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Abstract. Various kernel functions on graphs have been defined re-
cently. In this article, our purpose is to assess the efficiency of a marginal-
ized kernel for image classification using structural information. Graphs
are built from image segmentations, and various types of information
concerning the underlying image regions as well as the spatial relation-
ships between them are incorporated as attributes in the graph labeling.
The main contribution of this paper consists in studying the impact of fu-
sioning kernels for different attributes on the classification decision, while
proposing the use of fuzzy attributes for estimating spatial relationships.

1 Introduction

Most of traditional machine learning techniques are not designed to cope with
structured data. Instead of changing these algorithms, an alternative approach is
to go in the opposite direction and to adapt the input for classification purposes
so as to decrement the structural complexity and at the same time to preserve
the attributes that allow assigning data to distinct classes.

In the particular case of images, fundamentally different strategies have been
outlined in recent years. One of them copes with images as single indivisible
objects [1] and tends to use global image features, like the color histogram. Other
strategies treat them as bags [2] of objects, thus taking into account primarily
the vectorization of the image content. Finally, a third strategy considers images
as organized sets of objects [3,4], making use of components and also of the
relationships among them; our approach falls into this category. The interest of
this latter model in retrieving complex structures from images is that it handles
view variations and complex inference of non-rigid objects, taking into account
their intrinsic variability in a spatial context.

In [5], an image classification method using marginalized kernels for graphs
was presented. In a preprocessing step, images are automatically segmented and
an adjacency graph is built upon the resulting neighboring regions. Intrinsic
region attributes are computed. The only structural information retrieved from
the image is the neighborhood relationship between regions that is implicitly
stored in the graph structure by the presence of an edge between two vertices.
Once the graph is built, a marginalized kernel extension relying on the attributes
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mentioned above is used to assess the similarity between two graphs and to build
a classifier.

In this paper, we extend this image classification method. We propose to au-
tomatically create a kernel based on more than one attribute. The presence of
multiple attributes emphasizes the importance of a generic, reliable method that
combines data sources in building the discriminant function of the classifier [6].
We also enrich the graph by adding more edges and more complex structural in-
formation retrieved from the image, such as topological relations or metric spatial
relations [7] (distance, relative orientation). This raises specific methodological
problems, that are addressed in this paper, in particular by using different ker-
nels for each type of relation and combining them under a global optimization
constraint. The framework is open to the introduction of any other features that
describe image regions or relationships between them. However, we stress the
importance of selecting relevant features and of finding positive definite kernels
that give an intuitive similarity measure between them. The general scheme of
the proposed method is illustrated in Figure 1.
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Fig. 1. Block diagram. Training step: If needed, images are segmented. A graph is
extracted from each image of the training database, using the corresponding label
image. Then, for each graph attribute, the corresponding kernel function parameters
are estimated. Finally, the kernel functions are merged. Test step: A graph is extracted
from each image of the test database. The resulting graphs are compared with the
graphs of the training database and classified using the learned similarity function.

The structure of this paper is as follows. First the original method is summa-
rized in Section 2. Section 3 presents the graph structure and edge attributes.
Section 4 presents how kernel fusion is used to merge different attribute kernels.
Experimental results are outlined in Section 5.

2 Classification Based on Kernels for Graphs

This section briefly presents the general principle of our classification technique
based on random walk kernels for graphs [5].
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The image is first over-segmented using an unsupervised hierarchical process
[8,9]. Then neighboring regions with close average gray levels are merged. The
stopping criterion is a function of a dynamic threshold based on the differences
between neighboring regions, updated at each step of the process1. An adja-
cency graph is constructed with all regions as vertices. In [5], only the adjacency
between regions is considered as an implicit edge attribute. The following real
value attributes are then computed for each region: the surface in pixels, the
ratio between the surface of the region and the surface of the image (relative
surface), average gray level, relative (to the dynamic range of the image) gray
level, perimeter, compacity and neighboring degree.

