MAXIMUM DISTANCE BETWEEN SLATER ORDERS AND COPELAND ORDERS OF TOURNAMENTS

Irène CHARON, Olivier HUDRY ${ }^{1,2}$

Abstract

Given a tournament $T=(X, A)$, we consider two tournament solutions applied to T : Slater's solution and Copeland's solution. Slater's solution consists in determining the linear orders obtained by reversing a minimum number of directed edges of T in order to make T transitive. Copeland's solution applied to T ranks the vertices of T according to their decreasing out-degrees. The aim of this paper is to compare the results provided by these two methods: to which extent can they lead to different orders? We consider three cases: T is any tournament, T is strongly connected, T has only one Slater order. For each one of these three cases, we specify the maximum of the symmetric difference distance between Slater orders and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in circular tournaments, we show that this maximum is equal to $n(n-1) / 2$ if T is any tournament on an odd number n of vertices, to $\left(n^{2}-3 n+2\right) / 2$ if T is any tournament on an even number n of vertices, to $n(n-1) / 2$ if T is strongly connected with an odd number n of vertices, to $\left(n^{2}-3 n-2\right) / 2$ if T is strongly connected with an even number n of vertices greater than or equal to 8 , to $\left(n^{2}-5 n+6\right) / 2$ if T has an odd number n of vertices and only one Slater order, to $\left(n^{2}-5 n+8\right) / 2$ if T has an even number n of vertices and only one Slater order.

Keywords - Majority tournament; tournament solutions; Slater orders; Slater winners; Copeland orders; Copeland winners; symmetric difference distance; arc-disjoint circuits in circular tournaments.

1. INTRODUCTION, DEFINITIONS AND NOTATION

1.2. Introduction

At the end of the eighteenth century (for the historic context, see [8], [32], [33], [34] and [35]), M. J. A. N. Caritat, marquis de Condorcet, studied a problem arising in voting theory: the aggregation of linear orders into a linear order [9]. To solve this problem, he suggested to apply a pairwise comparison method.

To describe such a method, let X be a finite set of candidates; n will denote the number of candidates (i.e., $n=|X|$). We consider that m voters are asked to rank the elements of X. Condorcet's method consists in computing, for each candidate $x \in X$ and each candidate

[^0]$y \in X$ with $x \neq y$, the number $m_{x y}$ of voters who prefer x to y. The (strict) majority relation is the relation T defined by: $x T y \Leftrightarrow m_{x y}>m_{y x}$ (for a more general presentation on this topic, see [5]). If there is no tie, what will be assumed in the sequel, T is then a tournament (called the majority tournament of the election), i.e. a complete asymmetric relation: for any pair of candidates $\{x, y\}$ with $x \neq y$, one and only one of the following two situations occurs: $x T y$ or $y T x$. From the graph theoretic point of view, a tournament $T=(X, A)$ is a directed, complete, asymmetric graph: between two distinct vertices x and $y(x \neq y)$, there exists one and only one of the two arcs (i.e., directed edges) (x, y) or (y, x) (for references on tournaments, see [30], [36], [39], [40], as well as [31] for a catalogue of non isomorphic tournaments with at most 10 vertices or for some families of tournaments; more generally, see for instance [2] or [6] for the bases of graph theory). It is well-known that a tournament is transitive if and only if it is without any circuit (i.e., directed cycle) and, in this case, it is a linear order. It is also wellknown that a tournament T is strongly connected if and only if there exists a Hamiltonian circuit, i.e. a circuit going through each vertex of T exactly once.

Notice that, even if we assume the preferences of the voters to be linear orders defined over X, the majority tournament T is not necessarily a linear order, because T may not be transitive: a candidate x can be preferred to another candidate y by a majority of voters, y to a third candidate z by another majority of voters, and z to x by a third majority of voters. Such a situation, discovered by Condorcet himself, is known as the «voting paradox» or also as the «effet Condorcet» in French (see [19]). But T can also be a linear order. A linear order O defined on X will be represented by a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the elements of $X=\{1,2$, $\ldots, n\}$. In such a representation of O, a candidate x_{i} will be considered as preferred to another candidate x_{j} according to O if x_{i} occurs before x_{j} in the writing of the permutation i.e., for the permutation considered above $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, if i is smaller than j. The candidate x_{1} who is ranked in first position of the considered order O will be called the winner of O. More generally, if a tournament T admits a vertex x fulfilling the following property: $\forall y \in X, x T y$, then x is the winner of T. With respect to the election summarized by T, the winner of T, if any, is the Condorcet winner of the election, i.e. a candidate preferred to all the others by a majority of voters. If a Condorcet winner exists, there is only one.

The following example gives an illustration of a majority tournament.
Example 1. Consider $X=\{1,2,3,4\}$ and $m=16$. The preferences of the 16 voters are assumed to be the following, with the notation described above for representing the linear orders:

- $(1,2,3,4)$ for 4 voters
- $(3,4,1,2)$ for 2 voters
- $(4,1,3,2)$ for 5 voters
- $(2,3,4,1)$ for 5 voters.

The majority tournament associated with this election is the tournament of Figure 1.

FIGURE 1. The majority tournament of Example 1.

When the considered tournament is not a linear order, we can wonder how to rank the candidates and which candidate(s) must be or can be considered as the winner(s) of the election. Different answers can be brought to this question, known under the name of tournament solutions (see for instance [27], [30] or [37]). In this paper, we pay attention to two tournament solutions (of which the definitions are specified below): the solution designed by P. Slater [42] and the one by A.H. Copeland [16] (notice that, according to [33], Ramon Llull (ca 1232-1316) promoted the method of pairwise comparison and proposed the Copeland rule to select a winner; despite this historical discovery, we shall keep the usual authorships). These two methods give the possibility to construct linear orders to rank the candidates and to define winners of the election, called Slater winners or Copeland winners, from the winners of these orders. The question that we study in this paper is the following: to which extend can the rankings provided by these two methods be different?

Thanks to an example with 7 vertices, J.-C. Bermond [7] already showed that the Copeland winners and the Slater winners can define disjoint sets. In fact, such a situation can occur for any $n \geq 6$ (see [12] or [14]). More precisely, these two sets are equal for $n \leq 3$, the set of Copeland winners contains the one of Slater winners for $n=4$, and the intersection of the two sets is non-empty for $n=5$ but there is no systematic inclusion between them. The relationships between Slater's solution or Copeland's solution on the one hand and other tournament solutions on the other have already been investigated (see [12]): it is the case for instance for the solution of J.G. Kemeny [22] (see [13] and [23]), for the solution of J. Banks [3] (see [15], [20], [25], [38]), for the solution of C.L. Dodgson (also known as Lewis Carroll) [17] (see [24]), or for the prudent orders [1] (see [28]).

Last, notice that the maximum likelihood method proposed by E. Zermelo [45] (see also [30]) yields to the same winners and to the same rankings as Copeland's solution. Consequently, all the results below between Copeland's solution and Slater's solution can also be applied for a comparison between Zermelo's solution and Slater's solution.

1.2. Definitions and notation

In the sequel, T will denote a tournament of order n. The vertices of T will be $1,2, \ldots$, n. By definition of a tournament, for any pair $\{x, y\}$ with $1 \leq x \leq n, 1 \leq y \leq n$ and $x \neq y$, there exists exactly one of the two arcs (i.e., directed edge) (x, y) or (y, x). If x and y are two vertices of T such that the arc (x, y) exists, we say that x beats y and that y is beaten by x.

A transitive tournament is a linear order and conversely. A tournament is transitive if and only if it is without circuit (i.e. directed cycle). If two circuits do not share any arc in common, they are said to be arc-disjoint (they may share a common vertex). If $x_{1}, x_{2}, \ldots, x_{n}$ is a permutation of the vertices of T, we say that T is the transitive tournament defined by the $\operatorname{order}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if, for any pair $\{i, j\}$ with $1 \leq i \leq n, 1 \leq j \leq n$ and $i \neq j, x_{i}$ beats x_{j}. The reversed order of an order $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the order $\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$.

