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Abstract— With the increase of the Synthetic Aperture Radar
(SAR) sensor resolution, a detailed analysis of SAR images over
urban areas is needed. The high diversity of man-made structures
combined with the complexity of the scattering processes makes
the analysis and information extraction from high resolution
SAR images over such areas non-trivial. In order to simplify
interpretation and information extraction, the detection of the
so-called Relevant Scatterers (RSs), is proposed in this paper.
The advantage of such RSs, is that they have a stable description,
allowing a better discrimination from the rest of the scene.

This work addresses a RSs detection/characterization problem
for high resolution SAR Automatic Target Detection (ATR), based
on the covariance analysis combined with the azimuth sub-band
decomposition. Indeed, the covariance matrix and its spectrum
of eigenvalues are of great interest in the analysis and modeling
of experimental data. The detection/characterization is obtained
by performing projections of the training data in the eigenspace
generated by the covariance formalism. In this article, both a
description of our work and a presentation of our preliminary
performance results will be provided.

Keywords— SAR, relevant scatterers, azimuth decomposition,
covariance matrix, eigenspace.

I. INTRODUCTION

Satellite imagery has found vast applications in a wide
spectrum of areas including agriculture (e.g. detection of
crop types), urbanization (tracking the development of urban
areas), cartography (e.g. detection of rivers, road networks),
surveillance (e.g. detection of targets, recognition), etc. This
heavy demand on satellite imagery applications leads to the
development of imaging systems that are alternative to optical
imagery. In particular, Synthetic Aperture Radar (SAR) im-
agery in the last two decades has become increasingly popular
as some of its properties are favorable to optical imagery. SAR
is a coherent imaging mode in the microwave domain ([1], [2])
that can operate regardless of weather conditions and whose
resolution is independent of sensor height.

With the increase of the SAR sensor resolution, one would
expect to be able to extract finer details and more information
from high resolution SAR images over urban areas. But, the
electromagnetic scattering in such areas is characterized by
a variety of single or multiple scattering mechanisms with
a wide range of scattering signatures. The generated SAR
images are also strongly affected by geometric distortion
effects (as layover, shadowing) due to the combination of
the SAR side-looking acquisition and the stepwise height

variations within the scene. This makes the interpretation and
information extraction from high resolution SAR images more
complex.

In the SAR Automatic Target Recognition (ATR), it is
important to be able to reliably detect or classify a target in a
manner which provides the largest possible robustness to target
and clutter variability, with the highest possible discrimination
capability.

To better detect/characterize the Relevant Scatterers (RSs),
the azimuth sub-band decomposition was found to be a pow-
erful tool ([3], [4], [5]) since it exploits at most the azimuth
spectrum, which is very rich in the case of the high resolution
SAR images.

Among the ATR systems, the covariance based methods
seems to be quite promising for surveillance radar targets in
[6], human face classification in [7] and adaptative target de-
tection in radar imaging in [8]. Indeed, the eigenspace relative
to the covariance matrix provides a well-suited descriptive
model of the scene. Then, a simple projection in a subset of
this eigenspace (generated by a principal components analysis)
could provide appropriate and pertinent features for a good
image classification.

In this paper, detection algorithms are developed for RSs
in high resolution SAR images by combing the promising
properties of the azimuth sub-band decomposition with the
ones of the covariance matrix. These techniques have also the
advantage that they analyze the complex images rather than
only the intensity images. In fact, the intensity image produced
by a radar, does not contain sufficient information for target
identification or target detection under adverse circumstances.

A brief overview of the paper follows. Section II gives some
basic principals of SAR data acquisition and image formation.
Section III is dedicated to the description of the azimuth sub-
band decomposition algorithm and its application for high
resolution SAR image analysis. In section IV, the covariance
formalism and the way we propose to use it are exposed.
Finally, section V summarizes the important results of our
study.

II. BASIC PRINCIPALS OF SAR

SAR synthesizes a long antenna by transmitting pulsed
signals and coherently adding the successively reflected and



received pulses to obtain high resolution in the flight (azimuth)
direction. The resolution in range direction (orthogonal to the
azimuth direction) is achieved by transmitting either very short
or otherwise large bandwidth pulses, called chirp.

