY ONE SLATER ORDER 
 
The last result deals with the minimum concordance between Slater orders and Copeland 
orders when the considered tournament has only one Slater order. As noticed above, the case 
where there is only one Copeland order is the one for which the tournament is transitive; then 
the tournament itself is the only Slater order and simultaneously the only Copeland order. 
 
THEOREM 10. Let T be a tournament with n ≥ 3 vertices and with only one Slater order. Let 
OS be the Slater order of T and OC be a Copeland order of T. If n is even, we have 
conc(OS, OC) ≥ 2n – 4 and the bound can be tight. If n is odd, we have conc(OS, OC) ≥ 2n – 3 
and the bound can be tight. 
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Proof. 
Assume that n is even and set n = 2p, with p ≥ 2. 
Let T be a tournament on n vertices with a unique Slater order OS = (x1, x2, …, xn). 

Let OC be a Copeland order of T. Let us show the inequality conc(OS, OC) ≥ 2n – 4. We use 
the terminology and notation used in the proofs of Theorems 6 and 9. We may show, as for 
these two theorems, that x1 is large and that xn is small. Assume now that x2 is small; its score 
is exactly equal to p – 1: otherwise, we could move x2 behind xn to obtain a better order, and 
OS would not be a Slater order; in the set {x3, x4, …, xn}, the number of vertices beaten by x2 
is equal to the number of vertices which beat x2; so, the order (x1, x3, x4, …, xn, x2) is also a 
Slater order, a contradiction with the uniqueness of the Slater order. Thus x2 is large. We may 
prove in a similar way that xn – 1 is small.  

As shown in the proof of Theorem 6, the part of the concordance between OS and OC 
due to x1 and xn is equal to n – 1. We may now add the contribution due to x2 with respect to 
the vertices other than x1 and xn; this contribution is at least equal to ns – 1. Similarly, the 
contribution due to xn – 1 with respect to the vertices other than x1, x2 and xn is at least equal 
to nl – 2. We get conc(OS, OC) ≥ n – 1 + ns – 1 + nl – 2 = 2n – 4. 

To prove that this lower bound is reached, consider the tournament T defined as 
follows. Let Tcirc be the circular tournament defined by the order (1, 2, …, 2p – 1) and add 

the vertex 2p as well as the arcs (i, 2p) for i ∈ {1, 2, …, 2p – 2} and the arc (2p, 2p – 1). Let 
K be the Slater index of a circular tournament on 2p – 1 vertices. Let O be any order. The 
distance between T and O is the sum of the distance between the restriction O′ of O to the set 
{1, 2, …, 2p – 1} from Tcirc, which is at least equal to K, and the contribution due to the 
vertex 2p, which is at least 0. So the distance between T and O is at least K. To reach a 
distance exactly equal to K, we must have simultaneously that: 

• O′ is a Slater order of Tcirc; 

• the vertices 1, 2, …, 2p – 2 are just before the vertex 2p in O and that the 
vertex 2p – 1 is just after; by transitivity, the vertices 1, 2, …, 2p – 2 must be 
before the vertex 2p – 1 in O. 

The only Slater order of Tcirc for which the vertices 1, 2, …, 2p – 2 are before 2p – 1 is 
the order (1, 2, …, 2p – 1) (see Theorem 2). The only order O which is at distance K from T is 
thus the order (1, 2, …, 2p – 2, 2p, 2p – 1). Hence the uniqueness of the Slater order of T. 

The scores of the vertices 1, 2, …, 2p – 2 are p, the one of the vertex 2p – 1 is p – 1 
and the one of the vertex 2p is 1. So the order (2p – 2, 2p – 3, …, 2, 1, 2p – 1, 2p) is a 
Copeland order and it is easy to check that the concordance between this order and the only 
Slater order is equal to 2n – 4. 

 
Now, let n be an odd integer and set n = 2p + 1. 
Let T be a tournament on n vertices with only one Slater order OS = (x1, x2, …, xn). 