The kernel between two graphs G and G′ measures the similarity according to
an attribute a of all the possible random walk labels [10,11], weighted by their
probabilities of apparition. As compared to previous frameworks that use this
type of method [12], the region neighborhood has a lower importance in image
than it has in a chemical structure between its constituents, for example. Variable
space used in labeling becomes continuous and multi-dimensional, and a signifi-
cant part of the information migrates from the graph structure to the labeling of
its constituent parts. Therefore, the similarity function for a continuous-valued
attribute such as the gray level must be less discriminative than a Dirac function.
For this purpose, a Gaussian kernel KRBF

a (a1, a2) = exp[−‖a1 − a2‖2/(2σ2)] or
a triangular kernel KΔ

a (a1, a2) = max(1 − ‖a1 − a2‖/Γ, 0) is used for assessing
the similarity between two numeric values a1 and a2 of an attribute a.

For two graphs G and G′ to compare, these basic kernels allow us to evaluate
the similarity ka(h, h′) between two random walks h ∈ G and h′ ∈ G′, by
aggregating the similarity of attribute a of all vertices (resp. edges) along h
and h′. In [5], an extension of the base kernel ka(h, h′) is proposed to better
cope with specific image attributes. Under this framework, continuous similarity
values between graph constituents (vertices, edges) are interpreted as transition
probability penalties that will influence the random walks, without terminating
them prematurely. Finally, the kernel between G and G′ sums the similarity
of all the possible random walks, weighted by their probabilities of apparition:
Ka(G, G′) =

∑
h

∑
h′ k(h, h′)p(h|G)p(h′|G′). This function is subsequently used

in a 1-norm soft margin SVM [6] for creating the image classifier.

3 Graph Representation of Images Including Spatial
Relations

In addition to the region-based attributes from the original method, we pro-
pose to improve the structure of the graph (by adding some edges) and to add
structural information on these edges.

The original method [5] uses an adjacency graph. One way to enrich the
graph is by adding structural information on the adjacency graph, i.e. no edges

1 Any other segmentation method achieving the same goal could be used as well (e.g.
Markov Random Fields).
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are added or removed. On the other hand, the adjacency graph from the original
method is too restrictive since adjacency is a relation that is highly sensitive to
the segmentation of the objects and whether it is satisfied or not may depend
on one point only.

Therefore, using edges carrying more than adjacency and corresponding at-
tributes better reflects the structural information and improves the robustness of
the representation. Thus, the resulting graph is not an adjacency graph anymore,
it may even become complete if this is not a performance drawback.

In [5], only region-based features are computed. We propose some new fea-
tures based on structural information, more precisely spatial relations. They are
traditionally divided into topological relations and metric relations [13]. Among
all the spatial relation, we choose here the most usual examples of the latter:
distance and directional relative position (but the method applies to any other
relation). As a topological relation, instead of the adjacency, we compute an
estimation of the adjacency length between two regions. We now present each of
these features.

Distance between regions. The distance between two regions R1 and R2 is com-
puted as the minimal Euclidean distance between two points pi ∈ R1 and
qj ∈ R2: minpi∈R1,qj∈R2(deuclidian(pi, qj)).

Directional relative position. Several methods have been proposed to define the
directional relative position between two objects, which is an intrinsically vague
notion. In particularly, fuzzy methods are appropriate [14], and we choose here
to represent this information using histograms of angles [15].

This allows representing all possible directional relations between two regions.
If R1 and R2 are two sets of points R1 = p1, ..., pn and R2 = q1, ..., qn, the relative
position between regions R1 and R2 is estimated from the relative position of
each point qj of R2 with respect to each point pi of R1. The histogram of angles
HR1R2 is defined as a function of the angle θ and HR1R2(θ) is the frequency of
the angle θ:

HR1R2(θ) =
∣
∣
∣{(pi, qj) ∈ R1 × R2/∠ (

−→
i , −−→piqj) = θ}

∣
∣
∣

where ∠ (
−→
i , −−→piqj) denote the angle between a reference vector

−→
i and −−→piqj . In

order to derive a real value, we compute the center of gravity of the histogram.

Adjacency measure based on fuzzy satisfiability. Distance and orientation may
not be always relevant, for instance the distance between two regions is the same
if those two regions are adjacent by only one pixel, or if a region is surrounded
by another region. In the latter case, the center of gravity of the histogram of
angles has no meaning. Therefore we propose to include a third feature which is
a topological feature that measures the adjacency length between two regions.