Considering a single scatterer on the ground, it is noted that
the exact distance, called range, from the moving antenna to
the scatterer will be different for every received pulse. The
change in range from pulse to pulse may only be a few
millimeters, but that is enough to give the signal, which is
received from the scatterer, a different phase at each pulse.
This change in phase results in the Doppler effect, such as
observed when a signal from a stationary object is observed
from a moving point.

In the azimuth direction, the Doppler effect (which is
generated by the radar target range variations) spreads out
the energy over the azimuth spectrum. A component of this
frequency spectrum characterizes the amount of energy ac-
quired in a given geometric configuration. When the beam axis
is perpendicular to the flight direction, the average azimuth
frequency called the Doppler centroid is null. However, if the
antenna is tilted in the azimuth direction, the Doppler centroid
differs from zero.

The basics of SAR theory are described in more details in
[1], [2] or [9].

III. AZIMUTH SUB-BAND DECOMPOSITION OF HIGH
RESOLUTION SAR IMAGES

Several techniques of frequency analysis could be applied
to a signal. For high resolution SAR images, the azimuth sub-
band decomposition seems to be a promising tool to analyze
the behavior of scatterers and to study some of their properties
([3], [4], [5]). Indeed, unlike most of the natural images, SAR
data are complex signals and their spectrum has a specific
meaning.

The azimuth direction is along the flight axis and each
position corresponds to some frequency variations due to the
Doppler effect. Each point in the scene, is illuminated many
times by the radar beam. A selection of an azimuth sub-
aperture corresponds thus, to a selection of a range of viewing
angles or sensor positions.

Due to the particular fine backscattering phenomena in
urban areas and the directivity property of the illuminated
objects (depending on their orientations, the material of their
surroundings surfaces,...), the signal of a sub-band aperture
can be quite different from both, the full spectrum signal and
the other generated sub-bands.

For instance, rough surfaces are quasi-Lambertian and
isotrope when the roughness is high according to the wave-
length. Therefore, the same backscattering intensity should
be observed in each sub-band. However, for some man-made
objects in urban areas, such as a smooth wall or dihedre,
the backscattered signal is highly dependant on the relative
direction of the incidence wave and the object. In this case,
the target could be faded or even disappear in some sub-bands,

for which the object is badly orientated.
The azimuth spectrum division could be done in n parts

(sub-bands). In our work, for sake of simplicity, we chose to
undergo a division of the spectrum into two, but the cases of
n > 2 could also be studied.

The 2 sub-aperture decomposition is made by the following
steps:

• Step 1: Doppler centroid estimation and compensation of
Doppler shift (in [10], three Doppler centroid estimators
were proposed);

• Step 2: Unweighting in azimuth in order to obtain a uni-
form spectral density in the useful spectrum (in our work,
we use a Hamming function to make the unweighting
since a focused SAR image is usually weighted with a
Hamming window);

• Step 3: Spectrum division into 2 sub-bands;
• Step 4: Centering the obtained sub-images; and finally
• Step 5: Zero-padding and Hamming weighting of each

sub-band in order to suppress the sidelobes. This step
is essential in urban areas due to the presence of many
strong point-like scatterers.

It is noted that, the azimuth resolution of the regenerated
signals is degraded by a factor of 2 according to the original
resolution.

A 2-azimuth sub band decomposition algorithm is described
in the figure 1.
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Fig. 1. Steps of the 2 azimuth sub-band decomposition.



The figure 2 shows an example of a 2-azimuth decomposi-
tion of high resolution SAR images.
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Fig. 2. (a) original image, (b) sub-band left and (c) sub-band right, obtained
after a 2-azimuth decomposition.

