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ABSTRACT

The Bayesian approach is a promising method for model-
based signal analysis. It was previously used on detected
radar images for model based despeckling and feature
extraction. We propose an extension on Single Look
Complex (SLC) High Resolution (HR) Synthetic Aper-
ture Radar (SAR) images. The information contained in
the phase is reflected in the second order statistics and it
is important for texture characterization. The SLC data,
generally modeled as circular complex Gaussian, is as-
sumed to be modeled by a complex Gauss-Markov Ran-
dom Fields (GMRF). An efficient parameter extraction
for texture characterization is important in order to create
an alphabet of plausible primitive feature for image label-
ing. The affectation of the phase correlation on parameter
estimation is explored. The results are demonstrated on
E-SAR SLC HR images.
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1. INTRODUCTION

Texture is an important feature for image analysis. Al-
though it is easy to recognize it has many different defini-
tions spanning visual up to statistical properties descrip-
tion. In computer vision the texture is a 2D quasi repeti-
tive structure looking like a material, some examples can
be brick wall, skin, stone, metal or wood surfaces. In
computer graphic the texture is the property (in terms of
light and shade) of a surface or an object to look like made
by a certain material. There are many examples in 3D
game design. In Earth Observation (EO) optical images
texture definition comes directly from the previous ones.
Forests, meadows, land, water, cities are examples of tex-
tures at low resolution acquisition.
In the HR SAR images texture must be redefined because
it is not anymore characterizing the optical features but
the electromagnetic property of the illuminated targets. It
basically distinguishes the optical from the SAR images
and makes the interpretation of the latter a difficult task,
because what we see is not what the human eye expects

to see.
The content of the SAR image is characterize from a its
own geometry which differs from the real geometry of the
illuminated scene and it is dominated from strong scatter-
ers. Nevertheless we are going to accept the classical tex-
ture definition in homogeneous areas, but we are going to
extend it for a characterization of isolated and structured
objects, too.
The task in SAR is to detect and recognize objects and
structures thus we redefined the texture as a local de-
scriptor of the scatterers and structured scatterers: the
contextual information as spatial descriptor in small win-
dow surrounding the pixels. Since texture information is
a descriptor of the scene structures and objects, texture
parameters are important for the recognition of HR SAR
images: for classification as separation of different tex-
tures and for object recognition as fingerprint and local
diversity characterization.
Following [Chelappa85] and [Sekita92] we propose a
new complex GMRF for direct model SLC data. The
information delivered from the phase is described in the
second order statistics and it is important for texture char-
acterization. Thus, the circular complex Gaussian model
of the data is extended to be modeled by GMRF. An ef-
ficient parameter extraction for texture characterization
is important in order to create an alphabet of plausible
primitive feature for image labeling. A Bayesian param-
eters estimation and model selection is implemented and
compared with Evidence Maximization information ex-
traction [Walessa00].
The paper is structured as follows: Section II introduces
an overview of SAR principles and imaging features;
Section III gives an overview of Bayesian inference and
parameter estimation; in Section IV the observed model
and the image model are defined; Section V reports the
implementation aspects; Section VI presents experimen-
tal results and Section VI ends the paper with some con-
clusion.

2. SAR OVERVIEW

A simplified end-to-end SAR system is shown in Fig. 2.
The complex reflectivity function x(r, t) is convoluted
with the end-to-end SAR system impulse response s(r, t)
for giving the complex scene y(r, t) and then the detected



Figure 1. SLC amplitude image.