Let OC be any Copeland order of T. We want to show that we have conc(OS, OC) ≥ 2n – 3. 
If n = 3, T must be the transitive tournament and the concordance is equal to 3, 

i.e. 2n – 3. 
Assume now that we have n ≥ 5. 
Let us define three kinds of vertices:  

• the vertices of which the scores are greater than p; these vertices will be said to be large; 
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• the vertices of which the scores are equal to p; these vertices will be said to be average;  
• the vertices of which the scores are less than p; these vertices will be said to be small. 

Let nl be the number of large vertices, na the number of average vertices, and ns the 
number of small vertices; we have: nl + na + ns = n. Because of Corollary 4, the score of x1 is 

at least 
2

1−n
, i.e. p; if the score was exactly p, then the order (x2, x3, …, xn, x1) would also be 

a Slater order; since T has only one Slater order, x1 is large; similarly, xn is small. Because of 

Lemma 3, the score of x2 is at least 
2

2−n
, and so at least equal to p: x2 is average or large; 

similarly, xn – 1 is average or small. 
The concordance due to x1 is then at least na + ns, the concordance due to xn without 

respect to x1 is at least na + nl – 1. We now distinguish between four cases. 
1. Vertices x2 and xn – 1 are average. The concordance due to x2 without respect to x1 and xn 

is at least ns – 1; the concordance due to xn – 1 without respect to x1, x2 and xn is at least 
nl – 1. So the whole concordance is at least: 

(na + ns) + (na + nl – 1) + (ns – 1) + (nl – 1) = 2n – 3. 
2. Vertex x2 is average and vertex xn – 1 is small. The concordance due to x2 without respect 

to x1 and xn is at least ns – 1. The concordance due to xn – 1 without respect to x1, x2 and xn 
is at least nl – 1+ na – 1. So the whole concordance is at least: 

(na + ns) + (na + nl – 1) + (ns – 1) + (nl + na – 2) = 2n + na – 4. 
As x2 is average, we have na ≥ 1 and thus the concordance is at least 2n – 3. 

3. Vertex x2 is large and vertex xn – 1 is average. This case can be dealt with as the previous 
one and we keep the same conclusion: the concordance is at least 2n – 3. 

4. Vertex x2 is large and vertex xn – 1 is small. The concordance due to x2 without respect to 
x1 and xn is at least ns – 1 + na. The concordance due xn – 1 without respect to x1, x2 and xn 
is at least nl – 2 + na. So the whole concordance is at least: 

(na + ns) + (na + nl – 1) + (ns + na – 1) + (nl + na – 2) = 2n + 2 na – 4. 
If na is not equal to 0, the concordance is greater than 2n – 3. If na is equal to 0, consider 

x3. Its score is greater than 
2

3−n
, i.e. at least equal to p: otherwise OS would not be a 

Slater order or would not be the only one. So, x3 must be large or average. As na is 
assumed to be equal to 0, x3 is large. By the same way, we may show that xn – 2 is small. 
Thus, we have necessarily n ≥ 7 and the couple (x3, xn – 2) adds 1 to the concordance. So 
the whole concordance is at least 2n – 3. 

 
To show that the bound is tight for n odd, consider the tournament T defined as 

follows. We start from a circular tournament Tcirc on 2p + 1 vertices defined by the order 
(1, 2, …, 2p + 1) in which we reverse the arc (2p + 1, 1) in order to obtain the arc (1, 2p + 1). 
Let K denote the Slater index of Tcirc. Let O be any order defined on {1, 2, …, 2p, 2p + 1}. 
The distances from O to Tcirc and to T differ by 1. More precisely, we have: 
dist(O, T) = dist(O, Tcirc) – 1 if and only if vertex 1 is located in O before vertex 2p + 1. 
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By definition of the Slater index of a tournament, we have dist(O, Tcirc) ≥ K, from 
which we obtain: dist(T, O) ≥ K – 1. Moreover, the equality dist(O, T) = K – 1 is reached if 
and only if: 
• dist(O, Tcirc) = K, which means that O is a Slater order of Tcirc; 

• in O, vertex 1 is before vertex 2p + 1. 
There is only one Slater order of Tcirc in which vertex 1 is before vertex 2p + 1 (see 