If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a permutation of the vertices of T, we say that T is a circular tournament defined by the order $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if, for any pair $\{i, j\}$ with $1 \leq i<j \leq n, x_{i}$ beats x_{j} if we have $j-i \leq\left\lfloor\frac{n}{2}\right\rfloor$ (otherwise, x_{j} beats x_{i}). We may notice that, for n odd, all the vertices of a circular tournament play the same role (more precisely, for any given i and j, there exists an automorphism of the circular tournament such that the image of x_{i} is x_{j}). Figure 2 represents, on the left, the circular tournament of order 5 defined by the order (1, 2, 3, 4, 5) and, on the right, the circular tournament of order 6 defined by the order $(3,4,5,6,1,2)$.

FIGURE 2. A circular tournament of order 5 (on the left) and a circular tournament of order 6 (on the right).

The (Copeland) score $s(x)$ of a vertex x of a tournament T is the number of vertices beaten by x, also called the out-degree of x. A Copeland order of a tournament T is any linear order obtained by sorting the vertices of T according to their non-increasing scores. A Copeland winner of T is the winner of a Copeland order of T. In other words, a Copeland winner of T is a vertex with a maximum score. For instance, the tournament of Example 1 admits four Copeland orders: $(1,2,3,4),(2,1,3,4),(1,2,4,3),(2,1,4,3)$, which involves that 1 and 2 are the Copeland winners of this tournament. H.G. Landau [29] gave a characterization of the scores of a tournament:

THEOREM 1. Let $s_{1}, s_{2}, \ldots, s_{n}$ be n integers with $0 \leq s_{1} \leq s_{2} \leq \ldots \leq s_{n}$. These integers can be the scores of a tournament if and only if the following two properties are fulfilled:

1. $\forall 1 \leq i \leq n-1, \sum_{j=1}^{i} s_{j} \geq \frac{i(i-1)}{2}$;
2. $\sum_{j=1}^{n} s_{j}=\frac{n(n-1)}{2}$.

A tournament is said to be regular if n is odd and if all its vertices have a same score, thus equal to $(n-1) / 2$. It is the case for instance for the circular tournaments with an odd number of vertices. Notice that, for n even, there does not exist regular tournament. For the circular tournaments with n even, there are $n / 2$ vertices with a score equal to $n / 2$ and $n / 2$ vertices with a score equal to $(n-2) / 2$.

Let T and T^{\prime} be two tournaments (which can be linear orders) with the same set of vertices, the symmetric difference distance (see [4] for its axiomatic properties and [5] for its uses in the social sciences) between T and T^{\prime} is the number of pairs $\{i, j\}$ with $1 \leq i \leq n$, $1 \leq j \leq n$ and $i \neq j$ for which the arc between i and j has not the same direction in T and in T^{\prime}. This distance will be noted $\operatorname{dist}\left(T, T^{\prime}\right)$. This distance is always less than or equal to $\frac{n(n-1)}{2}$. We call concordance between T and T^{\prime}, and we note $\operatorname{conc}\left(T, T^{\prime}\right)$, the difference between this maximum and the distance between T and $T^{\prime}: \operatorname{conc}\left(T, T^{\prime}\right)=\frac{n(n-1)}{2}-\operatorname{dist}\left(T, T^{\prime}\right)$. In this paper, we study concordances between orders; the distance between these orders can easily be deduced from the concordances.

Let T be a tournament and O a linear order with the same vertices as T. An order O is a Slater order of T if, for any linear order O^{\prime} defined on the vertices of T, we have:
$\operatorname{dist}(T, O) \leq \operatorname{dist}\left(T, O^{\prime}\right)$. So, a Slater order of T is defined as an order at minimum distance from T. We call Slater index of T, and we note $i(T)$, the distance from T to any Slater order of T. This index can be interpreted as the minimum number of arcs of T which must be reversed in T to obtain a linear order (see [12] for equivalent formulations and for references on Slater's problem). A Slater winner of T is the winner of a Slater order of T. It is easy to see that the tournament of Example 1, which is not a linear order (for example the circuit (1, 2, 4) prevents this tournament from being transitive), becomes transitive by reversing the arc $(4,1)$. It is also easy to check that the only way to make this tournament transitive by the reversing of only one arc consists precisely in reversing the arc (4, 1). Thus, the Slater index of this tournament is equal to 1 , with only one Slater order: ($1,2,3,4$); so, 1 is its only Slater winner.

The computation of the Slater index of a tournament T, of the Slater orders of T, or of the Slater winners of T is NP-hard (see [21]). There exist anyway some tournaments for which these quantities are known. It is the case for instance for the circular tournaments (see [43]):

THEOREM 2. Let C_{n} be the circular tournament on n vertices defined by $(1,2, \ldots, n-1, n)$. Then we have:

- if n is odd, $i\left(C_{n}\right)=\frac{n^{2}-1}{8}$, there are n Slater orders of C_{n} which are $(1,2, \ldots, n),(2,3, \ldots$, $n, 1), \ldots,(n, 1,2, \ldots, n-1)$, and all the vertices are Slater winners;
- if n is even, $i\left(C_{n}\right)=\frac{n^{2}-2 n}{8}$, there is only one Slater order which is $(1,2, \ldots, n)$, and 1 is the only Slater winner.

More generally, it is easy to show that, for a regular tournament (thus, with n odd), all the vertices are simultaneously Copeland and Slater winners (see Lemma 3 below). A tournament solution which systematically selects all the vertices of a regular tournament as its winners is sometimes said to be regular (see for instance [30]); thus Slater's and Copeland's solutions are regular.

Notice that the so-called Copeland value of a tournament solution is based on Copeland solution (see [26] or [30]). Let Sol be a tournament solution and, for any tournament $T=(X, A)$, let $\operatorname{Sol}(T)$ be the set of the winners of T according to Sol. The Copeland value $V C_{S o l}$ of Sol for T is defined as the ratio $V C_{S o l}(T)=\frac{\max \{s(x) \text { for } x \in \operatorname{Sol}(T)\}}{\max \{s(x) \text { for } x \in X\}}$. We obviously get the bounds $0 \leq V C_{S o l}(T) \leq 1$ for any tournament solution Sol and any tournament T. The Copeland value of the tournament solution Sol is defined as $\inf \left\{V C_{S o l}(T): T \in \mathcal{T}\right\}$, where \mathcal{T} denotes the set of all the tournaments; this value is also between 0 and 1 for any tournament solution. For Slater's solution, the Copeland value is equal to 0.5 (see [30]). In other words, the score of a Slater winner of a tournament T is between the maximum score of the vertices of T and half this maximum score, and we can get as close as desired to these two values.

1.3. Contribution of the study

The aim of this paper is to compute, for any given integer $n \geq 3$, the maximum distance or, equivalently, the minimum concordance between a Slater order and a Copeland order of a same tournament T with n vertices. In more formal terms, we want to compute the following quantity, for any $n \geq 3$:
$\max \left\{\operatorname{dist}\left(O_{S}(T), O_{C}(T)\right): T\right.$ is any tournament on n vertices, $O_{S}(T)$ is any Slater order of T and $O_{C}(T)$ is any Copeland order of $\left.T\right\}$,
or, equivalently:
$\min \left\{\operatorname{conc}\left(O_{S}(T), O_{C}(T)\right): T\right.$ is any tournament on n vertices, $O_{S}(T)$ is any Slater order of T and $O_{C}(T)$ is any Copeland order of $\left.T\right\}$.

In Section 2, we compute this maximum distance when T is any tournament or, thanks to a decomposition of the set of the arcs of a circular tournament with an odd number of vertices into arc-disjoint circuits, when T is strongly connected. Section 3 is devoted to the case for which T has only one Slater order. The results are summarized in Section 4, which is the conclusion. In order to make the paper more reader-friendly, the proof of a theorem of Section 3 (Theorem 9) has been moved in an Appendix (Section 5).

Notice that the study for which there would be only one Copeland order is uninteresting: from the characterization provided by H.G. Landau [29], it appears that the uniqueness of the Copeland order can be observable only for transitive tournaments; in this case, there is also only one Slater order, which is the same as the Copeland order, i.e. the tournament itself. For this reason, we assume in the sequel that n is greater than or equal to 3 .

The following lemmas will be useful in the sequel (see [7], [10], [11], [41]) :
LEMMA 3. Let $O_{S}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Slater order of T. For any i between 1 and n, x_{i} beats at least half the vertices x_{i+1}, \ldots, x_{n} and at most half the vertices $x_{1}, x_{2}, \ldots, x_{i-1}$. If x_{i} beats exactly half the vertices x_{i+1}, \ldots, x_{n}, the order $\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_{n}, x_{i}\right)$ is also a Slater order of T; similarly, if x_{i} beats exactly half the vertices $x_{1}, x_{2}, \ldots, x_{i-1}$, then the order $\left(x_{i}, x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_{n}\right)$ is also a Slater order of T.

