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ABSTRACT

The high diversity of man-made structures combined
with the complexity of the scattering processes makes the
analysis and information extraction from high resolution
Synthetic Aperture Radar (SAR) images over urban areas
non-trivial. In order to simplify interpretation and infor-
mation extraction, the detection of the so-called Relevant
Scatterers (RSs), is proposed in this paper. The advantage
of such RSs, is that they have a stable description, allow-
ing a better discrimination from the rest of the scene.

This work addresses a RSs characterization problem for
high resolution SAR Automatic Target Detection (ATR),
based on the covariance analysis combined with the az-
imuth decomposition. Indeed, the covariance matrix and
its spectrum of eigenvalues are of great interest in the
analysis and modeling of experimental data. The detec-
tion/characterization is obtained by performing projec-
tions of the training data in the eigenspace generated by
the covariance formalism. In this article, both a descrip-
tion of our work and a presentation of our preliminary
performance results will be provided.

Key words: SAR, relevant scatterers, azimuth decompo-
sition, covariance matrix, eigenspace.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is a coherent imag-
ing mode in the microwave domain ([Schreider93,
Elachi87]). Electromagnetic scattering in urban areas is
characterized by a variety of single or multiple scattering
mechanisms with a wide range of scattering signatures.
Moreover, SAR images over urban areas are strongly af-
fected by geometric distortion effects (as layover, shad-
owing) due to the combination of the SAR side-looking
acquisition and the stepwise height variations within the
scene. This makes the interpretation and information ex-
traction from SAR images more complex.
∗A PART OF THESE MATERIALS WAS SUBMITTED TO

THE FOURTH IEEE INTERNATIONAL MULTI-CONFERENCE ON
SYSTEMS, SIGNALS AND DEVICES (SSD′07).

In particular, with the increase of the SAR sensor reso-
lution, the high resolution SAR images could include a
large variety of real man-made objects (buildings, park-
ing, ground vehicles,...). Also, the man-made objects
have various designs and shapes that are too complicated
and change too much to allow a realistic modeling in
a fashion simple enough to lead to a practical technol-
ogy. A full understanding of the behaviors of the dif-
ferent types of targets becomes thus, not easily reach-
able. A description of the backscattering behaviors of
man-made targets, general scatterer classes and their sig-
nificance, target modeling, is presented in more details in
[Rihaczek96].

In the SAR Automatic Target Recognition (ATR), it is im-
portant to be able to reliably detect or classify a target in
a manner which provides the largest possible robustness
to target and clutter variability, with the highest possible
discrimination capability.

To better detect/characterize the Relevant Scatterers
(RSs) in urban areas, the azimuth sub-band decomposi-
tion was found in [Chaabouni06] to be a powerful tool
since it exploits at most the azimuth spectrum, which is
very rich in the case of the high resolution SAR images.
In [Tupin04, Tison04], the azimuth sub-band decomposi-
tion was used to enhance areas of interest (stable or un-
stable man-made structures according to some automatic
tools such as mutual information). the same approach
was also used in [Schneider06] for the polarimetric and
interferometric characterization of the point-like coher-
ent scatterers in urban areas.

Among the ATR systems, the covariance based methods
seems to be quite promising. In fact, [Kim01] addressed
an adaptative target detection problem in radar imaging
for which the covariance matrix of an unknown Gaussian
clutter background is assumed to have a block diagonal
structure. This block diagonal structure is the conse-
quence of a target lying along a boundary between two
statically independent clutter regions. Under this assump-
tion, some detection strategies (generalized likelihood ra-
tio and maximal invariant) were then investigated, and it
was proved that each of these detectors could be of great
help in image detection problems involving boundary and
target interactions.



In [Pentland95], an unsupervised technique for visual tar-
get modeling, which is based on density estimation in
high-dimensional spaces using an eigenspace decomposi-
tion. Such a decomposition was proved to be well-suited
for the detection of facial features. Like the human faces,
the SAR images over urban areas provide a high diver-
sity of features. Thus, an eigenspace approach should be
also adapted to the recognition of urban scenes in high
resolution SAR images.

