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Abstract — Given a tournament= (X, A), we consider two tournament solutions applied:to
Slater’s solution and Copeland’s solution. Slatedéution consists in determining the linear
orders obtained by reversing a minimum number datiéd edges of in order to mak&
transitive. Copeland’s solution applied % ranks the vertices off according to their
decreasing out-degrees. The aim of this paper ¢sngpare the results provided by these two
methods: to which extent can they lead to diffe@ders? We consider three casess any
tournament[ is strongly connected, has only one Slater order. For each one of tHese t
cases, we specify the maximum of the symmetricetkfice distance between Slater orders
and Copeland orders. More precisely, thanks tosaltrelealing with arc-disjoint circuits in
circular tournaments, we show that this maximumgsal ton(n — 1)/2 if T is any tournament
on an odd numbar of vertices, torf2 — 3 + 2)/2 if T is any tournament on an even numiber
of vertices, ton(n — 1)/2 if T is strongly connected with an odd numipeof vertices, to
(N2 — 30 — 2)/2 if T is strongly connected with an even numbeaf vertices greater than or
equal to 8, torf2 — 5n + 6)/2 if T has an odd numberof vertices and only one Slater order, to
(n2 —5n + 8)/2 if T has an even numberof vertices and only one Slater order.

Keywords — Majority tournament; tournament solusiprSlater orders; Slater winners;
Copeland orders; Copeland winners; symmetric diffee distance; arc-disjoint circuits in
circular tournaments.

1. INTRODUCTION, DEFINITIONS AND NOTATION
1.2. Introduction

At the end of the eighteenth century (for the histacontext, see [8], [32], [33], [34] and
[35]), M. J. A. N. Caritat, marquis de Condorcetidsed a problem arising in voting theory:
the aggregation of linear orders into a linear of@ To solve this problem, he suggested to
apply a pairwise comparison method.

To describe such a method, MKtbe a finite set otandidates n will denote the
number of candidates (i.en,= [X|). We consider thah voters are asked to rank the elements
of X. Condorcet’s method consists in computing, fohezandidatex [1 X and each candidate
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y O X with x# y, the numbemyy of voters who prefex toy. The(strict) majority relationis

the relationT defined by xTy - myy >myy (for a more general presentation on this topie, se
[5]). If there is no tie, what will be assumed IretsequelT is then aournament(called the
majority tournament of the electipni.e. a complete asymmetric relation: for anyr pai
candidates X, y} with x #y, one and only one of the following two situatia@tcurs:xTy or
yTx From the graph theoretic point of view, a toureabtT = (X, A) is a directed, complete,
asymmetric graph: between two distinct vertigesdy (x # y), there exists one and only one
of the two arcs (i.e., directed edges)y or (y, X) (for references on tournaments, see [30],
[36], [39], [40], as well as [31] for a catalogukenmn isomorphic tournaments with at most 10
vertices or for some families of tournaments; ngererally, see for instance [2] or [6] for the
bases of graph theory). It is well-known that art@unent is transitive if and only if it is
without any circuit (i.e., directed cycle) and,this case, it is a linear order. It is also well-
known that a tournament is strongly connected if and only if there exiat$damiltonian
circuit, i.e. a circuit going through each vertdxTexactly once.

Notice that, even if we assume the preferenceleof/bters to be linear orders defined
over X, the majority tournament is not necessarily a linear order, becalismay not be
transitive: a candidatecan be preferred to another candidaby a majority of votersy to a
third candidate by another majority of voters, aado x by a third majority of voters. Such a
situation, discovered by Condorcet himself, is knaag the « voting paradox » or also as the
« effet Condorcet » in French (see [19]). Butan also be a linear order. A linear or@er
defined onX will be represented by a permutatiog, o, ..., x,) of the elements of = {1, 2,

..., N}. In such a representation 6 a candidate; will be considered as preferred to another
candidateq according taO if X occurs before in the writing of the permutation i.e., for the
permutation considered abowg,(Xy, ..., Xy), if i is smaller thar. The candidat&; who is
ranked in first position of the considered ord@rwill be called thewinner of O. More
generally, if a tournamerit admits a vertex fulfilling the following property:0 y O X, XTy,
thenx is thewinner of T. With respect to the election summarizedThyhe winner ofT, if
any, is theCondorcet winnewof the election, i.e. a candidate preferred tatsl others by a

majority of voters. If a Condorcet winner existgerte is only one.
The following example gives an illustration of ajordy tournament.

Example 1. ConsiderX = {1, 2, 3, 4} andm = 16. The preferences of the 16 voters are
assumed to be the following, with the notation desc above for representing the linear
orders:

* (1, 2, 3, 4) for 4 voters
* (3,4,1, 2) for 2 voters
* (4,1, 3, 2) for 5 voters
* (2,3,4,1) for 5 voters.

The majority tournament associated with this etects the tournament of Figure 1.

1 2

4 3
FIGURE 1. The majority tournament of Example 1.



When the considered tournament is not a linearrpvde can wonder how to rank the
candidates and which candidate(s) must be or canohsidered as the winner(s) of the
election. Different answers can be brought to tiigestion, known under the name of
tournament solutiongsee for instance [27], [30] or [37]). In this papee pay attention to
two tournament solutions (of which the definiticare specified below): the solution designed
by P. Slater [42] and the one by A.H. Copeland [(i®jtice that, according to [33], Ramon
Llull (ca 1232-1316) promoted the method of paievisomparison and proposed the
Copeland rule to select a winner; despite thisohisal discovery, we shall keep the usual
authorships). These two methods give the possildititconstruct linear orders to rank the
candidates and to define winners of the electialied Slater winners or Copeland winners,
from the winners of these orders. The questionwmsastudy in this paper is the following: to
which extend can the rankings provided by thesemgthods be different?