Proof. Let α be the number of vertices among x_{i+1}, \ldots, x_{n} beaten by x_{i} and $\beta=n-i-\alpha$ the number of vertices among x_{i+1}, \ldots, x_{n} who beat x_{i}. Consider the order $O=\left(x_{1}, x_{2}, \ldots, x_{i-1}\right.$, $\left.x_{i+1}, x_{i+2}, \ldots, x_{n}, x_{i}\right)$. We get: $\operatorname{dist}(T, O)-\operatorname{dist}\left(T, O_{S}\right)=\alpha-\beta$. As O_{S} is assumed to be a Slater order, we obtain $\alpha-\beta \geq 0$, or also $\alpha-(n-i-\alpha) \geq 0$. Hence $\alpha \geq \frac{n-i}{2}$: x_{i} beats at least half the vertices x_{i+1}, \ldots, x_{n}. Moreover, if we have $\alpha=\beta$, then we get $\operatorname{dist}(T, O)=\operatorname{dist}\left(T, O_{S}\right)$ and O is also a Slater order.

We can prove the results with respect to the vertices $x_{1}, x_{2}, \ldots, x_{i-1}$ in a similar way.
COROLLARY 4. Let $O_{S}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Slater order of T. The score of x_{1} is at least equal to $(n-1) / 2$ and the one of x_{n} is at most equal to $(n-1) / 2$.

Proof. Apply Lemma 3 with $i=1$ or $i=n$.
The result of Corollary 4, already used by J.-C. Bermond [7], was generalized by A. Guénoche [18] who designed a way to compute bounds of the ranks that a vertex x may occupy in a Slater order according to the score of x.

The following lemma (see [41]) shows that each Slater order $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of T induces a Hamiltonian path, namely the Hamiltonian path made of the $\operatorname{arcs}\left(x_{i}, x_{i+1}\right)$ for $1 \leq i<n$ (notice that Lemma 5 shows a certain similarity to what is called Condorcet property for preference functions in [44]).

LEMMA 5. Let $O_{S}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Slater order of a tournament T. For each integer i between 1 and $n-1, x_{i}$ beats x_{i+1}.

Proof. If the statement of Lemma 5 was wrong, we would obtain a better order by switching x_{i} and x_{i+1} in O_{S}, a contradiction with the optimality of O_{S}.

2. CASE WHERE T IS ANY TOURNAMENT OR IS STRONGLY CONNECTED

2.1. Case where T is any tournament

Let T denote any tournament. We want to show that, for any given odd $n \geq 3$, the minimum concordance between a Slater order and a Copeland order of a tournament with n vertices is equal to 0 while, for any given even $n \geq 4$, this minimum concordance is equal to $n-1$. Theorem 6 provides a slightly stronger result.

THEOREM 6. Let n be an integer greater than or equal to 3 .

1. If n is odd, there exists a tournament T on n vertices such that, for any Slater order O_{S} of T, there exists a Copeland order O_{C} with $\operatorname{conc}\left(O_{S}, O_{C}\right)=0$.
2. If n is even, let T be a tournament on n vertices and let O_{S} be any Slater order of T and O_{C} any Copeland order of T. Then $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq n-1$. Moreover, there exists a tournament T such that, for any Slater order of T, there exists a Copeland order with $\operatorname{conc}\left(O_{S}, O_{C}\right)=n-1$.

Proof.

1. For n odd, any regular tournament T allows to conclude, since then any linear order is a Copeland order, in particular the reversed orders of the Slater orders of T.
2. Assume now that n is even and consider a tournament T of order n, a Slater order O_{S} of T and a Copeland order O_{C} of T. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the Slater order. A vertex is said to be large if its score is at least equal to $\frac{n}{2}$ and is said to be small otherwise.

According to Corollary $4, x_{1}$ is large and x_{n} is small. Let n_{l} denote the number of large vertices and n_{s} the number of small vertices. The vertex x_{1} is ranked in the same way with respect to the small vertices in O_{S} and in $O_{C} ;$ so x_{1} brings n_{s} to the value of the concordance. Similarly, x_{n} is ranked in the same way with respect to the large vertices in O_{S} and in O_{C}; if we do not consider x_{1} anymore (x_{1} is already considered above), x_{n} adds $n_{l}-1$ to the concordance. Hence: $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq n_{s}+n_{l}-1$. As $n_{s}+n_{l}$ is equal to n, we get the relation $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq n-1$ for any tournament T, any Slater order O_{S} and any Copeland order O_{C} of T.

Let us show now that there exist tournaments with $\operatorname{conc}\left(O_{S}, O_{C}\right)=n-1$ for any even n. For this, consider the tournament T obtained from the circular tournament on $n-1$ vertices defined by the order $(1,2, \ldots, n-1)$ by adding the vertex n in such a way that n is beaten by all the other vertices. Figure 3 represents such a tournament for $n=6$. Then the order (1,2, $\ldots, n-2, n-1, n)$ is a Slater order and the order $(n-1, n-2, \ldots, 2,1, n)$ is a Copeland order of the constructed tournament. The concordance between these two orders is equal to $n-1$.

FIGURE 3. A tournament with $\operatorname{conc}\left(O_{S}, O_{C}\right)=n-1$ for $n=6$.

2.2. Decomposition of a circular tournament with an odd order

In a directed graph, we call arc-disjoint circuits any set of circuits such that any two circuits of this set have no arc in common. We call arc-decomposition of a tournament T into arcdisjoint circuits, or simply a decomposition of the arcs of T, any set Z of arc-disjoint circuits such that any arc of T belongs to one and only one circuit of Z. Such a decomposition will be used in the sequel to study the distance between Slater orders and Copeland orders of tournaments.

THEOREM 7. Let T be a circular tournament with an odd number n of vertices. The number of arc-disjoint circuits in T is at most equal to $\frac{(n-1)(n+1)}{8}$. Any set of arc-disjoint circuits reaching this bound is a decomposition of the arcs of T into arc-disjoint circuits.

Proof.
We set $n=2 p+1$ and we assume, without loss of generality, that T is the circular tournament defined by the order $(1,2,3, \ldots, n)$.

Let $C=\left(c_{1}, c_{2}, \ldots, c_{q}\right)$ be any circuit of T. We first show that there exists a vertex x_{1} of C with $1 \leq x_{1} \leq p+1$ and a vertex x_{2} of C with $p+2 \leq x_{2} \leq 2 p+1$. We suppose that the vertices of C are numbered in such a way that c_{1} is the smallest integer; T owns the arc (c_{q}, c_{1}) and so $\left(c_{1}, c_{q}\right)$ is not an arc of T. As T is the circular tournament defined by the order ($1,2,3$, .., n), we have $c_{q}-c_{1} \geq p+1$. From $c_{1} \geq 1$, we deduce the inequality $c_{q} \geq p+2$ and, from $c_{q} \leq 2 p+1$, we obtain $c_{1} \leq p$. So any circuit of C owns an arc $\left(c_{q}, c_{1}\right)$ with $1 \leq c_{1} \leq p+1$ and $p+2 \leq c_{q} \leq 2 p+1$ and thus, conversely, C must own an arc (x_{1}, x_{2}) with x_{1} between 1 and $p+1$ and x_{2} between $p+2$ and $2 p+1$.

Thus, the number of arc-disjoint circuits of T is at most equal to the number of arcs of which the head is between 1 and $p+1$ and the tail is between $p+2$ and $2 p+1$. If we consider the vertex i with $1 \leq i \leq p+1, i$ beats the p vertices $i+1, i+2, \ldots, i+p$. Among them, there are $p+1-i$ vertices lower than or equal to $p+1$ and so $i-1$ vertices between $p+2$ and $2 p+1$. The number of arcs with their heads between 1 and $p+1$ and their tails between $p+2$ and $2 p+1$ is hence equal to $\sum_{i=1}^{p+1}(i-1)=\frac{p(p+1)}{2}=\frac{(n-1)(n+1)}{8}$.