Figure 2. End-to-end SAR system.

real image |y(r, t)|. The variable r defines the position
in range and the variable t (time) is the position in az-
imuth [Schreier93]. The end-to-end SAR imaging system
model is essentially a linear range-invariant filter:

y(r, t) = x(r, t) ∗ s(r, t) (1)

where the symbol ∗ denotes the convolution. In Figs. 1
and 3 are shown example of SLC amplitude and phase
image. Because of the property of the phase which
is uniform distributed, up to now it was neglected and
the efforts were concentrated on the quantity |y(r, t)|
[Lopés90] and [Datcu98]. The detected image is affected
by the so-called speckle noise, which is a deterministic
effect due to coherent nature of SAR imaging: when the
number of scatterers within a surface resolution cell is
very large and their distribution in height occurs on a
scale of wavelength or grater, the speckle is referred to
as fully developed [Dainty75].
With the advent of HR SAR sensor the condition for fully
developed speckle is not anymore respected and the phase
shows correlation patterns (see Fig. 3) which brings in-
formation on the scene. Thus the necessity of moving
from the detected to the SLC image for a complete image
characterization.
The complex valued data y = yre + j · yim are modeled
by GMRF. It brings to an easier modeling and a linear pa-
rameter estimation ensuring a less complexity and faster
algorithm. We compared the results with the Evidence
Maximization algorithm with our algorithm.

Figure 3. SLC phase image.

3. BAYESIAN INFERENCE

In Bayesian probability theory, logical link is ex-
pressed by conditional probability distribution p(x|y) =
p(x,y)/p(y). It expresses the degree of belief that the
event x takes place given the occurrence of the event y.
Where y is the image observed values corrupted by the
noise n and x are the parameters we want to estimate. An
immediate consequence of the definition of conditional
probability is the Bayes’ law:

p(x|y) =
p(y|x)p(x)

p(y)
, (2)

which enables the reversal of probabilistic link and there-
fore it allows a direct model based inference. The law
can be seen as a rule for updating an existing descrip-
tion, the prior p(x), of a phenomenon x, based on new
information-new data or new description of the phe-
nomenon y. The direct link from old to new description
is modeled by the likelihood p(y|x). Furthermore, the
evidence normalization term, p(y), describes the distri-
bution of the data given the model and it can be computed
by marginalization:

p(y) =
∫

p(y|x)p(x)dx. (3)

where the integral is over all the parameter space. The
evidence has a main role in model selection.

3.1. Overview on Parameter Estimation

The importance of the estimation error in a certain appli-
cation, is measured using a cost function. It can assume



different forms:

cq = (x− x̂)2 (4)

cu =
{

0 for |x− x̂| ≤ τ/2
1 for |x− x̂| > τ/2 (5)

where cq is the quadratic cost function and cu is the uni-
form one with τ a fixed threshold. The expectation of
the cost relative to the joint probability density function
(p.d.f.) p(x,y) is called Bayes risk:

R = E
[
c(x− x̂)

]
=

∫∫
c(x− x̂)p(x,y)dxdy (6)

where the notation E[.] expresses the expectation opera-
tion.
The quadratic cost function (4) leads to the Minimum
Mean Squared Error (MMSE) estimator:

x̂MMSE =
∫

xp(x|y)dx. (7)

The MMSE estimator is the conditional mean and it is a
function of the observation x̂MMSE(y).
The choice of the uniform cost function (5) brings to the
Maximum A Posteriori (MAP) estimator:

x̂MAP = arg max
x

p(x|y) (8)

where the posterior can be evaluated using the Bayes for-
mula (2). We observe that even if both the estimators use
the posterior p.d.f. p(x|y), however the estimators ex-
tract different information and do not result in the same
solution. The MMSE is the center of mass, while the
MAP is the mode of the p.d.f.
When the parameter to be estimated is unknown but de-
terministic the prior p.d.f. is a delta function p(x) =
δ(x−x0). It makes the definition of the risk inconsistent,
then we introduce the likelihood function L(x) defined as
follows:

L(x) = p(y|x) (9)

It reaches its maximum when the noise is zero with high
probability. This leads to the Maximum Likelihood (ML)
estimator:

xML = arg max
x

p(y|x). (10)

Some observations must be done on the above estimators:

• if the posterior p(x|y) is symmetric then xMAP =
xMMSE , and

• if the prior p(x) is uniform then xMAP = xML

We can conclude that MAP estimate is a complete frame
for model-based approaches in information extraction.
It is equivalent to Minimum Description Length (MDL)
[Rissanen85] which states that the best model of a phe-
nomenon is the one producing the most compact encod-
ing of it. Similarly to MDL, the Akaike Information Cri-
terion (AIC) [Akaike74] considers two terms: a data one,
requiring likelihood maximization, and a penalty one,
weighting the complexity of the model.