In [Novak94], it was demonstrated that the eigenspace
relative to the covariance matrix of the training images,
provides a well-suited descriptive model of the scene.
A principal component analysis is then performed on
the generated eigenspace in order to identify the eigen-
images that provide the best discrimination between the
different classes. This approach was applied for radar
target identification in a three-class-database formed by
tanks, APCs and self-propelled guns. Such special tar-
gets are unfortunately not usual in urban areas. In
fact, the mostly found classes in these areas, consist
rather in high/small buildings, vegetation, roads, park-
ing... Processing these classes is much more complex
than tanks, APCs and guns, where the distribution vari-
ety of the targets is not too large.

In this paper, detection algorithms are developed for RSs
in high resolution SAR images by combing the promising
properties of the azimuth sub-band decomposition with
the ones of the covariance matrix. These techniques have
also the advantage that they analyze the complex image
rather than only the intensity images. In fact, the intensity
image produced by a radar, does not contain sufficient in-
formation for target identification or target detection un-
der adverse circumstances.

A brief overview of the paper follows. Section 2 gives
some basic principals about SAR data acquisition and im-
age formation. Section 3 is dedicated to the description
of the azimuth sub-band decomposition algorithm and its
application for high resolution SAR image analysis. In
section 4, the covariance formalism and the way we pro-
pose to use it are exposed. Finally, section 5 summarizes
the important results of our study.

2. BASIC PRINCIPALS OF SAR

SAR synthesizes a long antenna by transmitting pulsed
signals and coherently adding the successively reflected
and received pulses to obtain high resolution in the flight
(azimuth) direction. The resolution in range direction (or-
thogonal to the azimuth direction) is achieved by trans-
mitting either very short or otherwise large bandwidth
pulses, called chirp.

The fact that the antenna is moving in the azimuth di-
rection during the illumination time results in a Doppler
effect. This Doppler effect spreads out the energy over
the azimuth spectrum. A component of the frequency
spectrum characterizes the amount of energy acquired in

a given geometric configuration. When the beam axis is
perpendicular to the flight direction, the average azimuth
frequency called the Doppler centroid is null. But, if the
antenna is tilted in the azimuth direction, the Doppler
centroid differs from zero.

The basics of SAR theory are described in more details
in [Schreider93, Elachi87, Jakowatz96].

3. AZIMUTH SUB-BAND DECOMPOSITION OF
HIGH RESOLUTION SAR IMAGES

Several techniques of frequency analysis could be applied
to a signal. For high resolution SAR images, the azimuth
sub-band decomposition seems to be a promising tool to
analyze the behavior of scatterers and to study some of
their properties ([Chaabouni06, Tison04, Tupin04]). In-
deed, unlike most of the natural images, SAR data are
complex signals and their spectrum has a specific mean-
ing. The azimuth direction is along the flight axis and
each position corresponds to some frequency variations
due to the Doppler effect. Each point in the scene, is il-
luminated many times by the radar beam. A selection of
an azimuth sub-aperture corresponds thus, to a selection
of a range of viewing angles or sensor positions.

Due to the particular fine backscattering phenomena in
urban areas and the directivity property of the illuminated
objects (depending on their orientations, the material of
their surroundings surfaces,...), the signal of a sub-band
aperture can be quite different from both, the full spec-
trum signal and the other generated sub-bands. For in-
stance, rough surfaces are quasi-Lambertian and isotrope
when the roughness is high according to the wavelength.
Therefore, the same backscattering intensity should be
observed in each sub-band. However, for some man-
made objects in urban areas, such as a smooth wall or
dihedre, the backscattered signal is highly dependant on
the relative direction of the incidence wave and the object.
In this case, the target could be faded or even disappear in
some sub-bands, for which the object is badly orientated.

In our work, for sake of simplicity, we chose to undergo a
division of the spectrum into two, but the cases of n > 2
could also be studied.

The 2 sub-aperture decomposition is made by:

• Step 1: Doppler centroid estimation and compensa-
tion of Doppler shift (in [Madsen89], three Doppler
centroid estimators were proposed);

• Step 2: Unweighting in azimuth in order to obtain
a uniform spectral density in the useful spectrum (in
our work, we use a Hamming function for the un-
weighting step since a focused SAR image is usually
weighted with a Hamming window);

• Step 3: Spectrum division into 2 sub-bands;

• Step 4: Centering the obtained sub-images; and



• Step 5: Zero-padding and Hamming weighting of
each sub-band in order to suppress the sidelobes.
This step is essential in urban areas due to the pres-
ence of many strong point-like scatterers.