Suppose now that there are exactly $\frac{p(p+1)}{2}$ arc-disjoint circuits. Then, the previous proof shows that all the arcs with their heads between 1 and $p+1$ and their tails between $p+2$ and $2 p+1$ are involved in these circuits. Let now (i, j) be any arc of T. We can perform a circular permutation on the numbers of all the vertices of T so that i takes the number $p+1$ (remember that all the vertices play the same role); in this case, T is still defined by the order $(1,2,3, . ., n)$ with respect to the new numbering of the vertices. Then the new number of j is between $p+2$ and $2 p+1$. The result obtained previously shows that the arc (i, j) belongs to one of the considered arc-disjoint circuits. This completes the proof of Theorem 7.

For $n=3$, the upper bound of Theorem 7 is equal to 1 and is clearly reached. For $n=5$, this upper bound is equal to 3 and is reached for instance by the decomposition given by the following three arc-disjoint circuits: $(1,2,4),(2,3,5),(1,3,4,5)$. If $n=7$, the upper bound is equal to 6 and is reached for instance by the decomposition given by the following six arc-disjoint circuits: $(1,2,3,4,5,6),(1,4,7),(3,6,7),(2,5,7),(2,4,6),(1,3,5)$. For $n \geq 9$, we prove that the upper bound is reached in Theorem 8, with a sharper result, which will be used in the proof of Theorem 9 .

THEOREM 8. Let T be a circular tournament on an odd number n of vertices with $n \geq 9$, defined by the order $(1,2,3, \ldots, n)$. There exists a decomposition of the arcs of T into $\frac{(n-1)(n+1)}{8}$ arc-disjoint circuits with the circuit $(1,2,3, \ldots, n)$ as one of them, the others circuits being of length 3 or 4 .

Proof.
We set $n=2 p+1$ and we prove the result by induction on p. Notice the equality: $\frac{(n-1)(n+1)}{8}=\frac{p(p+1)}{2}$.

For $p=4$, we have the desired decomposition, given by the 10 circuits $(1,2,3,4,5,6$, $7,8,9),(1,3,7),(1,4,6),(1,5,8),(2,4,8),(2,5,7),(2,6,9),(3,5,9),(3,6,8),(4,7,9)$.

Let $p \geq 5$. We assume that the result is true for $p-1$ and we prove it for p. Let T be the circular tournament with $2 p+1$ vertices and defined by the order $(1,2,3, \ldots, 2 p+1)$. It is easy to check that the subgraph of T obtained by removing the two vertices $p+1$ and $2 p+1$ is also a circular tournament T^{\prime}, defined by the order $(1,2, \ldots, p, p+2, p+3, \ldots, 2 p-1,2 p)$. According to the induction hypothesis, there exist, in $T^{\prime}, \frac{(p-1) p}{2}-1$ circuits which are arcdisjoint and which do not use, for $i \in\{1,2, \ldots, p-1, p+2, p+3, \ldots, 2 p-1\}$, the arcs $(i, i+1)$, nor the arc $(p, p+2)$, nor the $\operatorname{arc}(2 p, 1)$. In addition to these circuits, consider the following extra circuits of T :

- for $i \in\{2,3, \ldots, p-2\}$, the circuit $(2 p+1, i, p+1,2 p-i+1)$;
- the circuit $(1, p+1,2 p)$;
- \quad the circuit $(p-1, p+1,2 p+1)$;
- the circuit $(p, p+2,2 p+1)$.

Thus we obtain $\frac{(p-1) p}{2}-1+(p-3)+3=\frac{p(p+1)}{2}-1$ arc-disjoint circuits which do not use, for any i between 1 and $2 p$, the arcs $(i, i+1)$ nor the arc $(2 p+1,1)$. Hence the statement of the theorem, by adding the Hamiltonian circuit $(1,2, \ldots, 2 p, 2 p+1)$ to the previous circuits.

2.3. Case where T is strongly connected

We consider now the distance, or rather the concordance, between a Slater order and a Copeland order of a strongly connected tournament.

Let T_{6} denote the tournament on 6 vertices of Figure 4. It is easy to check that the Slater index of T_{6} is equal to 4 and that $(1,2,3,4,5,6)$ is one of its Slater orders. On the other hand, the order $(5,3,1,6,4,2)$ is a Copeland order of T_{6}. The concordance between these two orders is equal to 6 .

FIGURE 4. The tournament T_{6}

THEOREM 9. Let n be a positive integer greater than or equal to 3 .

1. If n is odd, there exists a strongly connected tournament T on n vertices such that, for any Slater order O_{S} of T, there exists a Copeland order O_{C} of T with $\operatorname{conc}\left(O_{S}, O_{C}\right)=0$.
2. If n is equal to 4 , the only strongly connected tournament on 4 vertices is the circular tournament, and the minimum concordance between its unique Slater order and its Copeland orders is 4 .
3. If n is equal to 6 , the minimum concordance, over the set of strongly connected tournaments T on 6 vertices, between the Slater orders of T and the Copeland orders of T is equal to 6 ; this minimum can be reached only for the tournament T_{6} of Figure 4.
4. If n is even and is greater than or equal to 8 , the minimum concordance, over the set of strongly connected tournaments T on n vertices, between the Slater orders of T and the Copeland orders of T is equal to $n+1$.

In order to make the paper more reader-friendly, the proof of Theorem 9, rather long, has been moved to the Appendix.

3. CASE WHERE T HAS ONLY ONE SLATER ORDER

The last result deals with the minimum concordance between Slater orders and Copeland orders when the considered tournament has only one Slater order. As noticed above, the case where there is only one Copeland order is the one for which the tournament is transitive; then the tournament itself is the only Slater order and simultaneously the only Copeland order.

THEOREM 10. Let T be a tournament with $n \geq 3$ vertices and with only one Slater order. Let O_{S} be the Slater order of T and O_{C} be a Copeland order of T. If n is even, we have $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq 2 n-4$ and the bound can be tight. If n is odd, we have $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq 2 n-3$ and the bound can be tight.

Proof.
Assume that n is even and set $n=2 p$, with $p \geq 2$.
Let T be a tournament on n vertices with a unique Slater order $O_{S}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let O_{C} be a Copeland order of T. Let us show the inequality $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq 2 n-4$. We use the terminology and notation used in the proofs of Theorems 6 and 9 . We may show, as for these two theorems, that x_{1} is large and that x_{n} is small. Assume now that x_{2} is small; its score is exactly equal to $p-1$: otherwise, we could move x_{2} behind x_{n} to obtain a better order, and O_{S} would not be a Slater order; in the set $\left\{x_{3}, x_{4}, \ldots, x_{n}\right\}$, the number of vertices beaten by x_{2} is equal to the number of vertices which beat x_{2}; so, the order $\left(x_{1}, x_{3}, x_{4}, \ldots, x_{n}, x_{2}\right)$ is also a Slater order, a contradiction with the uniqueness of the Slater order. Thus x_{2} is large. We may prove in a similar way that x_{n-1} is small.

As shown in the proof of Theorem 6, the part of the concordance between O_{S} and O_{C} due to x_{1} and x_{n} is equal to $n-1$. We may now add the contribution due to x_{2} with respect to the vertices other than x_{1} and x_{n}; this contribution is at least equal to $n_{s}-1$. Similarly, the contribution due to x_{n-1} with respect to the vertices other than x_{1}, x_{2} and x_{n} is at least equal to $n_{l}-2$. We get $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq n-1+n_{s}-1+n_{l}-2=2 n-4$.

To prove that this lower bound is reached, consider the tournament T defined as follows. Let $T_{\text {circ }}$ be the circular tournament defined by the order $(1,2, \ldots, 2 p-1)$ and add the vertex $2 p$ as well as the $\operatorname{arcs}(i, 2 p)$ for $i \in\{1,2, \ldots, 2 p-2\}$ and the $\operatorname{arc}(2 p, 2 p-1)$. Let K be the Slater index of a circular tournament on $2 p-1$ vertices. Let O be any order. The distance between T and O is the sum of the distance between the restriction O^{\prime} of O to the set $\{1,2, \ldots, 2 p-1\}$ from $T_{\text {circ }}$, which is at least equal to K, and the contribution due to the vertex $2 p$, which is at least 0 . So the distance between T and O is at least K. To reach a distance exactly equal to K, we must have simultaneously that:

- $\quad O^{\prime}$ is a Slater order of $T_{c i r c}$;
- the vertices $1,2, \ldots, 2 p-2$ are just before the vertex $2 p$ in O and that the vertex $2 p-1$ is just after; by transitivity, the vertices $1,2, \ldots, 2 p-2$ must be before the vertex $2 p-1$ in O.
The only Slater order of $T_{\text {circ }}$ for which the vertices $1,2, \ldots, 2 p-2$ are before $2 p-1$ is the order $(1,2, \ldots, 2 p-1)$ (see Theorem 2). The only order O which is at distance K from T is thus the order $(1,2, \ldots, 2 p-2,2 p, 2 p-1)$. Hence the uniqueness of the Slater order of T.