Figure 4. Example of neighborhood N .

NEIGHBORHOOD N ′ N ′′

CLIQUES

PARAMETERS θ1 θ2 θ1 θ2 θ3 θ4

Table 1. First and second model order with the clique
system and the correspondent parameters.

4. MODELING SLC SAR DATA

The observation model comes from the SAR imaging
system. Let

y = {yi ∈ C | i = 1, . . . M ×N} (11)

be the M × N observed image with yi = yre
i + j · yim

i
row by row lexicographic indexed pixels. Thus the obser-
vation model is given by:

y = f(x) + n (12)

with n additive Gaussian white noise. From (12) we can
obtain the following conditional density distribution of
the observation yi respect to the occurrence of xi:

p(yi|xi) =
1

2πσ2
i

exp
{
− (yre

i − xre
i )2(yim

i − xim
i )2

2σ2
i

}
(13)

which is representative of a circular complex Gaus-
sian distributed phenomenon with space variant variance
noise σi.

4.1. Image Model

We model the image as GMRF, defined as follows
[Chelappa93]:

p(x) =
1

(2π)MNdet(Σ)
exp{−1

2
xT [Σ]−1x} (14)

where:

x = {xi ∈ C | i = 1, . . . M ×N} (15)



is the lexicographic ordered array of the real complex
reflectivity function and Σ is the covariance matrix of
the data. Equation (14) is the quadratic form for a
multivariate complex Gaussian distribution, which can
be also written as the following conditional distribution
[Chelappa93]:

p(xs|N ,θ) =
1

2πσ2
exp{− 1

2σ2
[xs − η]2} (16)

η =
∑

i,j∈N
θij(xij + x′ij) (17)

where the subindex s and the indexing ij refer to Fig. 4
where is shown an example of neighborhood N and σ2 is
the variance of the noise. xs ⊂ x is the subset of central
pixels for complete neighborhoods:

xs = {xi ∈ C | xi ∈ N}. (18)

Equation (16) comes from the conjoint Gaussian distri-
bution of independent random variables and from the
Hammersley-Clifford theorem which proofs the depen-
dency of each central pixel value to the values of a limited
number of surrounding pixels (neighborhood concept).
Then writing the model as a conditional distribution func-
tion is possible, where the conditioning is on the neigh-
borhood and on the clique system which together define
the model order (see Table 1).

5. IMPLEMENTATION ASPECTS

5.1. GMRF as Linear Predictor

The GMRF model can be written in the form:

xs =
∑

i,j∈N
θij(xij + x′ij) + n (19)

where the same notation of eqs. (16) and (17) and re-
ferred to Fig.: 4 was used, with xs the center of the neigh-
borhood and n zero-mean white Gaussian noise. By con-
sidering eq. (12) we can rewrite (19) in matrix form:

xs = Gθ + n (20)

where G is the matrix of the cliques, θ is the param-
eter vector and xs is the noisy image. The number of
lines of the matrix G is equal to the number of elements
P of the set xs and the number of columns, depending
on the model order, is equal to the dimension of the pa-
rameter vector. An example of construction of G matrix
for Gauss-Markov model of 2nd order is given in Fig. 5
[Datcu04].