Thanks to an example with 7 vertices, J.-C. Bermpfjdalready showed that the
Copeland winners and the Slater winners can deligjeint sets. In fact, such a situation can
occur for anyn > 6 (see [12] or [14]). More precisely, these twtssae equal fon < 3, the
set of Copeland winners contains the one of Slabeners forn = 4, and the intersection of
the two sets is non-empty for= 5 but there is no systematic inclusion betwédwmt The
relationships between Slater's solution or Copemrsblution on the one hand and other
tournament solutions on the other have already beesstigated (see [12]): it is the case for
instance for the solution of J.G. Kemeny [22] (EE&] and [23]), for the solution of J. Banks
[3] (see [15], [20], [25], [38]), for the soluticsf C.L. Dodgson (also known as Lewis Carroll)
[17] (see [24]), or for the prudent orders [1] (§28]).

Last, notice that the maximum likelihood methodpmeed by E. Zermelo [45] (see
also [30]) yields to the same winners and to themesaankings as Copeland’s solution.
Consequently, all the results below between Copdasolution and Slater’s solution can
also be applied for a comparison between Zermslaistion and Slater’s solution.

1.2. Definitions and notation

In the sequell will denote a tournament of order The vertices oT will be 1, 2, ...,
n. By definition of a tournament, for any paix, {} with 1 <x<n, 1<y<nandx#y, there
exists exactly one of the two arcs (i.e., dire@dde) k, y) or (y, X). If x andy are two vertices
of T such that the arx/y) exists, we say thatbeatsy and that is beaten by .x

A transitive tournament is a linear order and cosely. A tournament is transitive if
and only if it is without circuit (i.e. directed chg). If two circuits do not share any arc in
common, they are said to bec-disjoint(they may share a common vertex)lfxo, ..., X, IS
a permutation of the vertices of we say thafl is the transitive tournament defined by the
order (xy, Xp, ..., Xp) if, for any pair §, j} with 1 <i<n, 1<j<nandi #j, x beatsx. The
reversed ordepf an orderxy, Xp, ..., X,) is the orderxy, Xn_1, ..., Xp).

If (X1, X, ..., Xy) IS @ permutation of the vertices of we say thafl is acircular

tournamentefined by the ordewx({, xo, ..., X,) if, for any pair {, j} with 1 <i <j <n, x; beats
X if we havel —i < EJ (otherwiseX; beatsq). We may notice that, forodd, all the vertices

of a circular tournament play the same role (maeeigely, for any givemn andj, there exists
an automorphism of the circular tournament suctt the image ofx is xj). Figure 2
represents, on the left, the circular tournamenarder 5 defined by the order (1, 2, 3, 4, 5)
and, on the right, the circular tournament of o@lelefined by the order (3, 4, 5, 6, 1, 2).



FIGURE 2. A circular tournament of order 5 (on k&#) and a circular tournament of
order 6 (on the right).

The (Copelandycores(x) of a vertexx of a tournament is the number of vertices
beaten by, also called theut-degreeof x. A Copeland ordeof a tournament is any linear
order obtained by sorting the vertices Dfaccording to their non-increasing scores. A
Copeland winneof T is the winner of a Copeland order Bf In other words, a Copeland
winner of T is a vertex with a maximum score. For instance, tdburnament of Example 1
admits four Copeland orders: (1, 2, 3, 4), (2,,24)3(1, 2, 4, 3), (2, 1, 4, 3), which involves
that 1 and 2 are the Copeland winners of this tmment. H.G. Landau [29] gave a
characterization of the scores of a tournament:

THEOREM 1. Letsy, s, ..., Sy ben integers with X 51 < sp < ... < 5. These integers can be
the scores of a tournament if and only if the feilog two properties are fulfilled:
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A tournament is said to lregularif nis odd and if all its vertices have a same score,
thus equal tor(— 1)/2. It is the case for instance for the ciacuburnaments with an odd
number of vertices. Notice that, fareven, there does not exist regular tournament.tter
circular tournaments witim even, there are/2 vertices with a score equal &2 andn/2
vertices with a score equal to-{ 2)/2.

Let T and T’ be two tournaments (which can be linear ordersh whe same set of
vertices, the symmetric difference distance (s¢éddits axiomatic properties and [5] for its
uses in the social sciences) betw@eand T’ is the number of pairsi{j} with 1 <i < n,
1<j<nandi #j for which the arc betweanandj has not the same directionTrand inT".

This distance will be notedist(T, T'). This distance is always less than or equarlﬂ%_—l).
We call concordancebetweenTl andT’, and we noteondT, T'), the difference between this

jnz_—l) —dist(T, T). In this
paper, we study concordances between orders; stende between these orders can easily be
deduced from the concordances.

Let T be a tournament ar@ a linear order with the same verticesTagn orderO is a
Slater order of Tif, for any linear orderO’ defined on the vertices of, we have:

maximum and the distance betwe&nandT” condT, T') =



dist(T, O) < dis{(T, O’). So, a Slater order of is defined as an order at minimum distance
from T. We callSlater indexof T, and we not&(T), the distance frori to any Slater order of
T. This index can be interpreted as the minimum remalb arcs ofl which must be reversed
in T to obtain a linear order (see [12] for equivalémmulations and for references on
Slater’s problem). ASlater winnerof T is the winner of a Slater order ®f It is easy to see
that the tournament of Example 1, which is nonhadr order (for example the circuit (1, 2, 4)
prevents this tournament from being transitivedmees transitive by reversing the arc (4, 1).
It is also easy to check that the only way to midtke tournament transitive by the reversing
of only one arc consists precisely in reversing dhe (4, 1). Thus, the Slater index of this
tournament is equal to 1, with only one Slater arfle 2, 3, 4); so, 1 is its only Slater winner.
The computation of the Slater index of a tournaniemtf the Slater orders df, or of

the Slater winners dfF is NP-hard (see [21]). There exist anyway somen@ments for which
these quantities are known. It is the case foams for the circular tournaments (see [43]):

THEOREM 2. LetCy, be the circular tournament arvertices defined by (1, 2, .n,— 1,n).
Then we have:

 if nisodd,i(Cy) = n28_1' there aren Slater orders o€, which are (1, 2, ..n), (2, 3, ...,

n 1), .. 60,1, 2,..n-1), and all the vertices are Slater winners;

 ifniseveni(Cy) = nZ;SZn there is only one Slater order which is (1, 2n), and 1 is

the only Slater winner.