The scores of the vertices $1,2, \ldots, 2 p-2$ are p, the one of the vertex $2 p-1$ is $p-1$ and the one of the vertex $2 p$ is 1 . So the order $(2 p-2,2 p-3, \ldots, 2,1,2 p-1,2 p)$ is a Copeland order and it is easy to check that the concordance between this order and the only Slater order is equal to $2 n-4$.

Now, let n be an odd integer and set $n=2 p+1$.
Let T be a tournament on n vertices with only one Slater order $O_{S}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let O_{C} be any Copeland order of T. We want to show that we have $\operatorname{conc}\left(O_{S}, O_{C}\right) \geq 2 n-3$.

If $n=3, T$ must be the transitive tournament and the concordance is equal to 3 , i.e. $2 n-3$.

Assume now that we have $n \geq 5$.
Let us define three kinds of vertices:

- the vertices of which the scores are greater than p; these vertices will be said to be large;
- the vertices of which the scores are equal to p; these vertices will be said to be average;
- the vertices of which the scores are less than p; these vertices will be said to be small.

Let n_{l} be the number of large vertices, n_{a} the number of average vertices, and n_{s} the number of small vertices; we have: $n_{l}+n_{a}+n_{s}=n$. Because of Corollary 4, the score of x_{1} is at least $\frac{n-1}{2}$, i.e. p; if the score was exactly p, then the order $\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)$ would also be a Slater order, since T has only one Slater order, x_{1} is large; similarly, x_{n} is small. Because of Lemma 3, the score of x_{2} is at least $\frac{n-2}{2}$, and so at least equal to $p: x_{2}$ is average or large; similarly, x_{n-1} is average or small.

The concordance due to x_{1} is then at least $n_{a}+n_{s}$, the concordance due to x_{n} without respect to x_{1} is at least $n_{a}+n_{l}-1$. We now distinguish between four cases.

1. Vertices x_{2} and x_{n-1} are average. The concordance due to x_{2} without respect to x_{1} and x_{n} is at least $n_{s}-1$; the concordance due to x_{n-1} without respect to x_{1}, x_{2} and x_{n} is at least $n_{l}-1$. So the whole concordance is at least:

$$
\left(n_{a}+n_{s}\right)+\left(n_{a}+n_{l}-1\right)+\left(n_{s}-1\right)+\left(n_{l}-1\right)=2 n-3 .
$$

2. Vertex x_{2} is average and vertex x_{n-1} is small. The concordance due to x_{2} without respect to x_{1} and x_{n} is at least $n_{s}-1$. The concordance due to x_{n-1} without respect to x_{1}, x_{2} and x_{n} is at least $n_{l}-1+n_{a}-1$. So the whole concordance is at least:

$$
\left(n_{a}+n_{s}\right)+\left(n_{a}+n_{l}-1\right)+\left(n_{s}-1\right)+\left(n_{l}+n_{a}-2\right)=2 n+n_{a}-4 .
$$

As x_{2} is average, we have $n_{a} \geq 1$ and thus the concordance is at least $2 n-3$.
3. Vertex x_{2} is large and vertex x_{n-1} is average. This case can be dealt with as the previous one and we keep the same conclusion: the concordance is at least $2 n-3$.
4. Vertex x_{2} is large and vertex x_{n-1} is small. The concordance due to x_{2} without respect to x_{1} and x_{n} is at least $n_{s}-1+n_{a}$. The concordance due x_{n-1} without respect to x_{1}, x_{2} and x_{n} is at least $n_{l}-2+n_{a}$. So the whole concordance is at least:

$$
\left(n_{a}+n_{s}\right)+\left(n_{a}+n_{l}-1\right)+\left(n_{s}+n_{a}-1\right)+\left(n_{l}+n_{a}-2\right)=2 n+2 n_{a}-4 .
$$

If n_{a} is not equal to 0 , the concordance is greater than $2 n-3$. If n_{a} is equal to 0 , consider x_{3}. Its score is greater than $\frac{n-3}{2}$, i.e. at least equal to p : otherwise O_{S} would not be a Slater order or would not be the only one. So, x_{3} must be large or average. As n_{a} is assumed to be equal to $0, x_{3}$ is large. By the same way, we may show that x_{n-2} is small. Thus, we have necessarily $n \geq 7$ and the couple (x_{3}, x_{n-2}) adds 1 to the concordance. So the whole concordance is at least $2 n-3$.

To show that the bound is tight for n odd, consider the tournament T defined as follows. We start from a circular tournament $T_{\text {circ }}$ on $2 p+1$ vertices defined by the order $(1,2, \ldots, 2 p+1)$ in which we reverse the arc $(2 p+1,1)$ in order to obtain the arc $(1,2 p+1)$. Let K denote the Slater index of $T_{\text {circ }}$. Let O be any order defined on $\{1,2, \ldots, 2 p, 2 p+1\}$. The distances from O to $T_{\text {circ }}$ and to T differ by 1 . More precisely, we have: $\operatorname{dist}(O, T)=\operatorname{dist}\left(O, T_{\text {circ }}\right)-1$ if and only if vertex 1 is located in O before vertex $2 p+1$.

By definition of the Slater index of a tournament, we have $\operatorname{dist}\left(O, T_{\text {circ }}\right) \geq K$, from which we obtain: $\operatorname{dist}(T, O) \geq K-1$. Moreover, the equality $\operatorname{dist}(O, T)=K-1$ is reached if and only if:

- $\quad \operatorname{dist}\left(O, T_{\text {circ }}\right)=K$, which means that O is a Slater order of $T_{\text {circ }}$;
- \quad in O, vertex 1 is before vertex $2 p+1$.

There is only one Slater order of $T_{\text {circ }}$ in which vertex 1 is before vertex $2 p+1$ (see Theorem 2$)$: it is the order $(1,2, \ldots, 2 p, 2 p+1)$. This order is thus the only Slater order of T.

On the other hand, $(1,2 p, 2 p-1, \ldots, 2,2 p+1)$ is a Copeland order of T. The concordance between this order and $(1,2, \ldots, 2 p, 2 p+1)$ is equal to $2 n-3$.

This completes the proof of Theorem 10.

4. CONCLUSION

The previous results are summarized below, stated in terms of distances. More precisely, we give below the maximum of the distance between the Slater orders and the Copeland orders of a tournament T with $n \geq 3$ vertices, over three sets of tournaments T : the set of any tournaments on n vertices, the set of strongly connected tournaments with n vertices, the set of tournaments on n vertices with only one Slater order.

maximum distance	any tournaments (Th. 6)	strongly connected tournaments (Th. 9)	tournaments with only one Slater order (Th. 10)
n odd	$n(n-1) / 2$	$n(n-1) / 2$	$\left(n^{2}-5 n+6\right) / 2$
n even	$\left(n^{2}-3 n+2\right) / 2$	2 if $n=4$ 9 if $n=6$ $\left(n^{2}-3 n-2\right) / 2$ if $n \geq 8$	$\left(n^{2}-5 n+8\right) / 2$

5. APPENDIX: PROOF OF THEOREM 9.

For n odd, the circular tournaments allow to conclude once again, as in the first step of the proof of Theorem 6.

Assume now that n is even. We consider a strongly connected tournament T defined on n vertices, a Slater order O_{S} of T, a Copeland order O_{C} of T and we try to minimize $\operatorname{conc}\left(O_{S}, O_{C}\right)$.

If $n=4$, as said above, the only (up to an isomorphism) strongly connected tournament on 4 vertices is the circular tournament of Figure 1. Then ($1,2,3,4$) is the only Slater order of this tournament, and the most different Copeland order is the order ($2,1,4,3$), for which the concordance is equal to 4 .