5.2. Least Squares Estimator (LSE)

We are interested in the estimation of the parameter
vector θ. Since we consider a linear Gaussian model,

Figure 5. Example of G matrix for Gauss-Markov model
of 2nd order.

due to the symmetry of the Gaussian p.d.f. we have
θMAP = θMMSE . Moreover we consider as prior for
the parameter vector θ a uniform p.d.f. (xMAP = xML)
and uncorrelated Gaussian noise, because no prior knowl-
edge is available and then the simplest assumption is
done. Thus, this results in the LSE, which takes the form
[Ruanaidh96]:

θ̂ =
(
GT G

)−1
GT xs (21)

where θ̂ is the estimated parameter vector and the nota-
tion is coherent with eq. 20.

5.3. Variance of the model

We also computed the variance of the model as follows:

σ2 =
1
P

P∑
s=1

(xs − ε)2 (22)

ε = Gθ̂ (23)



Figure 6. Algorithm block diagram.

where P is the number of elements of the subset xs and
ε is the best fit of the data.

5.4. Evidence of the model

In case of GMRF the evidence of the model takes the
following form [Ruanaidh96]:

p(yi|H) = (24)

π−N/2Γ
(

Q
2

)
Γ
(

P−Q
2

)
det

(
[G]T [G]

)−1/2

4κ
(
θ̂

T
θ̂
)Q/2(

xT x− εT ε
)(P−Q)/2

(25)

where Γ(·) is the Gamma function, Q is the dimension of
the parameter vector θ, κ is a normalization constant and
ε is defined in eq. (23).

6. APPLICATION

We applied the method on an E-SAR scene of Dresden
city, Germany. Six parameters, corresponding to a model
of third order, were estimated and then the variance and
the evidence were calculated as described in section V.
One exemplified image is shown in Fig. 1. As remarked
the phase presents correlation patterns as highlighted in
the phase image in Fig. 3. The extracted texture parame-
ters are shown in Fig. 7 and the evidence and the variance
of the model are presented in Fig. 8. Both of them show
the building and the strong scatterers. The goodness of
the results was qualitatively evaluated by classification.
The classification on the feature space was performed
with the unsupervised K-Means. The result of the clas-
sification is shown in Fig. 9 for five classes. In order to
investigate the sensitivity of the model to phase correla-
tion, we applied the method on unitary constant ampli-
tude data. The evidence of the model is able to capture
the phase correlation as shown in Fig. 10. We observed
that some parameters show phase structures which are not
visible in the wrapped phase of Fig. 3. The two relevant
unitary constant amplitude parameters are shown in Fig.
11: the white part reveals a correlation in the phase. We
have to investigate if the model is able to capture not evi-
dent phase pattern or they are artifact.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Parameter vector. Clique: (a) vertical, (b) hori-
zontal, (c) +45o diagonal, (d)−45o diagonal, (e) vertical
and (f) horizontal with a jump of one pixel.

(a) (b)

Figure 8. (a) evidence and (b) variance of the model.



Figure 9. Classification map. Meadows and asphalt
(red), small structures and vegetation (green), build-
ings (blue), big buildings (yellow), very strong scatterers
(light blue).

6.1. Evidence Maximization Comparison

The comparison with the Evidence Maximization algo-
rithm [Walessa00] shows that we obtained best results
with the complex GMRF. This is due to the different res-
olution since the image must be under-sampled to de-
correlated the speckle noise and to the phase information
which is neglected by Evidence Maximization but is tak-
ing into account from our algorithm. Moreover because
of the linearity, the complexity of the algorithm is lower
and it results in a reduction of the computation time of
one order of magnitude.

7. CONCLUSION

For SLC images the circular complex Gaussian model is
easier to treat then the Gamma model for detected images
and this results in a faster algorithm, it brings to a linear
model selection and parameter estimation. Moreover it
permits to exploit the information contained in the phase
which is not anymore neglectable in HR images because
it delivers information on the scene phase second order
statistics. In the article it is demonstrated that GMRF
is able to capture and model the amplitude behavior to-
gether with the phase correlation.
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