Theorem 2): it is the order (1, 2, …, 2p, 2p + 1). This order is thus the only Slater order of T.  
On the other hand, (1, 2p, 2p – 1, …, 2, 2p + 1) is a Copeland order of T. The 

concordance between this order and (1, 2, …, 2p, 2p + 1) is equal to 2n – 3.  
This completes the proof of Theorem 10.  ♦ 

 
 
 
4. CONCLUSION 
 
The previous results are summarized below, stated in terms of distances. More precisely, we 
give below the maximum of the distance between the Slater orders and the Copeland orders of 
a tournament T with n ≥ 3 vertices, over three sets of tournaments T: the set of any 
tournaments on n vertices, the set of strongly connected tournaments with n vertices, the set of 
tournaments on n vertices with only one Slater order. 
 
maximum distance  any tournaments 

(Th. 6) 
strongly connected 
tournaments (Th. 9) 

tournaments with only 
one Slater order (Th. 10) 

n odd n(n – 1)/2 n(n – 1)/2 (n2 – 5n + 6)/2 
 

n even 
 

(n2 – 3n + 2)/2 
2 if n = 4 
9 if n = 6 

(n2 – 3n – 2)/2 if n ≥ 8 

 
(n2 – 5n + 8)/2 

 
 
 
5. APPENDIX: PROOF OF THEOREM 9. 
 

For n odd, the circular tournaments allow to conclude once again, as in the first step of 
the proof of Theorem 6. 

Assume now that n is even. We consider a strongly connected tournament T defined 
on n vertices, a Slater order OS of T, a Copeland order OC of T and we try to minimize 
conc(OS, OC).  

If n = 4, as said above, the only (up to an isomorphism) strongly connected tournament 
on 4 vertices is the circular tournament of Figure 1. Then (1, 2, 3, 4) is the only Slater order of 
this tournament, and the most different Copeland order is the order (2, 1, 4, 3), for which the 
concordance is equal to 4.  

We now assume that n is greater than or equal to 6, and we suppose that we have 
conc(OS, OC) ≤ n; then we want to show, through the next nine steps, that then n is equal to 6 
and that T is the tournament T6. 

To do this, we consider once again the notation of the proof of Theorem 6, but with T 
strongly connected. In particular, (x1, x2, …, xn) denotes a Slater order OS and we say that a 
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vertex is large if its score is greater than or equal to 
2

n
, and small otherwise. As in the proof 

of Theorem 6, vertex x1 is large and vertex xn is small.  
 

* Step 1: x1 cannot be the only large vertex and xn cannot be the only small vertex.  
Indeed, assume that x1 is the only large vertex. Then the sum of the scores of the 

vertices x2, …, xn – 1, xn is at most equal to 







−− 1

2
)1(

n
n . As the sum of all the scores is 

equal to 
2

)1( −nn
 according to Theorem 1, we obtain 

2

)1( −nn
 – 








−− 1

2
)1(

n
n  = n – 1 as the 

score of xn: xn beats all the other vertices and hence T is not strongly connected, a 
contradiction. Thus there exist large vertices other than x1. Similarly, we can prove that xn is 
not the only small vertex. 

 
* Step 2: if x2 is large, then x3 is small. Similarly, if xn – 1 is small, then xn – 2 is large. 

Assume that x1, x2 and x3 are large. Then x1, x2 and x3 provide a concordance with 
respect to the small vertices equal to 3ns and xn provides an extra concordance with respect to 
the large vertices other than x1, x2 and x3 equal to nl – 3. The whole concordance is at least 
equal to 3ns + nl – 3, and so to n + 2ns – 3, since ns + nl is equal to n. As we suppose that we 

have conc(OS, OC) ≤ n, we obtain 2np – 3 ≤ 0 and so ns ≤ 1, a contradiction with the result of 
Step 1. Hence the first part of the statement of Step 2.  

The second part of Step 2 can be showed in a similar way. 
 

* Step 3: x2 is small and xn – 1 is large. 
Assume that x2 is large. 
By considering the part of concordance provided by x1 and x2 with respect to the small 

vertices and the one provided by xn with respect to the large vertices other than x1 and x2, we 
obtain a whole concordance at least equal to 2ns + nl – 2, i.e. to n + ns – 2, since we still have 

ns + nl = n. Hence ns ≤ 2. Thanks to the previous steps, we obtain the equality ns = 2 and the 
fact that x3 and xn are the only small vertices. Moreover, the scores of the small (respectively 
large) vertices in OS are increasing (respectively decreasing): otherwise the concordance 
would be greater than n. 