More generally, it is easy to show that, for a tagtournament (thus, with odd), all
the vertices are simultaneously Copeland and Shateners (see Lemma 3 below). A
tournament solution which systematically seledtsha vertices of a regular tournament as its
winners is sometimes said to tegular (see for instance [30]); thus Slater’'s and Copan
solutions are regular.

Notice that the so-calle€Copeland value of a tournament solutia; based on
Copeland solution (see [26] or [30]). L&blbe a tournament solution and, for any tournament
T=0X A), let So[(T) be the set of the winners @f according toSol The Copeland value

VCgq Of Solfor T is defined as the ratidCso(T) = m?n){af({)gg)][o)gg(;((?} We obviously

get the bounds 8 VCg,(T) < 1 for any tournament solutiddol and any tournamefit The
Copeland value of the tournament soluttewi is defined as iInf/Cgq (T ) T U 1}, where T

denotes the set of all the tournaments; this velwdso between 0 and 1 for any tournament
solution. For Slater’s solution, the Copeland vakiequal to 0.5 (see [30]). In other words,

the score of a Slater winner of a tournamEim between the maximum score of the vertices
of T and half this maximum score, and we can get a®&ds desired to these two values.

1.3. Contribution of the study

The aim of this paper is to compute, for any giugegern = 3, the maximum distance or,

equivalently, the minimum concordance between #eElarder and a Copeland order of a

same tournamerit with n vertices. In more formal terms, we want to compghtefollowing

guantity, for anyn = 3:

max{dist(OgT), Oc(T)): T is any tournament omverticesOgT) is any Slater order af and
Oc(T) is any Copeland order @,
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or, equivalently:
min{condOgT), O¢(T)): T is any tournament omverticesOgT) is any Slater order af
andO¢(T) is any Copeland order .

In Section 2, we compute this maximum distance whenany tournament or, thanks
to a decomposition of the set of the arcs of autarctournament with an odd number of
vertices into arc-disjoint circuits, whéhis strongly connected. Section 3 is devoted to the
case for whichl has only one Slater order. The results are suraethin Section 4, which is
the conclusion. In order to make the paper morderfiiendly, the proof of a theorem of
Section 3 (Theorem 9) has been moved in an App€sdigtion 5).

Notice that the study for which there would be ormge Copeland order is
uninteresting: from the characterization providgdHhG. Landau [29], it appears that the
uniqueness of the Copeland order can be obserealbefor transitive tournaments; in this
case, there is also only one Slater order, whicthessame as the Copeland order, i.e. the
tournament itself. For this reason, we assumedrséguel that is greater than or equal to 3.

The following lemmas will be useful in the sequssd [7], [10], [11], [41]) :

LEMMA 3. Let Og = (X1, X9, ..., X,y) be a Slater order df. For anyi between 1 and, x; beats
at least half the vertice$ ; 4, ..., Xy and at most half the vertices, x,, ..., X _ 1. If X; beats
exactly half the vertices ; 1, ..., Xy, the orderXy, Xo, ..., X _ 1, X+ 1, Xj + 2 .-+, X0, X) IS @ls0
a Slater order of; similarly, if x; beats exactly half the verticag, Xy, ..., X, _ 1, then the
order €, X1, X9, ..., X _ 1, Xi+ 1, Xi + 2 ---» X) IS @lso a Slater order &f

Proof. Leta be the number of vertices amoxg. ;, ..., X, beaten by and=n—i — a the
number of vertices among . 1, ..., X, who beatx;. Consider the ordeéd = (xq, Xp, ..., X _ 1,
Xi+ 1 Xi+ 2 -0 X X)- We get:dist(T, O) — dist(T, Og) = a — B. As Og is assumed to be a

Slater order, we obtaia— > 0, or alsoa— (h—i —a) > 0. Hencea > % . X; beats at least

half the vertices; + 1, ..., X,. Moreover, if we haver = £, then we getlist(T, O) = dist(T, Og)
andO is also a Slater order.
We can prove the results with respect to the v&sHg Xo, ..., X _ 1 In a similar waye

COROLLARY 4. LetOg = (X1, Xo, ..., X,) be a Slater order af. The score ok, is at least
equal to 1 — 1)/2 and the one af, is at most equal ton(- 1)/2.

Proof. Apply Lemma 3 with=1 ori =n. .

The result of Corollary 4, already used by J.-@rrBond [7], was generalized by
A. Guénoche [18] who designed a way to compute 8swi the ranks that a vertexmay
occupy in a Slater order according to the score of

The following lemma (see [41]) shows that each eBlatrder Xy, X, ..., Xy) Of T

induces a Hamiltonian path, namely the Hamilton@ath made of the arcs«(X + 1)

for 1<i <n (notice that Lemma 5 shows a certain similaritywtbat is called Condorcet
property for preference functions in [44]).



LEMMA 5. Let Og = (Xq, Xp, ..., X) be a Slater order of a tournamdntFor each integear
between 1 and — 1,x; beatsx; 4 ;.

Proof. If the statement of Lemma 5 was wrong, welld@btain a better order by switchirg
andx; + 1 in Og, a contradiction with the optimality @ .

2. CASE WHERET IS ANY TOURNAMENT OR IS STRONGLY CONNECTED
2.1. Case where T is any tournament

Let T denote any tournament. We want to show that, igrgiven oddn > 3, the minimum
concordance between a Slater order and a Copelaed of a tournament with vertices is
equal to 0 while, for any given even= 4, this minimum concordance is equalrne- 1.
Theorem 6 provides a slightly stronger result.

THEOREM 6. Letn be an integer greater than or equal to 3.
1. If nis odd, there exists a tournam@&ndnn vertices such that, for any Slater or@eyof T,

there exists a Copeland ordeg with conqOg, O¢) = 0.

2. If nis even, lefl be a tournament amvertices and leDg be any Slater order df andO¢
any Copeland order af. ThencondOg, O¢) > n — 1. Moreover, there exists a tournamént
such that, for any Slater orderfthere exists a Copeland order wetindOg, O¢) =n — 1.

Proof.

1. Forn odd, any regular tournameimtallows to conclude, since then any linear ordea is
Copeland order, in particular the reversed ordeteeoSlater orders of.

2. Assume now that is even and consider a tournamérdf ordern, a Slater ordeOg of T

and a Copeland ord€@c of T. Let (X, X, ..., X,) be the Slater order. A vertex is said to be

n
large if its score is at least equal {20 and is said to bemall otherwise.