We now assume that n is greater than or equal to 6 , and we suppose that we have $\operatorname{conc}\left(O_{S}, O_{C}\right) \leq n$; then we want to show, through the next nine steps, that then n is equal to 6 and that T is the tournament T_{6}.

To do this, we consider once again the notation of the proof of Theorem 6, but with T strongly connected. In particular, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denotes a Slater order O_{S} and we say that a
vertex is large if its score is greater than or equal to $\frac{n}{2}$, and small otherwise. As in the proof of Theorem 6, vertex x_{1} is large and vertex x_{n} is small.

* Step 1: x_{1} cannot be the only large vertex and x_{n} cannot be the only small vertex.

Indeed, assume that x_{1} is the only large vertex. Then the sum of the scores of the vertices $x_{2}, \ldots, x_{n-1}, x_{n}$ is at most equal to $(n-1)\left(\frac{n}{2}-1\right)$. As the sum of all the scores is equal to $\frac{n(n-1)}{2}$ according to Theorem 1, we obtain $\frac{n(n-1)}{2}-(n-1)\left(\frac{n}{2}-1\right)=n-1$ as the score of $x_{n}: x_{n}$ beats all the other vertices and hence T is not strongly connected, a contradiction. Thus there exist large vertices other than x_{1}. Similarly, we can prove that x_{n} is not the only small vertex.

* Step 2: if x_{2} is large, then x_{3} is small. Similarly, if x_{n-1} is small, then x_{n-2} is large.

Assume that x_{1}, x_{2} and x_{3} are large. Then x_{1}, x_{2} and x_{3} provide a concordance with respect to the small vertices equal to $3 n_{s}$ and x_{n} provides an extra concordance with respect to the large vertices other than x_{1}, x_{2} and x_{3} equal to $n_{l}-3$. The whole concordance is at least equal to $3 n_{s}+n_{l}-3$, and so to $n+2 n_{s}-3$, since $n_{s}+n_{l}$ is equal to n. As we suppose that we have $\operatorname{conc}\left(O_{S}, O_{C}\right) \leq n$, we obtain $2 n_{p}-3 \leq 0$ and so $n_{s} \leq 1$, a contradiction with the result of Step 1. Hence the first part of the statement of Step 2.

The second part of Step 2 can be showed in a similar way.

* Step 3: x_{2} is small and x_{n-1} is large.

Assume that x_{2} is large.
By considering the part of concordance provided by x_{1} and x_{2} with respect to the small vertices and the one provided by x_{n} with respect to the large vertices other than x_{1} and x_{2}, we obtain a whole concordance at least equal to $2 n_{s}+n_{l}-2$, i.e. to $n+n_{s}-2$, since we still have $n_{s}+n_{l}=n$. Hence $n_{s} \leq 2$. Thanks to the previous steps, we obtain the equality $n_{s}=2$ and the fact that x_{3} and x_{n} are the only small vertices. Moreover, the scores of the small (respectively large) vertices in O_{S} are increasing (respectively decreasing): otherwise the concordance would be greater than n.

According to Lemma 3, we have $s\left(x_{3}\right) \geq \frac{n-3}{2}$; as n is even and as x_{3} is small, we have exactly $s\left(x_{3}\right)=\frac{n}{2}-1$. From $s\left(x_{n}\right) \geq s\left(x_{3}\right)$ and from the fact that x_{n} is small, we get $s\left(x_{n}\right)=\frac{n}{2}-1$.

Then the sum of the scores is at least equal to $(n-2) \frac{n}{2}+2\left(\frac{n}{2}-1\right)$, i.e. to $\frac{n^{2}}{2}-2$. But $\frac{n^{2}}{2}-2$ is greater than $\frac{n(n-1)}{2}$ for $n>4$, a contradiction with Theorem 1. So x_{2} must be small.

We prove similarly that x_{n-1} is large.

* Step 4: $s\left(x_{2}\right)=\frac{n}{2}-1, s\left(x_{n-1}\right)=\frac{n}{2}$.

Since x_{2} is small, we have $s\left(x_{2}\right) \leq \frac{n}{2}-1$. On the other hand, as O_{S} is a Slater order, Lemma 3 shows that x_{2} beats at least half the vertices $x_{3}, x_{4}, \ldots, x_{n-1}, x_{n}$, which involves the inequality $s\left(x_{2}\right) \geq \frac{n-2}{2}$. Hence: $s\left(x_{2}\right)=\frac{n}{2}-1$.

The equality $s\left(x_{n-1}\right)=\frac{n}{2}$ can be shown in a similar way.
*Step 5: $s\left(x_{1}\right)=\frac{n}{2}$ or $s\left(x_{n}\right)=\frac{n}{2}-1$.
The concordance brought by x_{1} with respect to the small vertices and by x_{n} with respect to the large vertices is equal to $n_{s}+n_{l}-1=n-1$. Assume that we have $s\left(x_{1}\right)>\frac{n}{2}$; since $s\left(x_{n-1}\right)$ is equal to $\frac{n}{2}$, we must add 1 to the computation of the concordance for the vertices x_{1} and x_{n-1}. Similarly, if we would have $s\left(x_{n}\right)<\frac{n}{2}-1$, it would be necessary to add 1 once again for the vertices x_{2} and x_{n}, since the score of x_{2} is equal to $\frac{n}{2}-1$, which would lead to a concordance at least equal to $n+1$, a contradiction with the hypothesis. In conclusion, $s\left(x_{1}\right)>\frac{n}{2}$ involves $s\left(x_{n}\right)=\frac{n}{2}-1$. Hence the statement of Step 5.

* Step 6: if x_{3} is small, then $s\left(x_{1}\right)>\frac{n}{2}$; if x_{n-2} is large, then $s\left(x_{n}\right)<\frac{n}{2}-1$.

According to Lemma $5, x_{1}$ beats x_{2}. As $s\left(x_{2}\right)$ is equal to $\frac{n}{2}-1, x_{2}$ beats exactly half the vertices $x_{3}, x_{4}, \ldots, x_{n-1}, x_{n}$: so, to move it inside O_{S} to put it at the last position gives another Slater order, namely $\left(x_{1}, x_{3}, x_{4}, \ldots, x_{n}, x_{2}\right)$. Then, according to Lemma $5, x_{1}$ also beats x_{3}.

Assume now that x_{3} is small. By applying Step 4 to the Slater order $\left(x_{1}, x_{3}, x_{4}, \ldots, x_{n}\right.$, x_{2}), we prove the equality $s\left(x_{3}\right)=\frac{n}{2}-1$. Moving now x_{3} to put it at the last position provides a third Slater order $O=\left(x_{1}, x_{4}, x_{5}, \ldots, x_{n}, x_{2}, x_{3}\right)$. The vertex x_{1} beats at least half the vertices $x_{4}, x_{5}, \ldots, x_{n}$: otherwise, we would obtain an order closer to T than O_{S} by moving x_{1} inside O to put it between x_{n} and x_{2}. So we have $s\left(x_{1}\right) \geq 2+\frac{n-3}{2}=\frac{n+1}{2}$, and then $s\left(x_{1}\right)>\frac{n}{2}$. Similarly, if x_{n-2} is supposed to be large, then we obtain $s\left(x_{n}\right)<\frac{n}{2}-1$.

* Step 7: x_{3} is large or x_{n-2} is small.

This follows from the previous two steps.

* Step 8: x_{3} is large and x_{n-2} is small.

Assume that x_{3} and x_{n-2} are small. According to Step 6, we have $s\left(x_{1}\right)>\frac{n}{2}$ and, according to Step 4, $s\left(x_{n-1}\right)=\frac{n}{2}$. With respect to the previous computations of the concordance, because of the vertices x_{1} and x_{n-1}, we may add 1 to the concordance $n_{s}+n_{l}-1$ brought by x_{1} with respect to the small vertices and by x_{n} with respect to the large vertices other than x_{1}. We thus obtain a contribution to the concordance equal to n. As we have $s\left(x_{2}\right)=\frac{n}{2}-1$, all the small vertices have a score equal to $\frac{n}{2}-1$: otherwise, the concordance would increase because of x_{2} with respect to such a small vertex. If n is greater than 6 , let i be an integer with $4 \leq i \leq n-3$. As the concordance is already equal to n, the pair (x_{i}, x_{n-2}) must not bring any extra concordance, which involves that x_{i} is small. Thus there are exactly two large vertices: x_{1} and x_{n-1}, with scores equal to $\frac{n}{2}$, and the other vertices have a score equal to $\frac{n}{2}-1$. In this case, as n is not equal to 4 , the characterization of the scores (Theorem 1) is not satisfied.