It is noted that, the azimuth resolution of the regenerated
signals is degraded by a factor of 2 according to the orig-
inal resolution.

A 2-azimuth sub band decomposition algorithm is de-
scribed in the figure 1.
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Figure 1. Steps of the 2 azimuth sub-band decomposition.

The figure 2 shows an example of a 2-azimuth decompo-
sition of high resolution SAR images.
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Figure 2. (a) original image, (b) sub-band left and (c)
sub-band right, obtained after a 2-azimuth sub-band de-
composition.

From the figure 2, many interesting effects can be ob-
served:

1. Evidence of some details which were not in the
original images: Since the full-band image corre-
sponds to a complex average of the zero-padded im-
ages, there are configurations where the structures
do not appear at all in the full resolution image, al-
though they are clearly seen in a sub-band. For in-
stance, most of the roofs of the buildings have differ-
ent appearances depending on the sub-bands. They
were already in the original image but their contribu-
tions are much more important in the two sub-bands
(specially the left sub-band). This phenomena can
be seen in the areas with red frames. Moreover, the
backscattering could change from the left to the right
sub-band in the case of the red frame in the top. In-
deed, the backscatterers in this case have probably a
more adapted orientation.

2. Loss or fading of some structures in the sub-band
images: Some configurations (like the ones in the
yellow frames) lose some particularities (geometry,
aspect and shape) in the sub-bands in comparison to
the original image (specially in the sub-band right).
This is the case of the structures whose backscatter-
ing depends on the relative direction of the incidence
wave and the object.

3. Low directivity of the corner reflectors: The cor-
ner reflectors (an example is shown in figure 2 as a
blue frame) appear in all the sub-bands with a high
intensity. In fact, their backscattering does not de-
pend on the orientation or the position of the sensor.

4. COVARIANCE ANALYSIS

This section is dedicated to a SAR target classification
based upon the eigen-image concept. Such a concept was
demonstrated to be quite powerful for radar target identi-
fication in [Pentland95] and for automatic recognition of
human faces in [Novak94].

This method is based on a covariance analysis formal-
ism, from which an eigenspace is generated. After that, a
principal components analysis is performed on the train-
ing images in order to determine those eigen-images that
best account for the distribution of all the images within
the space. The components of the projections in the gen-
erated eigenspace are then used to undergo the classifica-
tion.

In our work, we will present a new version of this
method which exploits the information given by the az-
imuth sub-band decomposition to improve the scatterers’
classification in high resolution SAR images. This sec-
tion describes thus, the different steps of our new eigen-
image classifier and presents some preliminary results
performed on a five-class database.



4.1. General covariance algorithm description

Given a set of 2-D target images having n by n pixels, we
can form a training set of vectors {Xi}, where Xi ∈ Cn2

by lexicographic ordering of the pixel elements of each
target image. The database that we will use in our exper-
imentations is formed by Big Buildings (BB), Average
Buildings (AB), Small Buildings (SB), Vegetation (V)
and Water (W). The size of the whole database is 250
images (50 images of each class). The half of the target
images of each class type are used for training the eigen-
image classifier. The whole database will then be used to
test the classifier.

The figure 3 presents a flowchart of the covariance algo-
rithm.
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Figure 3. Flowchart of the covariance algorithm imple-
mentation.

Let the training images be denoted by vectors X1,
X2,...,XM .

Then, we consider the averaged training images:

X̄i = Xi − X̄ ; i = 1, 2, ..., M (1)

where X̄ is assumed to be the average image defined as:

X̄ =
1
M

M∑

i=1

Xi (2)

Let the training matrix ¯̄X be formed from the vectors X̄i

as follows:
¯̄X = [X̄1, X̄2, ..., X̄M ] (3)

The sample covariance matrix Σ is then computed as:

Σ =
1
M

¯̄X ¯̄X
∗T

(4)

∗T denotes the transpose conjugate operator.

Note that the sample covariance matrix has dimension
n2 × n2 but only the rank M , thus there will be only M
meaningful eigenvectors corresponding to the M positive
eigenvalues of the sample covariance matrix (the remain-
ing eigenvalues are all zeros). The principal components
analysis requires that we solve the eigenvalues equations:

ΣZi = λiZi ; i = 1, 2, ...,M (5)

where λ1,λ2,...,λM are supposed to be the M positive
eigenvalues of Σ.