According to Corollary 4x, is large and, is small. Letn denote the number of large
vertices andhg the number of small vertices. The vertgxis ranked in the same way with
respect to the small vertices@s and inOg¢; sox; bringsng to the value of the concordance.
Similarly, x,, is ranked in the same way with respect to theelargytices inOg and inOc; if
we do not considek; anymore X; is already considered above}, addsn, — 1 to the
concordance. HenceondOsg, O¢c) > ng + nj — 1. Asng + n; is equal ton, we get the relation
condOg, O¢) > n — 1 for any tournameri, any Slater orde©g and any Copeland ord@c

of T.
Let us show now that there exist tournaments wathqOg, Oc) =n — 1 for any even

n. For this, consider the tournamé@nobtained from the circular tournamentmr 1 vertices

defined by the order (1, 2, .n,— 1) by adding the vertaxin such a way that is beaten by

all the other vertices. Figure 3 represents suttumament fom = 6. Then the order (1, 2,
...,n—=2,n-1,n)is a Slater order and the ordar{1,n- 2, ..., 2, 1n) is a Copeland order
of the constructed tournament. The concordancedsstthese two orders is equahte 1. ¢



FIGURE 3. A tournament witbond{Og, Oc) =n— 1 forn = 6.

2.2. Decomposition of a circular tournament withadd order

In a directed graph, we callc-disjoint circuitsany set of circuits such that any two circuits
of this set have no arc in common. We @ali-decomposition of a tournament T into arc-
disjoint circuits or simply adecomposition of the arcs of &ny seZ of arc-disjoint circuits
such that any arc &f belongs to one and only one circuitbfSuch a decomposition will be
used in the sequel to study the distance betweaterSbrders and Copeland orders of
tournaments.

THEOREM 7. LetT be a circular tournament with an odd numbef vertices. The number

n-1)(n+1
of arc-disjoint circuits inTl is at most equal té*. Any set of arc-disjoint circuits

reaching this bound is a decomposition of the afdsinto arc-disjoint circuits.

Proof.

We setn = 2p + 1 and we assume, without loss of generalityt Thes the circular
tournament defined by the order (1, 2, 3n)..,

Let C=(Cy, Cp, ..., Cg) be any circuit off. We first show that there exists a vertgof

Ccwith 1<x; <p+ 1 and a vertex, of cwith p+ 2<x, < 2p + 1. We suppose that the
vertices ofC are numbered in such a way thais the smallest integef,owns the arco, ¢,)
and so ¢y, Cg) is not an arc of. AsT is the circular tournament defined by the order2(13,

.., N), we havecy — ¢y > p + 1. Fromcy > 1, we deduce the inequality>p + 2 and, from
Cq< 2p + 1, we obtairc; < p. So any circuit oC owns an arcd, ¢;) with 1<c;<p + 1 and
p+2<cy<2p+1and thus, conversely,must own an arcx(, X;) with x; between 1 and
p + 1 andx, betweermp + 2 and p + 1.

Thus, the number of arc-disjoint circuits Dfs at most equal to the number of arcs of
which the head is between 1 gnd 1 and the tail is betwegn+ 2 and p + 1. If we consider
the vertexi with 1<i <p + 1,i beats the verticesi + 1,i + 2, ...,i + p. Among them, there
arep + 1 —i vertices lower than or equal po+ 1 and sa — 1 vertices betweep+ 2 and
2p + 1. The number of arcs with their heads betweandp + 1 and their tails betwegn+ 2

p+l _
and  + 1 is hence equal tg (i —1) = p(p2+ h_ @ 1)8(n D
i=1



+1
Suppose now that there are exae%gjpz—) arc-disjoint circuits. Then, the previous

proof shows that all the arcs with their heads ketwl and + 1 and their tails between
p+2and P+ 1 are involved in these circuits. Let nayj) be any arc of. We can perform
a circular permutation on the numbers of all theiees of T so that takes the numbgr + 1
(remember that all the vertices play the same ralethis caseT is still defined by the order
(1, 2, 3, ..n) with respect to the new numbering of the vertiddsen the new number pis
betweenp + 2 and P + 1. The result obtained previously shows thatdtee(, j) belongs to
one of the considered arc-disjoint circuits. Trosmpletes the proof of Theorem 7. .

For n = 3, the upper bound of Theorem 7 is equal to d ianclearly reached. For
n =5, this upper bound is equal to 3 and is readbethstance by the decomposition given
by the following three arc-disjoint circuits: (1, 2), (2, 3, 5), (1, 3, 4, 5). i = 7, the upper
bound is equal to 6 and is reached for instancthéydecomposition given by the following
six arc-disjoint circuits: (1, 2, 3, 4, 5, 6), @,7), (3, 6, 7), (2,5, 7), (2, 4, 6), (1, 3, Br
n>9, we prove that the upper bound is reached irofEme 8, with a sharper result, which
will be used in the proof of Theorem 9.

THEOREM 8. LetT be a circular tournament on an odd numbeaf vertices withn > 9,
defined by the order (1, 2, 3, n). There exists a decomposition of the arcsToimnto

(n-D(n+1) o o
————— arc-disjoint circuits with the circuit (1, 2, 3, ,.n) as one of them, the others

circuits being of length 3 or 4.

Proof.

We setn = 2p + 1 and we prove the result by induction mnNotice the equality:

(N-D(n+1) _ p(p+1)
8 2

Forp = 4, we have the desired decomposition, giverhkbylO circuits (1, 2, 3, 4, 5, 6,
7,8,9),(1,3,7),(1,4,6),(1,5,8), (2, %@,5, 7), (2,6,9), (3,5,9), (3, 6, 8), 49).

Let p> 5. We assume that the result is truegfer 1 and we prove it fqu. LetT be the
circular tournament with2+ 1 vertices and defined by the order (1, 2,.320 + 1). It is
easy to check that the subgrapfi afbtained by removing the two vertiogs 1 and p + 1 is
also a circular tournameitt, defined by the order (1, 2, .p,p+2,p+ 3, ..., 2 -1, D).