One way to estimate this measure is to compute the matching between the
portion of space “near” a reference region and the other region. This measure is
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maximal in the case where the reference region is embedded into the other one,
and is minimal if the two regions are far away from each other.

Fuzzy representations are appropriate to model the intrinsic imprecision of
several relations (such as “near”) and the necessary flexibility for spatial rea-
soning [7]. We define the region of space in which a relation to a given object is
satisfied. The membership degree of each point to this fuzzy set corresponds to
the satisfaction degree of the relation at this point [7]. Note that this represen-
tation is in the image space and thus may be more easily merged with an image
of a region.

The spatial relation “near” is defined as a distance relation. A distance relation
can be defined as a fuzzy interval f of trapezoidal shape on R

+. A fuzzy subset
μd of the image space S can then be derived by combining f with a distance
map dR to the reference object R: ∀x ∈ S, μd(x) = f(dR(x)), where dR(x) =
infy∈R d(x, y). Figure 2 presents a region (a) and the fuzzy subset corresponding
to “Near region 1” (d). In our experiments, the fuzzy interval f is defined with
the following fixed values: 0, 0, 10, 30.

a) b) c) d) e) f)

Fig. 2. (a) Region 1. (b) Region 2. (c) Region 3. (d) Fuzzy subset corresponding to
“Near region 1”. (e) The same with boundary of region 2 added. (f) The same with
boundary of region 3 added.

So far we have defined the portion of space in which the relation “near” a
reference object is defined. The next step consists in estimating the matching
between this fuzzy representation and the other region. Among all possible fuzzy
measures, we choose as a criterion a M-measure of satisfiability [16] defined as:

Sat(near(R1), R2) =
∑

x∈S min(μnear(R1)(x), μR2 (x))
∑

x∈S μnear(R1)(x)

where S denotes the spatial domain. It measures the precision of the position of
the object in the region where the relation is satisfied. It is maximal if the whole
object is included in the kernel of μnear(R1). Note that the size of the region
where the relation is satisfied is not restricted and could be the whole image
space. If object R2 is crisp, this measure reduces to

�
x∈R2

μnear(R1)(x)
�

x∈S μnear(R1)(x) , i.e. the
portion of μnear(R1) that is covered by the object.

Figure 2 presents three regions: the reference region (a), a small region adja-
cent to the first one (b) and a bigger region which is partially represented (c).
The fuzzy subset corresponding to “Near region 1” is illustrated in (d) and the
border of the others regions have been added in (e) and (f). The value of the
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satisfiability measure between the fuzzy subset “Near region 1” and region 2 is
0.06, and for region 3, 0.29.

We also choose a symmetric measure, on the contrary of the satisfiability
measure, the M-measure of resemblance [16] defined as :

Res(near(R1), R2) =
∑

x∈S min(μnear(R1)(x), μR2(x))
∑

x∈S max(μnear(R1)(x), μR2(x))

This measure is maximal if the object and the relation are identical: this resem-
blance measure accounts for the positioning of the object and for the precision
of the fuzzy set as well.

4 Attribute Fusion

We have presented three features corresponding to the principal spatial relations.
All these features are normalized in the following. We present now how those
features are incorporated in the kernel.

The interest of fusion is to provide a single kernel representation for het-
erogeneous data, here different types of attributes. For a given graph training
set, the first step of the classification task is to build the base kernel matrices
{Ka1, . . . , Kan} corresponding to each attribute take into account. These matri-
ces are basic in the way that each of them represents a narrow view of the data.
For a difficult set of images, classification in such basic feature spaces might not
be efficient, because a reliable discrimination is not performed using only one
attribute. In these cases, fusion of the information brought by each kernel is
necessary. The most straightforward solution to this problem is to build a linear
combination of the base kernels K =

∑n
i=1 λiKai .

Walks
Random

Fusion

Training
Graph

SetTrain

Attribut a
a−Classifier

Gaussian
Kernel

Parameters for a

Fig. 3. Fusion of attribute kernels at learning step. For each attribute, a Gaussian ker-
nel is computed with the corresponding parameter. For each of these attribute kernels,
the random walk function creates a different classifier using the graphs extracted from
the training database. Finally, classifiers are merged using a linear combination.