From the figure 2, many interesting effects can be observed:

1) Evidence of some details which were not in the
original images: Since the full-band image corresponds
to a complex average of the zero-padded images, there
are configurations where the structures do not appear at
all in the full resolution image, although they are clearly
seen in a sub-band. For instance, most of the roofs of the
buildings have different appearances depending on the
sub-bands. They were already in the original image but
their contributions are much more important in the two
sub-bands (specially the left sub-band). This phenomena
can be seen in the areas with red frames. Moreover, the
backscattering could change from the left to the right
sub-band in the case of the red frame in the top. Indeed,
the backscatterers in this case have probably a more
adapted orientation.

2) Loss or fading of some structures in the sub-band
images: Some configurations (like the ones in the yellow
frames) lose some particularities (geometry, aspect and
shape) in the sub-bands in comparison to the original
image (specially in the sub-band right). This is the case
of the structures whose backscattering depends on the
relative direction of the incidence wave and the object.

3) Low directivity of the corner reflectors: The corner
reflectors (an example is shown in the figure 2 as a
blue frame) appear in all the sub-bands with a high
intensity. In fact, their backscattering does not depend
on the orientation or the position of the sensor.

IV. COVARIANCE ANALYSIS

This section is dedicated to a SAR target classification based
upon the eigen-image concept. Such a concept was demon-
strated to be quite powerful for radar target identification in
[7] and for automatic recognition of human faces in [6].

This method is based on a covariance analysis formalism,
from which an eigenspace is generated. After that, a principal
components analysis is performed on the training images in
order to determine those eigen-images that best account for the
distribution of all the images within the space. The components
of the projections in the eigenspace are then used to undergo
the classification.

In our work, we will present a new version of this method
which exploits the information given by the azimuth sub-band
decomposition to improve the scatterers’ classification in high
resolution SAR images. This section describes thus, our new
eigen-image classifier and presents preliminary results for a
five-class database classifier.

A. General covariance algorithm description

Given a set of 2-D target images having n by n pixels, we
can form a training set of vectors {Xi}, where Xi ∈ Cn2

by lexicographic ordering of the pixel elements of each target
image. The database that we will use in our experimentations
is formed by Big Buildings (BBs), Average Buildings (ABs),
Small Buildings (SBs), Vegetation (V) and Water (W). The
size of the whole database is 250 images (50 images of each
class). The half of the target images of each class type are
used for training the eigen-image classifier. The second half
will be used to test the classifier.

The figure 3 presents a flowchart of the covariance algo-
rithm.
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Fig. 3. Flowchart of the covariance algorithm implementation.

Let the training images be denoted by vectors X1,
X2,...,XM .

Then, we consider the averaged training images:

X̄i = Xi − X̄ ; i = 1, 2, ..., M (1)

where X̄ is assumed to be the average image defined as:

X̄ =
1
M

M∑

i=1

Xi (2)



Let the training matrix ¯̄X be formed from the vectors X̄i

as follows:
¯̄X = [X̄1, X̄2, ..., X̄M ] (3)

The sample covariance matrix Σ is then computed as:

Σ =
1
M

¯̄X ¯̄X
∗T

(4)

∗T denotes the transpose conjugate operator.
Note that the sample covariance matrix has dimension n2×

n2 but only the rank M , thus there will be only M meaningful
eigenvectors corresponding to the M positive eigenvalues of
the sample covariance matrix (the remaining eigenvalues are
all zeros). The principal components analysis requires that we
solve the eigenvalues equations:

ΣZi = λiZi ; i = 1, 2, ..., M (5)

where λ1,λ2,...,λM are supposed to be the M positive eigen-
values of Σ.

The subset of the eigenvectors corresponding to the largest
eigenvalues provides the best representation of the training
images. We refer to this subset of eigenvectors as eigen-
images.

To avoid the long computations due to the high dimensional-
ity of the covariance matrix Σ, we will use a lower dimensional
(in our case M × M ) matrix to calculate the eigenvalues
and their corresponding eigenvectors. The approach can be
described as follows:

1) Firstly, the eigenvalues equations (6) of the M by M

matrix ( ¯̄X
∗T ¯̄X) are solved.