(p-Dp
2

According to the induction hypothesis, there exrsfl’, — 1 circuits which are arc-

disjoint and which do not use, forl {1, 2, ...,p—-1,p+2,p + 3, ..., 20 — 1}, the arcs
(i,i +1), nor the arcp, p + 2), nor the arc (& 1). In addition to these circuits, consider the
following extra circuits off:

. fori 042, 3, ...,p—2}, thecircuit (p+1,i,p+1, p—i+1);

. the circuit (1p + 1, 3) ;

. thecircuitp—1,p+1,p+1);

. the circuit ,p+ 2, p + 1).

-1 +1
Thus we obtain(pT)p -1+0-3)+3 :p(p )

— 1 arc-disjoint circuits which

do not use, for anybetween 1 and® the arcsi(i + 1) nor the arc 2+ 1, 1). Hence the
statement of the theorem, by adding the Hamiltommouit (1, 2, .., 2p, 2p + 1) to the
previous circuits. .



2.3. Case where T is strongly connected

We consider now the distance, or rather the comrme, between a Slater order and a
Copeland order of a strongly connected tournament.

Let Tg denote the tournament on 6

vertices of Figure 4. It is easy to check that
the Slater index ofg is equal to 4 and that
(1, 2, 3, 4, 5, 6) is one of its Slater orders.
On the other hand, the order (5, 3, 1, 6, 4, 2)
is a Copeland order dfs. The concordance

between these two orders is equal to 6.

FIGURE 4. The tournameily

THEOREM 9. Letn be a positive integer greater than or equal to 3.
1. If nis odd, there exists a strongly connected tourmaifi®n n vertices such that, for any
Slater ordeOg of T, there exists a Copeland ordex of T with conqOg, O¢) = 0.

2. If nis equal to 4, the only strongly connected toureainon 4 vertices is the circular
tournament, and the minimum concordance betweamitgue Slater order and its Copeland
orders is 4.

3. If nis equal to 6, the minimum concordance, over the of strongly connected
tournamentsl on 6 vertices, between the Slater order3 ahd the Copeland orders bfis
equal to 6; this minimum can be reached only fertdurnamentg of Figure 4.

4. If nis even and is greater than or equal to 8, thenmaim concordance, over the set of
strongly connected tournamenison n vertices, between the Slater ordersToaind the
Copeland orders df is equal tan + 1.

In order to make the paper more reader-friendig,groof of Theorem 9, rather long,
has been moved to the Appendix.

3. CASE WHERET HAS ONLY ONE SLATER ORDER

The last result deals with the minimum concordabegveen Slater orders and Copeland
orders when the considered tournament has onlyStater order. As noticed above, the case
where there is only one Copeland order is the onghich the tournament is transitive; then
the tournament itself is the only Slater order simultaneously the only Copeland order.

THEOREM 10. LefT be a tournament with> 3 vertices and with only one Slater order. Let
Og be the Slater order of and Oc be a Copeland order af. If n is even, we have

condOg, O¢) > 2n — 4 and the bound can be tightnlis odd, we haveondOg, O¢) > 2n — 3
and the bound can be tight.
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Proof.

Assume thah is even and set= 2p, with p> 2.

Let T be a tournament on vertices with a unique Slater ord®g= (Xq, Xp, ..., Xp).
Let O¢ be a Copeland order @t Let us show the inequaligondOg, O¢) > 2n — 4. We use
the terminology and notation used in the proof§leéorems 6 and 9. We may show, as for
these two theorems, thet is large and that, is small. Assume now tha is small; its score
is exactly equal tp — 1: otherwise, we could mowg behindx, to obtain a better order, and
Ogwould not be a Slater order; in the s®f, {4, ..., X,}, the number of vertices beaten ky
is equal to the number of vertices which beatso, the orderxg, X3, X4, ..., Xy, Xo) iS also a
Slater order, a contradiction with the uniquendsh® Slater order. Thus is large. We may
prove in a similar way thag, _ 1 is small.

As shown in the proof of Theorem 6, the part of tbacordance betweddg andO¢
due tox; andx, is equal tn — 1. We may now add the contribution duegavith respect to
the vertices other thaxy andx,; this contribution is at least equal tig — 1. Similarly, the
contribution due to, _ 1 with respect to the vertices other thgnx, andx, is at least equal
ton —2. We getondOg, Oc) >n—1+ng—1+n—-2=nh-4.

To prove that this lower bound is reached, consttier tournamenil defined as
follows. Let T be the circular tournament defined by the orde2(1.., 2 — 1) and add

the vertex p as well as the arcs, ¢p) fori U {1, 2, ..., 20— 2} and the arc & 2p — 1). Let
K be the Slater index of a circular tournament pn-21 vertices. LeOD be any order. The
distance betweeh andO is the sum of the distance between the restricdioof O to the set
{1, 2, ..., 2 - 1} from T, Which is at least equal t§, and the contribution due to the
vertex 2, which is at least 0. So the distance betw&eand O is at leastK. To reach a
distance exactly equal ¥, we must have simultaneously that:

. O'is a Slater order Of j,c;

. the vertices 1, 2, ...,@2— 2 are just before the vertep h O and that the
vertex 3 — 1 is just after; by transitivity, the vertices2, ..., 2 — 2 must be
before the vertexf2— 1 inO.

The only Slater order dff;, for which the vertices 1, 2, ...p2- 2 are beforef?— 1 is
the order (1, 2, ...,2— 1) (see Theorem 2). The only or@which is at distanck from T is
thus the order (1, 2, ...p2- 2, D, 2p — 1). Hence the uniqueness of the Slater ordér of

The scores of the vertices 1, 2, ..p,22 arep, the one of the vertexp2- 1 isp— 1
and the one of the vertexp2s 1. So the order (2— 2, 2 -3, ..., 2, 1, -1, D) is a
Copeland order and it is easy to check that theaalance between this order and the only
Slater order is equal tn2- 4.

Now, letn be an odd integer and set 2p + 1.

Let T be a tournament on vertices with only one Slater ord®g = (Xq, Xp, ..., Xp).
Let O¢ be any Copeland order ©of We want to show that we hagenqOg, O¢) > 2n — 3.