According to Lemma 3, we have s(x3) ≥ 
2

3−n
; as n is even and as x3 is small, we 

have exactly s(x3) = 1
2

−
n

. From s(xn) ≥ s(x3) and from the fact that xn is small, we get 

s(xn) = 1
2

−
n

. 
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Then the sum of the scores is at least equal to (n – 2)
2

n
 + 2( 1

2
−

n
), i.e. to 2

2

2
−

n
. But 

2
2

2
−

n
 is greater than 

2

)1( −nn
 for n > 4, a contradiction with Theorem 1. So x2 must be 

small. 
We prove similarly that xn – 1 is large. 
 

* Step 4: s(x2) = 1
2

−
n

, s(xn – 1) = 
2

n
. 

Since x2 is small, we have s(x2) ≤ 
2

n
 – 1. On the other hand, as OS is a Slater order, 

Lemma 3 shows that x2 beats at least half the vertices x3, x4, …, xn–1, xn, which involves the 

inequality s(x2) ≥ 
2

2−n
. Hence: s(x2) = 1

2
−

n
.  

The equality s(xn – 1) = 
2

n
 can be shown in a similar way. 

 

*Step 5: s(x1) = 
2

n
 or s(xn) = 1

2
−

n
. 

The concordance brought by x1 with respect to the small vertices and by xn with 

respect to the large vertices is equal to ns + nl – 1 = n – 1. Assume that we have s(x1) > 
2

n
; 

since s(xn – 1) is equal to 
2

n
, we must add 1 to the computation of the concordance for the 

vertices x1 and xn – 1. Similarly, if we would have s(xn) < 1
2

−
n

, it would be necessary to add 

1 once again for the vertices x2 and xn, since the score of x2 is equal to 1
2

−
n

, which would 

lead to a concordance at least equal to n + 1, a contradiction with the hypothesis. In 

conclusion, s(x1) > 
2

n
 involves s(xn) = 1

2
−n

. Hence the statement of Step 5.  

 

* Step 6: if x3 is small, then s(x1) > 
2

n
; if xn – 2 is large, then s(xn) < 

2

n
 – 1. 

According to Lemma 5, x1 beats x2. As s(x2) is equal to 1
2

−
n

, x2 beats exactly half 

the vertices x3, x4, …, xn – 1, xn: so, to move it inside OS to put it at the last position gives 
another Slater order, namely (x1, x3, x4, …, xn, x2). Then, according to Lemma 5, x1 also 
beats x3. 
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Assume now that x3 is small. By applying Step 4 to the Slater order (x1, x3, x4, …, xn,  

x2), we prove the equality s(x3) = 1
2

−
n

. Moving now x3 to put it at the last position provides 

a third Slater order O = (x1, x4, x5, …, xn, x2, x3). The vertex x1 beats at least half the vertices 
x4, x5, …, xn: otherwise, we would obtain an order closer to T than OS by moving x1 inside O 

to put it between xn and x2. So we have s(x1) ≥ 2 + 
2

3−n
 = 

2

1+n
, and then s(x1) > 

2

n
. 

Similarly, if xn – 2 is supposed to be large, then we obtain s(xn) < 
2

n
 – 1.  

 
* Step 7: x3 is large or xn–2 is small. 

This follows from the previous two steps. 
  

* Step 8: x3 is large and xn–2 is small. 