The subset of the eigenvectors corresponding to the
largest eigenvalues, provides the best representation of
the training images. We refer to this subset of eigenvec-
tors as eigen-images.

To avoid the long computations due to the high dimen-
sionality of the covariance matrix Σ, we will use a lower
dimensional (in our case M ×M ) matrix to calculate the
eigenvalues and their corresponding eigenvectors. The
approach can be described as follows:

1. Firstly, the eigenvalues equations (6) of the M by M

matrix ( ¯̄X
∗T ¯̄X) are solved.

( ¯̄X
∗T ¯̄X)Vi = λiVi ; i = 1, 2, ..., M (6)

Indeed, the eigenvalues computed from the previous
equations are identical to the eigenvalues of the co-
variance matrix Σ.

2. The desired eigenvectors or eigenimages are then
given by:

Zi = ¯̄XVi ; i = 1, 2, ..., M (7)

Then, the classifier is implemented as follows:

• A test image Xt is projected into the eigenspace
spanned by the M eigenimages. The feature pro-
jection vector is given by the following equation:

wt =




w1

w2

...
wM


 (8)

where :

wi = Zi
∗T (Xt − X̄) ; i = 1, 2, ...,M

• For our five-class problem, the training images of
each class are projected as in equation (8) and then
averaged to calculate average feature vectors w̄BB ,
w̄AB , w̄SB , w̄V and w̄W .

• Finally, to perform the classification, euclidian dis-
tances from an unknown test target to the five aver-
age training feature vectors are calculated by:

dk = ‖wt − w̄k‖2 ; k = 1, 2, .., 5 (9)

where 1, 2, ..., 5 correspond respectively to BB, AB,
SB, V and W.



4.2. Covariance with azimuth sub-band decomposi-
tion algorithm description

From section 3, we concluded that the azimuth sub-band
decomposition of high resolution SAR images over ur-
ban areas, gives more information and finer description
of the man-made structures than when applying only on
the original images. Thus, using the output of the az-
imuth decomposition as input to the covariance analy-
sis algorithm should yield superior classification perfor-
mance and better discrimination between the different
classes in urban areas.

In this paper, we propose to combine the attractive prop-
erties of these two techniques (azimuth sub-band decom-
position and covariance formalism) to build a new ver-
sion of the previous covariance algorithm, more adapted
to man-made structures classification.

The flowchart of the covariance with azimuth decompo-
sition algorithm implementation is described in figure 4.
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Figure 4. Flowchart of the covariance with azimuth de-
composition algorithm implementation.

Instead of working directly on the full-spectrum training
images Xi(i = 1, 2, ..., M ), we propose to use Xi

Az(i =
1, 2, ...,M ) defined as follows:

Xi
Az =

[
X1

i

X2
i

]
; i = 1, 2, ..., M (10)

where Xk
i (k = 1, 2) denote the two sub-bands obtained

after a 2-azimuth sub-band decomposition of the training
image Xi.

The test image Xt will also be replaced by:

Xt
Az =

[
X1

t

X2
t

]
(11)

where Xk
t (k = 1, 2) are the two sub-bands obtained af-

ter a 2-azimuth sub-band decomposition of the test image
Xt.

It is noted that:

Xi
Az ∈ C2×n2

; i = 1, 2, ..., M

and
Xt

Az ∈ C2×n2

5. RESULTS AND DISCUSSION

The performance of the classification were computed as
a function of the size n of the used images. Such a pa-
rameter is very important in the case of high resolution
SAR images. In fact, taking into account the surrounding
area (high n) and its different structures could improve
the classification for some classes and worsen the classi-
fication for others.

To evaluate the classification performance, we computed
the Percentage of the Good Classification (PGCk) de-
fined as:

PGCk =
RCk

Ck
× 100 ; k = 1, 2, ..., 5 (12)

where:

• RCk: number of the well recognized images of the
class k.

• Ck: total number of the test images of the class k.

• 1, 2, ..., 5 correspond respectively to BB, AB, SB, V
and W.