( ¯̄X
∗T ¯̄X)Vi = λiVi ; i = 1, 2, ...,M (6)

Indeed, the eigenvalues computed from the previous
equations are identical to the eigenvalues of Σ.

2) The desired eigenvectors or eigenimages are given by:

Zi = ¯̄XVi ; i = 1, 2, ..., M (7)

Then, the classifier is implemented as follows:

• A test image Xt is projected into the eigenspace spanned
by the M eigenimages. The feature projection vector is
given by the following equation:

wt =




w1

w2

...
wM


 (8)

where :

wi = Zi
∗T (Xt − X̄) ; i = 1, 2, ..., M

• For our five-class problem, the training images of each
class are projected as in equation (8) and averaged to
calculate average feature vectors w̄BB , w̄AB , w̄SB , w̄V

and w̄W .

• Finally, to perform the classification, euclidian distances
from an unknown test target to the five average training
feature vectors are calculated by:

dk = ‖wt − w̄k‖2 ; k = 1, 2, .., 5 (9)

where 1, 2, ..., 5 correspond respectively to BB, AB, SB,
V and W.

B. Covariance with azimuth sub-band decomposition algo-
rithm description

From section III, we concluded that the azimuth sub-band
decomposition of high resolution SAR images over urban
areas, gives more information and finer description of the
man-made structures than when applying only on the original
images. Thus, using the output of the azimuth decomposition
as input to the covariance analysis algorithm should yield
superior classification performance and better discrimination
between the different classes in urban areas.

In this paper, we propose to combine the attractive proper-
ties of these two techniques (azimuth sub-band decomposition
and covariance formalism) to build a new version of the
previous covariance algorithm, more adapted to man-made
structures classification.

The flowchart of the covariance with azimuth decomposition
algorithm implementation is described in figure 4.
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Fig. 4. Flowchart of the covariance with azimuth decomposition algorithm
implementation.

Instead of working directly on the full-spectrum training
images Xi(i = 1, 2, ...,M ), we propose to use XAz

i (i =
1, 2, ..., M ) defined as follows:

XAz
i =

[
X1

i

X2
i

]
; i = 1, 2, ...,M (10)

where Xk
i (k = 1, 2) denote the two sub-bands obtained after

a 2-azimuth sub-band decomposition of the training image Xi.
The test image Xt will also be replaced by:

XAz
t =

[
X1

t

X2
t

]
(11)

where Xk
t (k = 1, 2) are the two sub-bands obtained after a

2-azimuth sub-band decomposition of the test image Xt.
It is noted that:

XAz
i ∈ C2×n2

; i = 1, 2, ...,M

and
XAz

t ∈ C2×n2



V. RESULTS AND DISCUSSION

The performance of the classification were computed in
function of the size n of the used images. In other words, how
much the surrounding area (high n) could improve or worsen
the classification quality. For each class k, we computed thus
the Percentage of the Good Classification (PGCk) defined as:

PGCk =
RCk

Ck
× 100 ; k = 1, 2, ..., 5 (12)

where:

• RCk: number of the well recognized images of k.
• Ck: total number of the test images of k.
• 1, 2, ..., 5 correspond respectively to BB, AB, SB, V and

W.

In our experimentations, we choose to vary n from 20 to 60
in order to have significant results. In fact, each image (either
for training or for testing) should have enough pixels (not less
than 20 × 20) for the decomposition of the spectrum in the
azimuth direction. Also, we fixed the maximum image size to
60 × 60 because over this threshold, it would be difficult to
find a homogenous image describing just one class.

The figures 5, 6, 7, 8 and 9 show respectively the percentage
of good classification of the BBs, ABs, SBs, V and W in
function of the size n of the images.

w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
w i t h  a z i m u t h  d e c o m p o s i t i o n

Fig. 5. Big building classification in function of the size of the images using
the covariance formalism with and without the azimuth decomposition.
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Fig. 6. Average building classification in function of the size of the images
using the covariance formalism with and without the azimuth decomposition.