This type of linear combination represents a compromise that allows mutual
compensation among different views of the data, thus ameliorating the classifi-
cation flexibility. The problem of optimally retrieving the weight vector λ has
been addressed in [6] and consists in globally optimizing over the convex cone P
of symmetric, positive definite matrices: P = {X ∈ R

p×p | X = XT , X � 0} the
following SVM-like dual problem
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min
λ∈Rn,K∈P

max
α∈Rm

2αT e − αT D(y) K D(y)α , subject to (1)

C ≥ α ≥ 0, trace(K) = c, K =
n�

i=1

λiKai , αT y = 0

where m is the size of the training database, e ∈ R
m is the vector whose ele-

ments are equal to 1 and D(y) ∈ R
m ×R

m is the matrix whose elements are null
except those on diagonal which are the labels (+1 or -1) of the training exam-
ples, D(y)ii = yi. In the problem specified above, C represents the soft margin
parameter, while c ≥ 0 fixes the trace of the resulting matrix. The interest of
this program is that it minimizes the cost function of the classifier with respect
to both the discriminant boundary and the parameters λi. The output is a set
of weights and a discriminant function that combines information from multiple
kernel spaces.

The problem can be transposed into the following quadratically constrained
quadratic program [6], whose primal-dual solution indicates the optimal weights
λi:

min
α,t

2αT e − ct , subject to (2)

t ≥ 1
trace(Ki)

αT D(y) Kai D(y) α i = 1, . . . , n

C ≥ α ≥ 0, αT y = 0

We define a kernel function for each attribute, using one of the basic types men-
tioned above (Gaussian or triangular). Kernel parameters are selected according
to their feature variability in the data. More precisely, the threshold for the dis-
crimination function should roughly indicate the smallest distance between two
feature values that would trigger a 0-similarity decision for an observer. This
threshold is closely correlated to the type of the attribute and equally to the
data being analyzed.

For each of the attribute kernels above, we build a graph kernel that will
provide us with a graph similarity estimate based on a single feature of the data.
Some features are more discriminative than others for a specific data set and
therefore generate a better classifier. The fusion method presented above allows
us to build a heterogenous decision function that weighs each feature based on
its relative relevance in the feature set through its weight μi, thus providing
optimal performance with the given feature kernels as inputs.

5 Experiments and Results

The IBSR database2 contains real clinical data and is a widely used 3D healthy
brain magnetic resonance image (MRI) database. It provides 18 manually-guided

2 Internet Brain Segmentation Repository,
available at http://www.cma.mgh.harvard.edu/ibsr/
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a) b) c) d) e) f)

Fig. 4. Samples from IBSR database. Gray levels represent labels. (a) (b) Two slices of
the axial view of the same 3D MRI volume representing both classes. (c) (d) Coronal
view. (e) (f) Sagittal view.

Table 1. Identification of the slices composing the database in each view of the 3D
volume, for the three possible views: axial (A), sagittal (S) and coronal (C)

View # slices Slices class 1 Slices class 2
A 255 121, 122, 123 126, 127, 128
S 255 121, 122, 123 126, 127, 128
C 128 58, 59, 60 64, 65, 66

expert brain segmentations, each of them being available for three different views:
axial, sagittal and coronal. Each element of the database is a set of slices that
cover the whole brain.

The main purpose of the database is to provide a tool for evaluating the per-
formance of segmentation algorithms. However, the fact that it is freely available
and that it offers high quality segmentations makes it also useful for our experi-
ments. Image classification between two different views is performed with a 100%
success rate for many of the attributes that we take into account; as a result, we
had to build a more challenging classification problem. We try to perform clas-
sification on images belonging to the same view; each element of the database
belonging to the view will provide three slices in a row for the first class, and
other three for the second one. In each set of 54 images that define a class, we
choose fifteen images for training (randomly), and the rest of them are used
for testing the classifier. Table 1 references the index of slices that are used for
defining each class, and for each of the three views.