If n = 3, T must be the transitive tournament and the concaelas equal to 3,
i.e. n—-3.

Assume now that we have> 5.

Let us define three kinds of vertices:
» the vertices of which the scores are greater phamese vertices will be said to lz@ge;
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» the vertices of which the scores are equat these vertices will be said to beerage
» the vertices of which the scores are less fhdhese vertices will be said to bmall
Let n; be the number of large vertices, the number of average vertices, agdhe

number of small vertices; we havg:+ ny + ng = n. Because of Corollary 4, the scorexgfis

n-1
at IeastT, I.e.p; if the score was exactly then the ordexg, X3, ..., Xn, X1) would also be

a Slater order; since has only one Slater ordeg, is large; similarlyx, is small. Because of

n-2
Lemma 3, the score of is at IeastT, and so at least equal pox, is average or large;

similarly, X, _ 1 is average or small.

The concordance due ¥q is then at least, + ng, the concordance due xq without
respect to¢q is at leashy, + nj — 1. We now distinguish between four cases.

1. Verticesx, andx, _ 1 are average. The concordance dug,twithout respect ta; andxp,
is at leashg — 1; the concordance duex@_ 1 without respect tay, X, andx, is at least
n — 1. So the whole concordance is at least:

(Na+tngd + (g +M—-1)+6s-1)+Q—-1)=D-3.

2. Vertexx, is average and vertey, _ 1 is small. The concordance duextowithout respect
to X, andx, is at leashg — 1. The concordance duexp_ ; without respect tay, Xo andx,
is at leasty — 1+n, — 1. So the whole concordance is at least:

(Ng+tngd + (g +M—1)+0s—1)+ O +ny—2) =D +ny,—4.
As X, is average, we havg, > 1 and thus the concordance is at least 3.
3. Vertexx; is large and vertex, _ 1 is average. This case can be dealt with as thequ®

one and we keep the same conclusion: the concadsiat leasti2— 3.
4. Vertexx, is large and vertex, _ 1 is small. The concordance duextowithout respect to

X1 andx, is at leashg— 1 +n,. The concordance dug _ 1 without respect tay, Xo andx,
is at leasty — 2 +n,. So the whole concordance is at least:

(Na+ngd + (Mg +M—1) +Qs+ng—1)+ @ +ny—2) =+ 2n, - 4.
If ng is not equal to O, the concordance is greater 2Zhan 3. If n, is equal to 0, consider

n-3
X3. Its score is greater thaﬂz—, i.e. at least equal tp: otherwiseOg would not be a

Slater order or would not be the only one. ¥ must be large or average. Ag is
assumed to be equal toXg,is large. By the same way, we may show that , is small.
Thus, we have necessarily> 7 and the couple, X, _ o) adds 1 to the concordance. So
the whole concordance is at least-23.

To show that the bound is tight for odd, consider the tournamemtdefined as
follows. We start from a circular tournamehRg,. on 2 + 1 vertices defined by the order

1, 2, ..., D+ 1) in which we reverse the arg(2 1, 1) in order to obtain the arc (I 2 1).
Let K denote the Slater index ®f;c. Let O be any order defined on {1, 2, ...p,2p + 1}.

The distances fromO to T, and to T differ by 1. More precisely, we have:
dist(O, T) = dist(O, Tj;c) — 1 if and only if vertex 1 is located @ before vertex g + 1.
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By definition of the Slater index of a tournamewg havedist(O, Tg;c) > K, from
which we obtaindist(T, O) > K — 1. Moreover, the equaligist{O, T) = K — 1 is reached if
and only if:

. dist(O, Tjre) = K, which means thdD is a Slater order oOf ,c;
. in O, vertex 1 is before vertexp2- 1.

There is only one Slater order ©fjc in which vertex 1 is before verteypz 1 (see
Theorem 2): it is the order (1, 2, ..p,2p + 1). This order is thus the only Slater ordeT of

On the other hand, (1,p22p — 1, ..., 2,  + 1) is a Copeland order df. The
concordance between this order and (1, 2, p,.22+ 1) is equal to2— 3.

This completes the proof of Theorem 10. .

4. CONCLUSION

The previous results are summarized below, statedrms of distances. More precisely, we
give below the maximum of the distance betweerSilager orders and the Copeland orders of
a tournamentT with n = 3 vertices, over three sets of tournamenhtsthe set of any
tournaments on vertices, the set of strongly connected tournaseith n vertices, the set of
tournaments on vertices with only one Slater order.

maximum distancg any tournaments| strongly connected | tournaments with only
(Th. 6) tournaments (Th. 9)| one Slater order (Th. 10)
n odd n(n—1)/2 n(n—1)/2 (N2 —5n + 6)/2
2ifn=4
neven (N2 =+ 2)/2 9ifn==6 (N2 -5+ 8)/2
(R2—3n-2)/2ifn>8

5. APPENDIX: PROOF OF THEOREM 9.

Forn odd, the circular tournaments allow to concludeeoagain, as in the first step of
the proof of Theorem 6.

Assume now thah is even. We consider a strongly connected tournamelefined
on n vertices, a Slater ordég of T, a Copeland orde®c of T and we try to minimize
condOg, O¢).

If n=4, as said above, the only (up to an isomorphgrngly connected tournament
on 4 vertices is the circular tournament of Figlr&hen (1, 2, 3, 4) is the only Slater order of
this tournament, and the most different Copelantois the order (2, 1, 4, 3), for which the
concordance is equal to 4.

We now assume that is greater than or equal tg &nd we suppose that we have
condOg, O¢) < n; then we want to show, through the next nine stityag them is equal to 6
and thafT is the tournameril.

To do this, we consider once again the notatiothefproof of Theorem 6, but with
strongly connected. In particulax;( x,, ..., X,) denotes a Slater ord@g and we say that a
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n
vertex islarge if its score is greater than or equal—zto andsmall otherwise. As in the proof

of Theorem 6, vertex, is large and vertex, is small.