In our experimentations, we chose to vary image size n
from 20 to 60 in order to have significant results. In fact,
each image (either for training or for testing) should have
enough pixels (not less than 20×20) to perform a signifi-
cant decomposition of the spectrum in the azimuth direc-
tion. Also, we fixed the maximum image size to 60×60 to
avoid confusions between classes since over this thresh-
old, it would be difficult to find a homogenous image de-
scribing just one class.

The figures 5, 6, 7, 8 and 9 show respectively the percent-
age of good classification of the BBs, ABs, SBs, V and
W in function of the size n of the images.

w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
w i t h  a z i m u t h  d e c o m p o s i t i o n

Figure 5. Big building classification as a function of the
size of the images using the covariance formalism with
and without the azimuth sub-band decomposition.



w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
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Figure 6. Average building classification as a function
of the size of the images using the covariance formalism
with and without the azimuth sub-band decomposition.

Figure 7. Small building classification as a function of the
size of the images using the covariance formalism with
and without the azimuth sub-band decomposition.
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Figure 8. Vegetation classification as a function of the
size of the images using the covariance formalism with
and without the azimuth sub-band decomposition.

w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
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Figure 9. Water classification as a function of the size
of the images using the covariance formalism with and
without the azimuth sub-band decomposition.

The following observations could be made from the fig-
ures 5, 6, 7, 8 and 9:

• The covariance with azimuth sub-band decomposi-
tion algorithm outperforms the general covariance
algorithm for all the classes for almost all the image
sizes. In particular, the azimuth decomposition im-
proves advantageously the quality of the covariance
based classification of the vegetation where the ame-
lioration reaches sometimes about 40%. It is also
worth to note that the lowest level of good classifi-
cation of the vegetation (PGC4 = 44%) obtained
when using the azimuth decomposition, is close to
the best level of good classification achieved with-
out azimuth decomposition (only PGC4 = 48%).

• By using only the covariance formalism, the algo-
rithm is not able to recognize the average buildings
(less than 30% of good classification in most of the
cases). But, with the azimuth sub-band decompo-
sition, the recognition becomes much better (more
than 40% of well-classified average buildings when
the image size n > 28).

• The azimuth sub-band decomposition has no effec-
tive amelioration on water classification. In fact,
the class of water is quite stable and its contents do
not have special behaviors regarding the sensor po-
sitions (the azimuth decomposition does not provide
mote information and finer characterization of the
targets in this case). Nevertheless, combing it with
the covariance formalism seems to provide more
flexibility to find a common image size that gives
a good discrimination between the different classes.

• A good classification of both the average and the
small buildings requires a large size of the images
(the high PGCs are reachable more easily for the
high n than for the low n). The surrounding area in
this case seems to react as a relevant characteristic



to the corresponding class. Indeed, unlike the opti-
cal images, the response of the buildings in SAR im-
ages is more complex to identify/recognize since it
depends highly on the orientations, and the materials
of the surrounding area and the objects that may ex-
ist on the roofs (good/bad reflectors). Also, a build-
ing includes in general, different small sub-classes
(vegetation, cars, roads, lights,...) which have sev-
eral backscattering behaviors, and thus requires a
sufficiently large number of pixels to be well de-
scribed.

• In the case of vegetation, the size of the used im-
ages seems also to be determining for the classifi-
cation performance. In fact, when combing the az-
imuth sub-band decomposition with the covariance
formalism, more than 40 × 40 pixels are needed to
provide a well-suited description of the vegetation
(PGC4 > 70%). Indeed, the fact that the vegeta-
tion could sometimes be considered as a sub-class
for the buildings, results in a kind of confusion be-
tween classes for the low image sizes.

It seems that our newly developed algorithm is more
adapted to the classification of vegetation and water (an
average of 70% of good classification is reached for many
image sizes n). However, for the buildings (big, aver-
age, small), the average of the good classification is only
about 60%. It is clear that the use of azimuth sub-band
decomposition in the covariance formalism has improved
advantageously the classification results but they are still
not enough good and need some improvements.

To find an optimal size of the images, we propose to find
the image sizes nopt which obey to the following con-
straints system:

{
PGCk(n) ≥ 60% for k = 1, 2, 3
PGCk(n) ≥ 70% for k = 4, 5

(13)

In fact, 60% corresponds to the averaged good classifi-
cation of the big buildings (k = 1), average buildings
(k = 2) and small buildings (k = 3). 70% is the aver-
aged good classification for both vegetation (k = 4) and
water (k = 5).