So, x_{3} et x_{n-2} cannot be small simultaneously. But Step 7 shows that, if x_{3} is small, then x_{n-2} is small too. This involves that x_{3} is large.

We may prove that x_{n-2} is small in a similar way.

* Step 9: $n=6$ and T is isomorphic to T_{6}.

We now know that x_{1}, x_{3} and x_{n-1} are large while x_{2}, x_{n-2} and x_{n} are small.
The contribution to the concordance brought by x_{1} with respect to the small vertices and by x_{n} with respect to the large vertices is equal to $n_{s}+n_{l}-1=n-1$. To this, we must add 1 for the contribution brought by (x_{3}, x_{n-2}), hence a total of n. Assume that we have $n>6$; then: $4<n-2$. If x_{4} is large, we must add 1 once again in the computation of the concordance
for $\left(x_{4}, x_{n-2}\right)$ and, if x_{4} is small, we must also add 1 for $\left(x_{3}, x_{4}\right)$, what is impossible since we assumed the equality $\operatorname{conc}\left(O_{S}, O_{C}\right)=n$. So, in order to obtain $\operatorname{conc}\left(O_{S}, O_{C}\right)=n$, we must have:

- $n=6$,
- vertices x_{1}, x_{3} and x_{5} have a score equal to 3 ,
- vertices x_{2}, x_{4} and x_{6} must have a score equal to 2 .

Because of Lemma 5, for $i \in\{1,2,3,4,5\}, x_{i}$ beats x_{i+1}. Moreover, x_{2} beats half the vertices $x_{3}, x_{4}, x_{5}, x_{6}$ and thus can be moved behind x_{6}, which involves that x_{1} beats x_{3} and that x_{6} beats x_{2}. Similarly, by moving x_{5} in front of x_{1}, we show that x_{6} is beaten by x_{4} and x_{1} is beaten by x_{5}. As the score of x_{3} is 3 and since x_{3} is beaten by x_{1} and x_{2}, then x_{3} beats x_{4}, x_{5} and x_{6}. As the score of x_{4} is 2 and since x_{4} beats x_{5} and x_{6}, then x_{4} is beaten by x_{1}, x_{2} and x_{3}. As the score of x_{2} is 2 and since x_{2} beats x_{3} and x_{4}, then x_{2} is beaten by x_{1}, x_{5} and x_{6}. Last, as the score of x_{1} is 3 and since x_{1} beats x_{2}, x_{3} and x_{4}, then x_{1} is beaten by x_{5} and x_{6}. So the tournament must be the tournament T_{6} of Figure 4.

We have still to prove that, if n is even and is greater than or equal to 8 , then there exists a strongly connected tournament T such that there exist a Slater order O_{S} and a Copeland order O_{C} with $\operatorname{conc}\left(O_{S}, O_{C}\right)=n+1$. To do this, we set $n=2 p$ where p is an integer greater than or equal to 4 .

Let us define the tournament T on the vertices $1,2, \ldots, 2 p$ as follows. We build a circular tournament called $T_{\text {circ }}$ on the set $\{4,5, \ldots, 2 p\}$ of vertices; $T_{\text {circ }}$ is a circular tournament defined on an odd number of vertices, so $T_{\text {circ }}$ is regular, and all the vertices have a score equal to $p-2$. We add vertex 3 which beats the vertices $4,5,7,9, \ldots, 2 p-1$, i.e. the vertex 4 and the vertices $2 i+1$ for $i \in\{2,3, \ldots, p-1\}$; vertex 3 is beaten by the other vertices between 6 and $2 p$, i.e. $6,8, \ldots, 2 p-2,2 p$. We add vertex 2 which beats the vertices 3 , $8,10,12, \ldots, 2 p$, i.e. 3 and the vertices $2 i$ for $i \in\{4,5, \ldots, p\}$; vertex 2 is beaten by the other vertices between 4 and $2 p$, i.e. $4,5,6,7, \ldots, 2 p-3,2 p-1$. Last, we add vertex 1 which beats vertex 6 and which is beaten by all the other vertices. Figure 5 specifies the obtained tournament for $n=8$. In this tournament, we have that:

- the score of vertex 1 is 1 ;
- the score of vertex 2 is $p-1$;
- the scores of the other vertices are p.

FIGURE 5. The tournament obtained for $n=8$ and reaching the bound of Theorem 9.
Now, consider the Copeland order $O_{C}=(5,4,3,2 p, 2 p-1,2 p-2, \ldots, 8,7,6,2,1)$ and the order $O_{S}=(6,7,2,8,9,10, \ldots, 2 p-2,2 p-1,2 p, 3,4,5,1)$. To compute $\operatorname{conc}\left(O_{S}, O_{C}\right)$, notice that O_{S} and O_{C} are almost reversed orders: what prevents them from being reversed orders comes from the positions of $1,2,6$ and 7 . So the concordance between these two orders involves these vertices. More precisely:

- vertex 1 brings $2 p-1$ to the concordance;
- in addition to the contribution of 1 , vertex 2 brings an extra concordance of 2 because of vertices 6 and 7;
- the other vertices, including 6 and 7 , do not bring extra concordance. Thus we have $\operatorname{conc}\left(O_{S}, O_{C}\right)=2 p+1=n+1$.

To conclude, we must prove that O_{S} is a Slater order of T. To do this, let us compute the distance between T and O_{S} :

- the restriction of O_{S} to the vertices $4,5, \ldots, 2 p$ is a Slater order of the tournament $T_{\text {circ }}$ (see Theorem 2) of which the order is $2 p-3$; this brings a contribution to the distance equal to $\frac{(2 p-4)(2 p-2)}{8}=\frac{(p-2)(p-1)}{2}$;
- vertex 1 brings an extra contribution to the distance equal to 1 because of vertex 6 ;
- vertex 2 brings an extra contribution equal to $p-2$ because of the $p-2$ vertices of $T_{\text {circ }}$ other than 6 and 7 which beat it;
- vertex 3 brings an extra contribution equal to $p-3$ because of the $p-3$ vertices of $T_{\text {circ }}$ other than vertices 4 and 5 and beaten by vertex 3 .

The distance between T and O_{S} is thus equal to:

$$
\frac{(p-2)(p-1)}{2}+1+p-2+p-3=\frac{(p-2)(p+3)}{2} .
$$

To compute the Slater index of T, let us begin by enumerating the arc-disjoint circuits, according to three cases: $n=8, n=10$ and $n \geq 12$.

Assume that we have $n \geq 12$. Thanks to Theorem 8, we know that the circular tournament $T_{\text {circ }}$, of which the order is at least 9 , owns $\frac{(p-2)(p-1)}{2}-1$ arc-disjoint circuits which do not use the arcs $(i, i+1)$ for i between 3 et $2 p-1$. Besides this, T owns:

- for $i \in\{4,5, \ldots, p-1\}$, the 3 -circuits $(2 i, 2 i+1,2)$, which provides $(p-4) 3$-circuits;
- for $i \in\{3,4, \ldots, p\}$, the 3 -circuits $(2 i-1,2 i, 3)$, which provides $(p-2) 3$-circuits;
- the 3 -circuit $(2 p, 4,2)$;
- the 3 -circuit $(2,1,6)$;
- the 4 - circuit $(2,3,4,5)$.

All these circuits are arc-disjoint, which gives:

$$
\frac{(p-2)(p-1)}{2}-1+(p-4)+(p-2)+3=\frac{(p-2)(p+3)}{2}
$$

arc-disjoint circuits.
If $n=8$, we may point the following seven arc-disjoint circuits in T out: $(2,3,4)$, $(1,6,7),(7,8,3),(2,8,5),(3,5,6),(4,6,8),(4,5,7)$. This also provides $\frac{(p-2)(p+3)}{2}$ arcdisjoint circuits since p is here equal to 4 .