* Step 1 xq cannot be the only large vertex agccannot be the only small vertex.
Indeed, assume thaj is the only large vertex. Then the sum of the ssmf the

n
verticesxy, ..., X, _ 1, Xy IS at most equal t()n—l)(z—lj. As the sum of all the scores is

n-1) n(n-1

n n
equal to ( according to Theorem 1, we obtamz— - (n—l)(z—lj =n-1 as the

score ofx,. X, beats all the other vertices and hericas not strongly connected, a
contradiction. Thus there exist large vertices othanx,;. Similarly, we can prove that, is
not the only small vertex.

* Step 2 if Xy is large, therxg is small. Similarly, ifx, _ 1 is small, then, _ »is large.

Assume thaky, Xo andxg are large. Them, X, andxg provide a concordance with
respect to the small vertices equal R @ndx,, provides an extra concordance with respect to
the large vertices other tha®, x, andxz equal ton; — 3. The whole concordance is at least
equal to 85+ n, — 3, and so ta + 2ng — 3, sinceng + n; is equal tan. As we suppose that we
havecon{Og, Oc) < n, we obtain B, — 3< 0 and sas< 1, a contradiction with the result of

Step 1. Hence the first part of the statement ep 2t
The second part of Step 2 can be showed in a simag.

* Step 3 X, is small andk, _ 1 is large.

Assume thak; is large.

By considering the part of concordance providedpgndx, with respect to the small
vertices and the one provided kywith respect to the large vertices other thaandx,, we
obtain a whole concordance at least equahtorh, — 2, i.e. ton + ng— 2, since we still have
Ng+ N =n. Henceng < 2. Thanks to the previous steps, we obtain thalégung = 2 and the
fact thatxg andx, are the only small vertices. Moreover, the scofahe small (respectively
large) vertices inOg are increasing (respectively decreasing): otherwiswe concordance
would be greater tham

n
According to Lemma 3, we hawxs) > T; asn is even and agz is small, we

n
have exactlys(xg) = E_l' From s(x,) > s(xg) and from the fact that, is small, we get

S(%) = - -1.

n
2
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n n n2
Then the sum of the scores is at least equal to?()z + 2(5—1), i.e. to7—2. But

n2 n(n-1
7—2 is greater than% for n > 4, a contradiction with Theorem 1. 89 must be
small.
We prove similarly thax,, _ 1 is large.
n n
* Step 4 5(x9) = 5—1, S(Xy_1) = rs

n
Sincexy is small,we haves(xy) < i 1. On the other hand, &% is a Slater order,

Lemma 3 shows that, beats at least half the verticeg Xy, ..., Xh_1, X, Which involves the

n n
inequalitys(xy) > - Hences(xy) = 5—1.

n
The equalitys(x,, _ 1) = > can be shown in a similar way.

n n
*Step 5 5(xq) = > ors(xy) = 5—1.
The concordance brought by with respect to the small vertices and Xgywith

n
respect to the large vertices is equahde- nj — 1 =n — 1. Assume that we has,) > E;
n
sinces(x, _ 1) is equal tOE' we must add 1 to the computation of the concaredor the
n
verticesx; andx, _1. Similarly, if we would havex(x;) < E_l’ it would be necessary to add

n
1 once again for the vertices andx,, since the score 0§ is equal tOE -1, which would

lead to a concordance at least equalnte- 1, a contradiction with the hypothesis. In
n
conclusions(xy) > r involvess(x,) = g—l. Hence the statement of Step 5.

n n
* Step 6 if X3 is small, thers(x;) > E; if X, _ 2is large, thers(x,) < i 1.

n
According to Lemma 5x; beatsx,. As s(xy) is equal toE -1, X, beats exactly half

the verticesc, X4, ..., Xy — 1, X: SO, t0 move it insid®g to put it at the last position gives
another Slater order, nameby (X3, X4, ..., Xp, Xo). Then, according to Lemma %; also
beatsxs.
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Assume now thatz is small. By applying Step 4 to the Slater ordgy X3, X4, --., X,

n
X2), we prove the equality(xz) = E_l' Moving nowxgz to put it at the last position provides

a third Slater orde® = (X, X4, X5, ---, X, X2, X3). The vertexx; beats at least half the vertices
X4, Xs, ..., Xy Otherwise, we would obtain an order closer thhanOg by movingx, insideO

n-3 n+1

n
to put it betweerx, andx,. So we haves(x;) >2 + — = — and thens(x;) > r

n
Similarly, if x,, _ »is supposed to be large, then we obsf) < rin 1.

* Step 7 Xz is large orx,_» is small.
This follows from the previous two steps.

* Step 8 x3 is large an,_» is small.

n
Assume thatxg and X, o are small. According to Step 6, we has(®;) > 5 and,

n
according to Step 4s(x,_1) = rk With respect to the previous computations of the

concordance, because of the verticeandx,,_;, we may add 1 to the concordamger nj — 1
brought byx; with respect to the small vertices andXpywith respect to the large vertices
other thanx;. We thus obtain a contribution to the concordaegaal ton. As we have

n n
S(xp) = rin 1, all the small vertices have a score equa2+ te 1. otherwise, the concordance

would increase becausexafwith respect to such a small vertexnlis greater than 6, letoe
an integer with & i < n— 3. As the concordance is already equal, tihe pair X;, X, _ 2 must
not bring any extra concordance, which involves #as small. Thus there are exactly two

. . n .
large verticesx; andx, _ 1, with scores equal tezy, and the other vertices have a score equal

n
to rin 1. In this case, asis not equal to 4, the characterization of theesdTheorem 1) is

not satisfied.
So, X3 etx, _ » cannot be small simultaneously. But Step 7 shdwas if x3 is small,

thenx, _ »is small too. This involves thag is large.
We may prove that, _ »is small in a similar way.

* Step 9 n = 6 andT is isomorphic tdlg.

We now know thak,, x3 andx,, _ ; are large whiles, X, _ o andx;, are small.

The contribution to the concordance broughtxpywith respect to the small vertices
and byx, with respect to the large vertices is equalde nj— 1 =n— 1. To this, we must add
1 for the contribution brought byd, x , _ »), hence a total af. Assume that we have> 6;
then: 4 <n— 2. Ifx4 is large, we must add 1 once again in the comiputaff the concordance
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for (x4, X _ o) and, ifx4 is small, we must also add 1 fog,(x4), what is impossible since we
assumed the equaligondOg, O¢) = n. So, in order to obtaisonOg, Oc) = n, we must
have:

* N=6,

» verticesxq, x3 andxg have a score equal to 3,

» verticesxy, x4 andxg must have a score equal to 2.