Fig. 7. Small building classification in function of the size of the images
using the covariance formalism with and without the azimuth decomposition.

w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
w i t h  a z i m u t h  d e c o m p o s i t i o n

Fig. 8. Vegetation classification in function of the size of the images using
the covariance formalism with and without the azimuth decomposition.

w i t h o u t  a z i m u t h  d e c o m p o s i t i o n
w i t h  a z i m u t h  d e c o m p o s i t i o n

Fig. 9. Water classification in function of the size of the images using the
covariance formalism with and without the azimuth decomposition.

The following observations could be made from the figures
5, 6, 7, 8 and 9:

• The covariance with azimuth decomposition algorithm
outperforms the general covariance algorithm for all the
classes for almost all the image sizes. In particular, the az-
imuth sub-band decomposition improves advantageously
the quality of the covariance based classification of the
vegetation where the amelioration reaches sometimes
about 40%. It is also worth to note that the lowest level
of good classification of the vegetation (PGC4 = 44%)



obtained when using the azimuth decomposition, is not
so far from the best level of good classification achieved
without azimuth decomposition (only PGC4 = 48%).

• By using only the covariance formalism, the algorithm
is not able to recognize the average buildings (less than
30% of good classification in most of the cases). But,
with the azimuth decomposition, the recognition becomes
much better (more than 40% of well-classified average
buildings when the image size n > 28).

• The azimuth sub-band decomposition has no effective
amelioration on water classification. However, combing
it with the covariance formalism seems to provide more
flexibility to find a common image size that gives a good
discrimination between the different classes.

• A good classification of both the average and the small
buildings requires a large size of the images (the high
PGCs are reachable more easily for the high n than
for the low n). The surrounding area in this case seems
to react as a relevant characteristic to the corresponding
class. Indeed, unlike the optical images, the response of
the buildings in SAR images is more complex to iden-
tify/recognize since it depends highly on the orientations,
and the materials of the surrounding area and the objects
that may exist on the roofs (good/bad reflectors). Also, a
building includes in general, different small sub-classes
(vegetation, cars, roads, lights,...) which have several
backscattering behaviors, and thus requires a sufficiently
large number of pixels.

• In the case of the vegetation, the size of the used
images seems also to be determining for the classification
performance. In fact, when combing the azimuth sub-
band decomposition with the covariance formalism, more
than 40 × 40 pixels are needed to provide a well-suited
description of the vegetation (PGC4 > 70%). Indeed, the
fact that the vegetation could sometimes be considered as
a sub-class for the buildings results in a kind of confusion
between classes for the low image sizes.

It seems that our newly developed algorithm is more adapted
to the classification of vegetation and water (respectively 70%
and 65% of good classification is reached for many image
sizes n). However, for the buildings (big, average, small),
the average of the good classification is only about 50%. It
is clear that the use of azimuth sub-band decomposition in
the covariance formalism has improved advantageously the
classification results but they are still not enough good and
need some improvements.

To find an optimal size of the images, we propose to find
the image sizes n which obey to these constraints:





PGCk(n) ≥ 50% for k = 1, 2, 3
PGCk(n) ≥ 70% for k = 4
PGCk(n) ≥ 65% for k = 5

(13)

In fact, 50% corresponds to the averaged good classification of
the big buildings (k = 1), average buildings (k = 2) and small

buildings (k = 3). 70% is the averaged good classification for
vegetation (k = 4) and 65% for water (k = 5).

Two solutions were found for the constraints system (13):
n = 48 and n = 58.

In the following experimentations, the two classifiers that
yielded the best results will be analyzed in-depth. The analysis
is presented in terms of confusion matrix. The row as well as
the column headings of this matrix show the different class
labels of our database (BB, AB, SB, V and W). The row
headings stand for the desired (correct) classification, while
the column headings for the actual classification. The cell
values show how often a certain error (confusion) occurred.
The values in the Σ−column′s and Σ−row′s cells show the
summation over the preceding cells in their respective row
and column. For the Σ−column, this can be interpreted as
the bias towards one class, and for the Σ-row it represents the
percentage of misclassifications for images from this class. On
the diagonal the percentage of correctly classified samples of
a certain class is shown. (Σ, Σ) shows the performance of this
system as a percentage of correctly classified images, with the
percentage of misclassified images between brackets.