The optimal image size (solution for the constraints sys-
tem (13)) is:

nopt = 58

In the following experimentations, the classifier (n = 58)
that yielded the best results will be analyzed in-depth.
The analysis is presented in terms of classification dia-
gram given by figure 10.

From figure 10, several observations could be made:

• The best-recognized class (vegetation, PGC4 =
80%) is well discriminated from the big buildings.
In Fact, the big buildings are mainly formed by
strong scatterers that appear as very bright points in

Figure 10. Classification diagram when the image size n
is equal to nopt.

the SAR images, which is not the case for vegeta-
tion. It could happen also that a big building sample
image contains also vegetation in the surrounding
area, but since the size of the window is relatively
high (n = 58), the amount of vegetation could not
be above a certain threshold (otherwise the sample
image would belong to the vegetation class rather
than the big building class).

• The vegetation is mistaken for both the average
buildings and small buildings (more for small build-
ings). Indeed, when dealing with a sufficiently large
image size (n = 58), these two classes include in
general the vegetation among their surrounding area.
The vegetation/small buildings confusion could also
result from the fact that the roads and cars are com-
mon sub-classes for the two classes.

• The water is rarely confused with all kinds of build-
ings (only with small buildings with relatively low
misclassification percentages). However, 22% of the
used water sample were recognized as vegetation
when the image size is equal to 58. This is probably
due to a confusion between the cars that may exist in
the vegetation samples and the ships that may exist
in the water samples.

• The buildings (big, small, average) are mistaken
between each other. This confusion is probably
due to the fact that these classes include almost
the same structures (houses, vegetation or gardens,
roads, cars,lights,...) with different occurrences. It
seems that the covariance formalism is not able to
discriminate between so close classes. More specific
features are needed in this case.

The figure 11 shows the first well-recognized images for
each class.



Figure 11. The first 15 well-classified images for big buildings (first line), average buildings (second line), small buildings
(third line), vegetation (fourth line) and water (fifth line), when n = 58.

6. CONCLUSIONS

In this article, a preliminary classification of high reso-
lution SAR images has been performed on a five-class
database (big buildings, average buildings, small build-
ings, vegetation and water).

The proposed method aims at exploiting the rich infor-
mation provided by the azimuth sub-band decomposition
and to combine it with the promising properties of the
covariance analysis, in order to get both a superior classi-
fication performance and a better discrimination between
the different classes.

To evaluate the quality of the classification, a study on the
optimal image size was carried out. It was demonstrated
that the azimuth decomposition provides more flexibil-
ity in the choice of the optimal size of the images. Be-
sides, the combination between the covariance formalism
and the azimuth sub-band decomposition was shown to
be worthwhile mainly for big buildings, vegetation and
water classification.
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Télécommunications, France, 2004.

[Tupin04] F.Tupin and C.Tison. Sub-aperture Decom-
position for SAR Urban Area Analysis. In EUSAR
2004, pp 431-434, May 2004.

[Schneider06] R.Z.Schneider, K.P.Papathanassion,
I.Hajnsek and A.Moreira. Polarimetric and Interfer-
ometic Characterization of Coherent Scatterers in
Urban Areas. IEEE Transactions on Geoscience
and Remote Sensing, VOL.44, NO.4, April 2006.

[Kim01] H.S.Kim. Adaptative Target Detection in
Radar Imaging. Ph-D thesis, University of Michi-
gan, 2001.

[Pentland95] B.Moghaddam and A.Pentland. A Sub-
space Method for Maximum Likelihood Target De-
tection. IEEE International Conference on Image
Processing, Washington DC, 1995.



[Novak94] L.M.Novak and G.J.Owirka. Radar Tar-
get Identification Using an Eigen-Image Approach.
IEEE National Radar Conference, Atlanta,GA, 1994.

[Jakowatz96] C.V.Jakowatz, D.E.Wahl, P.H.Eichel,
D.C.Ghiglia, P.A.Thompson. Spotlight-mode
Aynthetic Aperture Radar: A Signal Processing
Approach. Kluwer Academic Publishers, pp 1-31,
1996.

[Madsen89] S.Norvang Madsen. Estimating the Doppler
Centroid of SAR Data. IEEE Transactions on
Aerospace and Electronic Systems, March 1989.