For assessing attribute similarity, we use Gaussian kernels with relatively small
thresholds that render them sensitive to the differences in the labeling. Each
attribute kernel is injected in a graph marginalized kernel that we use in the
SVM algorithm. For the regularization parameter C of the SVM that controls
the trade-off between maximizing the margin and minimizing the L1 norm of
the slack vector, we perform a grid-search with uniform resolution in log2 space:
log2 C ∈ {−5, . . . , 15}. For each classification task we use N = 30 training graphs
and T = 78 test graphs, both evenly divided for the two classes.

Further, fusion is performed for k multiple attributes (spatial relations and
region descriptors), based on their corresponding marginalized kernels. We fix
the trace constraint parameter of the fusion algorithm c = kN and we compute
the weights λ1, . . . , λk for the input kernels in the fusion function, by solving the
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Table 2. Classification performance for different attributes (sa: satisfiability; re: re-
semblance; su: relative surface; co: compacity; gr: gray level). Columns 2, 4 and 6
list the kernel parameters, and columns 3, 5 et 7 outline the individual classification
performance for each attribute applied to each view.

sa re su co gr
Par. % Par. % Par. % Par. % Par. %

axial 0.01 0.79 0.01 0.69 0.01 0.87 0.10 0.65
coronal 0.05 0.74 0.01 0.82 0.01 0.81 0.10 0.86
sagittal 0.05 0.85 0.01 0.95 0.01 0.96 0.01 0.91 0.10 0.81

Table 3. Classification using fusion kernels. Columns 2, 5 and 8 present the attributes
used for fusion, and columns 3, 6 and 9 present the performance of the fusion kernel.

Axial Coronal Sagittal
No. Att. Fusion No. Att. Fusion No. Att. Fusion
1 sa,su 0.92 6 re,ng 0.99 11 re,su 0.96
2 sa,co 0.90 7 sa,co 0.83 12 re,ng 0.83
3 sa,ng 0.94 8 sa,ng 0.90 13 sa,su 0.96
4 su,ng 0.97 9 ng,co 0.87 14 sa,ng 0.83
5 sa,su,ng 0.96 10 sa,ng,co 0.87 15 sa,co 0.91

16 ng,co 0.95
17 sa,ng,co 0.95

system 2 with cvx3. Finally, the performance of the resulting kernel is tested in
an SVM classifier.

In most cases, preliminary results show an amelioration of the performance
compared to the initial classification rates, thus proving the interest of the fusion
approach for these image kernels. In lines 1, 3, 4, 6 and 16, attributes seem to
provide overall complementary views of the data and therefore their individual
performances are greatly topped by that of the fusion. In lines 5 and 17, triple
fusion performs as well as the best possible double fusion for the given attributes,
thus indicating a saturation effect, based on previous high classification scores.
There are also cases (lines 10, 12 or 14) where the fusion weighs more the kernel
with a lower performance, thus creating an average performance interpolator.
Indeed, optimizing the global convex problem does not directly guarantee a
better performance on any testing sample, but gives a better statistical bound
on the proportion of errors. Another important aspect that has to be taken into
account is the fact that fusion increases the dimensionality of the kernel feature
space, and overlearning may occur for small size training sets.

The heaviest step of the algorithm is the computation of the kernel Kai be-
tween two graphs G and G′. The computational complexity associated with this

3 Matlab Software for Disciplined Convex Programming,
available at http://www.stanford.edu/ boyd/cvx/



316 E. Aldea et al.

operation is O((|G||G′|)3), corresponding to a few milliseconds for the images of
the IBSR database and one minute for more complex graphs with 60-70 nodes.

6 Conclusion

A method for image classification based on marginalized kernels has been pro-
posed. In particular, we show that a graph representation of the image, enriched
with numerical attributes characterizing both the image regions and the spatial
relations between them, associated with a fusion of the attributes, leads to im-
proved performances. A kernel is derived for each attribute and fusion of the
kernels is performed using a weighted average, in which weights are automati-
cally estimated so as to give more importance to the most relevant attributes.
Preliminary results on medical images illustrate the interest of the proposed
approach.

Future work aims at extending the experimental study on other and larger
image databases and for more meaningful problems. From a methodological point
of view, it could be interesting to investigate different types of fusion.
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