The tables 1 and 2 summarize the performance of the
azimuth sub-band decomposition eigen-image classifier in
terms of confusion matrix.

Table 1. Classification confusion matrix showing the performance of the
azimuth sub-band decomposition eigen-image classifier, when n = 48.

BB AB SB V W Σ
BB 54% 10% 6% 16%
AB 24% 66% 20% 6% 50%
SB 22% 20% 58% 12% 2% 56%
V 4% 16% 78% 30% 50%
W 4% 68% 4%

Σ 46% 34% 42% 22% 32% 64.8% (35.2%)

Table 2. Classification confusion matrix showing the performance of the
azimuth sub-band decomposition eigen-image classifier, when n = 58.

BB AB SB V W Σ
BB 70% 6% 2% 8%
AB 18% 60% 24% 42%
SB 12% 28% 60% 8% 8% 56%
V 6% 14% 80% 22% 42%
W 12% 70% 12%

Σ 30% 40% 40% 20% 30% 68% (32%)

From the tables 1 and 2, several observations could be made:

• When n = 48, the best-recognized class (vegetation)
is well discriminated from the worst-recognized class
(big buildings): percentage of good classification of 78%
compared to only 54%. In Fact, the big buildings are
mainly formed by strong scatterers that appear as very
bright points in the SAR images, which is not the case
for vegetation. It could happen also that a big building
sample image contains also vegetation in the surrounding
area, but since the size of the window is relatively high



(n = 48), the amount of vegetation could not be above
a certain threshold (otherwise the sample image would
belong to the vegetation class rather than the big building
class).

• When the image size is equal to 58, the best-recognized
classes (vegetation, water, big buildings) are very well
discriminated from each other (no confusion).

• The vegetation is mistaken for both the average buildings
and small buildings (more for small buildings). Indeed,
when dealing with a sufficiently large image size (n =
48, 58), these two classes include in general the vegeta-
tion among their surrounding area. The vegetation/small
buildings confusion could also result from the fact that
the roads and cars are common sub-classes for the two
classes. This phenomena could be seen in figure 10.

Fig. 10. First line: The four first well-classified vegetation image samples.
Second line: The four first vegetation samples recognized as small buildings.
The classification is obtained by the covariance with azimuth sub-band
decomposition algorithm, when the size of the images n is equal to 58.

• The water is rarely confused with all kinds of buildings
(only with small buildings with relatively low misclas-
sification percentages). However, 22% of the used water
sample were recognized as vegetation when the image
size is equal to 58. This is probably due to a confusion
between the cars that may exist in the vegetation samples
and the ships that may exist in the water samples.

• The buildings (big, small, average) are in both cases (n =
48, 58) mistaken between each other. This confusion is
probably due to the fact that these classes include almost
the same structures (houses, vegetation or gardens, roads,
cars,lights...) with different occurrences. It seems that the
covariance formalism is not able to discriminate between
so close classes. More specific features are needed in this
case.

VI. CONCLUSIONS

In this article, a preliminary classification of high resolution
SAR images has been performed on a five-class database (big
buildings, average buildings, small buildings, vegetation and
water).

The proposed method aims at exploiting the rich informa-
tion provided by the azimuth sub-band decomposition and to
combine it with the promising properties of the covariance
analysis, in order to get both a superior classification perfor-
mance and a better discrimination.

To evaluate the quality of the classification, a study on the
optimal image size was carried out. It was demonstrated that
the azimuth sub-band decomposition provides more flexibility
in the choice of the optimal size of the images. Besides,
the combination between the covariance formalism and the
azimuth decomposition was shown to be worthwhile mainly
for big building, vegetation and water classification.

As perspective to this work, we could propose to undergo a
study on the optimal training data to improve the classification
results. In fact, among each class, we can try to find the best
candidates for the training step that give the finest description
to the corresponding class.
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