Assume that x3 and xn–2 are small. According to Step 6, we have s(x1) > 
2

n
 and, 

according to Step 4, s(xn–1) = 
2

n
. With respect to the previous computations of the 

concordance, because of the vertices x1 and xn–1, we may add 1 to the concordance ns + nl – 1 
brought by x1 with respect to the small vertices and by xn with respect to the large vertices 
other than x1. We thus obtain a contribution to the concordance equal to n. As we have 

s(x2) = 
2

n
 – 1, all the small vertices have a score equal to 

2

n
 – 1: otherwise, the concordance 

would increase because of x2 with respect to such a small vertex. If n is greater than 6, let i be 

an integer with 4 ≤ i ≤ n – 3. As the concordance is already equal to n, the pair (xi, xn – 2) must 
not bring any extra concordance, which involves that xi is small. Thus there are exactly two 

large vertices: x1 and xn – 1, with scores equal to 
2

n
, and the other vertices have a score equal 

to 
2

n
 – 1. In this case, as n is not equal to 4, the characterization of the scores (Theorem 1) is 

not satisfied.  
So, x3 et xn – 2 cannot be small simultaneously. But Step 7 shows that, if x3 is small, 

then xn – 2 is small too. This involves that x3 is large.  
We may prove that xn – 2 is small in a similar way. 
 

* Step 9: n = 6 and T is isomorphic to T6. 
We now know that x1, x3 and xn – 1 are large while x2, x n – 2 and xn  are small.  
The contribution to the concordance brought by x1 with respect to the small vertices 

and by xn with respect to the large vertices is equal to ns + nl – 1 = n – 1. To this, we must add 
1 for the contribution brought by (x3, x n – 2), hence a total of n. Assume that we have n > 6; 
then: 4 < n – 2. If x4 is large, we must add 1 once again in the computation of the concordance 
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for (x4, x n – 2) and, if x4 is small, we must also add 1 for (x3, x4), what is impossible since we 
assumed the equality conc(OS, OC) = n. So, in order to obtain conc(OS, OC) = n, we must 
have:  

• n = 6,  
• vertices x1, x3 and x5 have a score equal to 3,  

• vertices x2, x4 and x6 must have a score equal to 2. 

Because of Lemma 5, for i ∈ {1, 2, 3, 4, 5}, xi beats xi + 1. Moreover, x2 beats half the 
vertices x3, x4, x5, x6 and thus can be moved behind x6, which involves that x1 beats x3 and 
that x6 beats x2. Similarly, by moving x5 in front of x1, we show that x6 is beaten by x4 and x1 
is beaten by x5. As the score of x3 is 3 and since x3 is beaten by x1 and x2, then x3 beats x4, x5 
and x6. As the score of x4 is 2 and since x4 beats x5 and x6, then x4 is beaten by x1, x2 and x3. 
As the score of x2 is 2 and since x2 beats x3 and x4, then x2 is beaten by x1, x5 and x6. Last, as 
the score of x1 is 3 and since x1 beats x2, x3 and x4, then x1 is beaten by x5 and x6. So the 
tournament must be the tournament T6 of Figure 4. 

 
We have still to prove that, if n is even and is greater than or equal to 8, then there 

exists a strongly connected tournament T such that there exist a Slater order OS and a 
Copeland order OC with conc(OS, OC) = n + 1. To do this, we set n = 2p where p is an integer 
greater than or equal to 4. 

Let us define the tournament T on the vertices 1, 2, …, 2p as follows. We build a 
circular tournament called Tcirc on the set {4, 5, …, 2p} of vertices; Tcirc is a circular 
tournament defined on an odd number of vertices, so Tcirc is regular, and all the vertices have 
a score equal to p – 2. We add vertex 3 which beats the vertices 4, 5, 7, 9, ..., 2p – 1, i.e. the 
vertex 4 and the vertices 2i + 1 for i ∈ {2, 3, …, p – 1}; vertex 3 is beaten by the other 
vertices between 6 and 2p, i.e. 6, 8, ..., 2p – 2, 2p. We add vertex 2 which beats the vertices 3, 
8, 10, 12, …, 2p, i.e. 3 and the vertices 2i for i ∈ {4, 5, …, p}; vertex 2 is beaten by the other 
vertices between 4 and 2p, i.e. 4, 5, 6, 7, ..., 2p – 3, 2p – 1. Last, we add vertex 1 which beats 
vertex 6 and which is beaten by all the other vertices. Figure 5 specifies the obtained 
tournament for n = 8. In this tournament, we have that: 

• the score of vertex 1 is 1; 
• the score of vertex 2 is p – 1; 
• the scores of the other vertices are p. 
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FIGURE 5. The tournament obtained for n = 8 and reaching the bound of Theorem 9. 