If $n=10$, we may point the following twelve arc-disjoint circuits in T out: $(4,5,8)$, $(4,7,10),(4,6,9),(6,8,10),(5,7,9),(1,6,7),(2,3,4),(3,7,8),(3,9,10),(3,5,6)$, $(2,8,9),(2,10,5)$. Once again, this provides $\frac{(p-2)(p+3)}{2}$ arc-disjoint circuits since now p is equal to 5 .
For any linear order O, there is at least one arc from each of these circuits which has not the same orientation in T than in O. The Slater index of T is thus at least equal to $\frac{(p-2)(p+3)}{2}$, which is also the distance between T and the previous linear order O_{S}. This shows that O_{S} is a Slater order of T, and this completes the proof of Theorem 9.

REFERENCES

[1] ARROW K.J., RAYNAUD H. (1986) Social choice and multicriterion decision-making, MIT Press.
[2] BANG-JENSEN J., GUTIN G., (2001) Digraphs: theory, algorithms, and applications, Springer, London, Berlin, Heidelberg.
[3] BANKS, J. (1985) Sophisticated voting outcomes and agenda control, Social Choice and Welfare 2, 295-306.
[4] BARTHÉLEMY J.-P. (1979) Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires, Mathématiques et Sciences humaines 67, 85-113.
[5] BARTHÉLEMY J.-P., MONJARDET B. (1981) The median procedure in cluster analysis and social choice theory, Mathematical Social Sciences 1, 235-267.
[6] BERGE C. (1983) Graphs, North-Holland Publishing Co., Amsterdam, 1985.
[7] BERMOND J.-C. (1972) Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux, Mathématiques et Sciences humaines 37, 5-25.
[8] BLACK D. (1958) The theory of committees and elections, Cambridge University Press, Cambridge, Mass.
[9] CARITAT M. J. A. N., marquis de Condorcet (1785) Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, Paris.
[10] CHARON, I., GUÉNOCHE A., HUDRY O., WOIRGARD F. (1996) A bonsaï branch and bound method applied to voting theory, in Ordinal and Symbolic Data Analysis, Springer Verlag, 309-318.
[11] CHARON, I., GUÉNOCHE A., HUDRY O., WOIRGARD F. (1997) New results on the computation of median orders, Discrete Mathematics 165-166, 139-154.
[12] CHARON I., HUDRY O. (2010) An updated survey on the linear ordering problem for weighted or unweighted tournaments, Annals of Operations Research 175, 107-158.
[13] CHARON I., HUDRY O., How different can Slater's solutions and Kemeny's solutions of tournaments be?, submitted for publication.
[14] CHARON, I., HUDRY O., WOIRGARD F. (1996) Ordres médians et ordres de Slater des tournois, Mathématiques, Informatique et Sciences humaines 133, 23-56.
[15] CHARON, I., HUDRY O., WOIRGARD F. (1997) A 16-vertex tournament for which Banks set and Slater set are disjoint, Discrete Applied Mathematics 80 (2-3), 211-215.
[16] COPELAND A.H. (1951) A "reasonable" social welfare function, Seminar on applications of mathematics to social sciences, University of Michigan.
[17] DODGSON C.L. (1876) A method of taking votes on more than two issues, Clarendon Press, Oxford. Reprint in D. Black, The theory of committees and elections, Cambridge University Press, Cambridge, Mass., 1958, 224-234, and in I. McLean, A. Urken (1995) Classics of social choice, University of Michigan Press, Ann Arbor, Michigan.
[18] GUÉNOCHE, A. (1996) Vainqueurs de Kemeny et tournois difficiles, Math. Inf. Sci. hum 133, 57-66.
[19] GUILBAUD G.Th. (1952) Les théories de l'intérêt général et le problème logique de l'agrégation, Économie Appliquée 5 (4), 501-584. Reprint in Éléments de la théorie des jeux, Dunod, Paris, 1968.
[20] HUDRY O. (1999) A smallest tournament for which the Banks set and the Copeland set are disjoint, Social Choice and Welfare 16, 137-143.
[21] HUDRY O. (2010) On the complexity of Slater's problems, European Journal of Operational Research 203, 216-221.
[22] KEMENY J.G. (1959) Mathematics without numbers, Daedalus 88, 577-591.
[23] KLAMLER C. (2003) Kemeny's rule and Slater's rule: a binary comparison, Economics Bulletin 4 (35), 1-7.
[24] KLAMLER C. (2004) The Dodgson ranking and its relation to Kemeny's method and Slater's rule, Social Choice and Welfare 23, 91-102.
[25] LAFFOND G., LASLIER J.-F. (1991) Slater's winners of a tournament may not be in the Banks set, Social Choice and Welfare 8, 365-369.
[26] LAFFOND G., LASLIER J.-F., LE BRETON M. (1994) The Copeland measure of Condorcet choice functions, Discrete Applied Mathematics 55, 273-279.
[27] LAFFOND G., LASLIER J.-F., LE BRETON M. (1995) Condorcet choice correspondences: a set-theoretical comparison, Mathematical Social Sciences 30, 23-35.
[28] LAMBORAY C. (2007) A comparison between the prudent order and the ranking obtained with Borda's, Copeland's, Slater's and Kemeny's rules, Mathematical Social Sciences 54 (1), 2007, 1-16.
[29] LANDAU H.G. (1953) On dominance relations and the structure of animal societies III. The condition for a score structure, Bulletin of Mathematical Biophysics 15, 143-148.
[30] LASLIER J.-F. (1997) Tournament Solutions and Majority Voting, Springer, Berlin, Heidelberg, New York.
[31] MCKEY B. (2006) http://cs.anu.edu.au/~bdm/data/digraphs.html
[32] MCLEAN I. (1995) The first golden age of social choice, 1784-1803, in Social choice, welfare, and ethics: proceedings of the eighth international symposium in economic theory and econometrics, W.A. Barnett, H. Moulin, M. Salles, N.J. Schofield (eds), Cambridge University Press, Cambridge, 13-33.
[33] MCLEAN I., LORREY H., COLOMER J. M. (2008) Social Choice in Medieval Europe, Electronic Journal for History of Probability and Statistics 4:1.
[34] MCLEAN I., URKEN A. (1995) Classics of social choice, University of Michigan Press, Ann Arbor, Michigan.
[35] MCLEAN I., URKEN A. (1997) La réception des œuvres de Condorcet sur le choix social (1794-1803) : Lhuilier, Morales et Daunou, in Condorcet, Homme des Lumières et de la Révolution, A.-M. Chouillet, P. Crépel (eds.), ENS éditions, Fontenay-aux-roses, 147-160.
[36] MOON J. W. (1968) Topics on tournaments, Holt, Rinehart and Winston, New York.
[37] MOULIN H. (1986) Choosing from a tournament, Social Choice and Welfare 3, 272291.
[38] ÖSTERGÅRD P. R. J., VASKELAINEN V. P., A tournament of order 14 with disjoint Banks and Slater sets, Discrete Applied Mathematics, to appear.
[39] REID K.B. (2004) Tournaments, in J.L. Gross, J. Yellen (eds) Handbook of Graph Theory, CRC Press, Boca Raton, 156-184.
[40] REID K.B., L.W. BEINEKE (1978) Tournaments, in L.W. Beineke, R.J. Wilson (eds), Selected topics in graph theory, Academic Press, 169-204.
[41] REMAGE R., THOMPSON W.A. (1966) Maximum likelihood paired comparison rankings, Biometrika 53, 143-149.
[42] SLATER P. (1961) Inconsistencies in a schedule of paired comparisons, Biometrika 48, 303-312.
[43] WOIRGARD F. (1997) Recherche et dénombrement des ordres médians des tournois, PhD thesis, ENST, Paris.
[44] YOUNG H.P., LEVENGLICK A. (1978) A consistent extension of Condorcet's election principle, SIAM Journal on Applied Mathematics 35, 285-300.
[45] ZERMELO, E. (1929) Die Berechnung der Turnier-Ergebnisse als ein maximal Problem der Warscheinlichkeistsrechnung, Math. Zeitung 29, 436-460.

[^0]: ${ }^{1}$ Télécom ParisTech, 46, rue Barrault, 75634 Paris Cedex 13, France, charon@enst.fr, hudry@enst.fr.
 ${ }^{2}$ Research supported by the ANR project "Computational Social Choice" $n{ }^{\circ}$ ANR-09-BLAN-0305.