Because of Lemma 5, ford {1, 2, 3, 4, 5},% beatsx ;. 1. Moreover x, beats half the
verticesxs, X4, X5, X5 and thus can be moved behixg which involves thak; beatsxz and
thatxg beatsx,. Similarly, by movingxs in front of x;, we show thakg is beaten by, andx;
is beaten bys. As the score af3 is 3 and sinceg is beaten by, andx,, thenxz beatsxy, xg
andxg. As the score of, is 2 and since, beatsxg andxg, thenx, is beaten by,, X, andxs.
As the score 0%y is 2 and since&, beatsxg andx,, thenx, is beaten by, x5 andxg. Last, as
the score ok, is 3 and sincey beatsxy, X3 andxy, thenx; is beaten bys andxg. So the
tournament must be the tournam&gif Figure 4.

We have still to prove that, if is even and is greater than or equal to 8, thereth
exists a strongly connected tournaménsuch that there exist a Slater ord@¢ and a
Copeland orde®¢ with condOg, O¢c) = n + 1. To do this, we set= 2p wherep is an integer
greater than or equal to 4.

Let us define the tournameiiton the vertices 1, 2, ...,p2as follows. We build a
circular tournament called;. on the set {4, 5, ..., % of vertices; T is a circular
tournament defined on an odd number of vertice3,.ggis regular, and all the vertices have
a score equal tp — 2. We add vertex 3 which beats the vertices 4, 9, ..., p— 1, i.e. the
vertex 4 and the vertices 2 1 fori O {2, 3, ..., p — 1}; vertex 3 is beaten by the other
vertices between 6 angp,2.e. 6, 8, ..., @— 2, . We add vertex 2 which beats the vertices 3,
8, 10, 12, ..., B, i.e. 3 and the vertices fori [0 {4, 5, ..., p}; vertex 2 is beaten by the other
vertices between 4 anghd.e. 4,5, 6, 7, ...,[2— 3, D — 1. Last, we add vertex 1 which beats
vertex 6 and which is beaten by all the other wesi Figure 5 specifies the obtained
tournament fon = 8. In this tournament, we have that:

. the score of vertex 1 is 1;
. the score of vertex 2 - 1;
. the scores of the other vertices pre
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FIGURE 5. The tournament obtained for 8 and reaching the bound of Theorem 9.

Now, consider the Copeland orde¢ = (5,4,3,p, p-1,%-2,...,8,7,6,2,1) and
the ordetOg= (6, 7, 2, 8,9, 10, ...,@2- 2,2 -1, D, 3, 4, 5, 1). To computeondOg, Oc),
notice thatOg andO¢ are almost reversed orders: what prevents them freing reversed

orders comes from the positions of 1, 2, 6 and & ti& concordance between these two
orders involves these vertices. More precisely:

. vertex 1 brings @ — 1 to the concordance;

. in addition to the contribution of 1, vertex 2 lgman extra concordance of 2
because of vertices 6 and 7;

. the other vertices, including 6 and 7, do not bemtgra concordance.

Thus we haveondOg, O¢) = 2p + 1 =n+ 1.

To conclude, we must prove thag is a Slater order of. To do this, let us compute
the distance betweéhandOg

. the restriction ofOg to the vertices 4, 5, ...,p2is a Slater order of the
tournament ;. (see Theorem 2) of which the order ps23; this brings a contribution to the

. (2p-4)(2p-2) _ (p-2)(p-1) .
distance equal te 3 = ;

2
. vertex 1 brings an extra contribution to the distarqual to 1 because of
vertex 6;
. vertex 2 brings an extra contribution equapte 2 because of the— 2 vertices
of Tejrc Other than 6 and 7 which beat it;
. vertex 3 brings an extra contribution equapte 3 because of the— 3 vertices

of Tejrc Other than vertices 4 and 5 and beaten by vertex 3
The distance betweéhandOgis thus equal to:

(P=2(P-D) ., (P=2(p*I
p p 5 :

To compute the Slater index ©f let us begin by enumerating the arc-disjointuwais;
according to three casas= 8,n =10 anch> 12.
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Assume that we hava > 12. Thanks to Theorem 8, we know that the circular

: : (p-2)(p-1) o
tournamentl ., of which the order is at least 9, ovvﬂsz— — 1 arc-disjoint circuits
which do not use the arcsi(+ 1) fori between 3 et2— 1. Besides thig, owns:

o foriJ{4,5, ...,p— 1}, the 3-circuits (B 2 + 1, 2), which providegp(— 4) 3-circuits;
o foriJ{3,4, ...,p}, the 3-circuits (B— 1, 2, 3), which providesy— 2) 3-circuits;
» the 3-circuit (P, 4, 2);
» the 3-circuit (2, 1, 6);
* the 4- circuit (2, 3, 4, 5).
All these circuits are arc-disjoint, which gives:

-2)(p-1 -2)(p+3
(P )2(p ) _1+p_4)+(0_2)+3=(p )2(p )
arc-disjoint circuits.
If n =8, we may point the following seven arc-disjoantcuits in T out: (2, 3, 4),

. . (p=2)(p+3)
a,6,7),(7,8,3),(2,8,5), (3,5, 6), (48, (4, 5, 7). This also prOV|de52—arc-
disjoint circuits since is here equal to 4.

If n =10, we may point the following twelve arc-digjbcircuits inT out: (4, 5, 8),
(4,7,10), (4, 6, 9), (6, 8, 10), (5, 7,9), (1,8, (2, 3, 4), (3, 7, 8), (3, 9, 10), (3, 5, 6),
-2)(p+3
(2,8,9), (2, 10, 5). Once again, this provi 3 )2(|O )arc-disjoint circuits since noyw
is equal to 5.
For any linear orde®, there is at least one arc from each of thesaitsrevhich has not the

-2)(p+3
same orientation iif than inO. The Slater index of is thus at least equal tei(p )Z(p ) ,

which is also the distance betweEand the previous linear ord@g. This shows thaDgis a
Slater order oT, and this completes the proof of Theorem 9. .
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