 
Now, consider the Copeland order OC = (5, 4, 3, 2p, 2p – 1, 2p – 2, …, 8, 7, 6, 2, 1) and 

the order OS = (6, 7, 2, 8, 9, 10, …, 2p – 2, 2p – 1, 2p, 3, 4, 5, 1). To compute conc(OS, OC), 
notice that OS and OC are almost reversed orders: what prevents them from being reversed 
orders comes from the positions of 1, 2, 6 and 7. So the concordance between these two 
orders involves these vertices. More precisely: 

• vertex 1 brings 2p – 1 to the concordance;  
• in addition to the contribution of 1, vertex 2 brings an extra concordance of 2 

because of vertices 6 and 7; 
• the other vertices, including 6 and 7, do not bring extra concordance. 

Thus we have conc(OS, OC) = 2p + 1 = n + 1. 
To conclude, we must prove that OS is a Slater order of T. To do this, let us compute 

the distance between T and OS: 

• the restriction of OS to the vertices 4, 5, …, 2p is a Slater order of the 
tournament Tcirc (see Theorem 2) of which the order is 2p – 3; this brings a contribution to the 

distance equal to 
8

)22)(42( −− pp
 = 

2

)1)(2( −− pp
; 

• vertex 1 brings an extra contribution to the distance equal to 1 because of 
vertex 6; 

• vertex 2 brings an extra contribution equal to p – 2 because of the p – 2 vertices 
of Tcirc other than 6 and 7 which beat it; 

• vertex 3 brings an extra contribution equal to p – 3 because of the p – 3 vertices 
of Tcirc other than vertices 4 and 5 and beaten by vertex 3. 

The distance between T and OS is thus equal to: 

2

)1)(2( −− pp
 + 1 + p – 2 + p – 3 = 

2

)3)(2( +− pp
. 

To compute the Slater index of T, let us begin by enumerating the arc-disjoint circuits, 
according to three cases: n = 8, n = 10 and n ≥ 12. 
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Assume that we have n ≥ 12. Thanks to Theorem 8, we know that the circular 

tournament Tcirc, of which the order is at least 9, owns 
2

)1)(2( −− pp
 – 1 arc-disjoint circuits 

which do not use the arcs (i, i + 1) for i between 3 et 2p – 1. Besides this, T owns: 
• for i ∈ {4, 5, ..., p – 1}, the 3-circuits (2i, 2i + 1, 2), which provides (p – 4) 3-circuits;  
• for i ∈ {3, 4, …, p},  the 3-circuits (2i – 1, 2i, 3), which provides (p – 2) 3-circuits;  
• the 3-circuit (2p, 4, 2); 
• the 3-circuit (2, 1, 6); 
• the 4- circuit (2, 3, 4, 5). 

All these circuits are arc-disjoint, which gives: 

2

)1)(2( −− pp
 – 1 + (p – 4) + (p – 2) + 3 = 

2

)3)(2( +− pp
 

arc-disjoint circuits.  
If n = 8, we may point the following seven arc-disjoint circuits in T out: (2, 3, 4), 

(1, 6, 7), (7, 8, 3), (2, 8, 5), (3, 5, 6), (4, 6, 8), (4, 5, 7). This also provides 
2

)3)(2( +− pp
arc-

disjoint circuits since p is here equal to 4. 
If n = 10, we may point the following twelve arc-disjoint circuits in T out: (4, 5, 8), 

(4, 7, 10), (4, 6, 9), (6, 8, 10), (5, 7, 9), (1, 6, 7), (2, 3, 4), (3, 7, 8), (3, 9, 10), (3, 5, 6), 

(2, 8, 9), (2, 10, 5). Once again, this provides 
2

)3)(2( +− pp
arc-disjoint circuits since now p 

is equal to 5. 
For any linear order O, there is at least one arc from each of these circuits which has not the 

same orientation in T than in O. The Slater index of T is thus at least equal to 
2

)3)(2( +− pp
, 

which is also the distance between T and the previous linear order OS. This shows that OS is a 
Slater order of T, and this completes the proof of Theorem 9. ♦ 
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