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Abstract—The paper presents two algorithms for texture
primitive feature extraction on Single Look Complex (SLC) and
Polarimetric Synthetic Aperture Radar (PolSAR) SLC data.
We assume the data to be modeled by a Gauss-Markov Random
Field (GMRF): a complex GMRF model for characterizing the
spatial correlation in SLC data and an extension of the model
for inter-band correlation characterization.
The complex GMRF characterizes the spatial relationship of a
two-dimensional complex signal, i.e. SLC SAR data. The extended
model characterizes the spatial interaction and the inter-band
pixels correlation between the polarimetric complex channels.
The Bayesian approach permits to deal with model fitting and
selection in a direct way.
The results are presented on a polarimetric E-SAR L band scene
of Mannheim, Germany.

I. INTRODUCTION

High Resolution (HR) Synthetic Aperture Radar (SAR)
images are two-dimensional complex signals and reveal struc-
tures both in amplitude and phase. In the case of PolSAR data
each pixel is described by four complex-values.
There are many contributions available in the literature dealing
with PolSAR data.
In [1], the principle of speckle filtering in polarimetric data
is reconsidered, rising from the fact that all the scalar and
most of the vectorial filters do not preserve the polarimetric
information. Thus, the necessity appears to redefine the con-
cept of speckle filtering in polarimetry, showing that all the
usual polarimetric entities can be noise reduced if and only
if all the elements of the Mueller matrix are filtered. Hence,
they developed an extended version of the Minimum Mean
Squared Error (MMSE) to estimate the unspeckled covariance
matrix elements, exploiting the linear relationship between the
Mueller matrix and the scattering covariance matrix.
In [2], the Probability Density Functions (PDFs) for the co-
polar and cross-polar ratios and for the co-polar phase in
the multilook case are outlined first under the assumption
of Gaussian scattering-matrix statistics, and then for a K-
distribution model. The enhancement in the estimation of
the polarimetric signature coefficients is demonstrated in case
of multilook signature estimates compared with signature
averaging estimates.
Similarly, in [3], PDFs of the multilook phase differences,
magnitudes of complex products, and intensity and amplitude
ratios are derived. On the other hand, the statistical character-
istics of multilook data are quite different from those of single-
look data. In [4], the sensitivity of the normalized second

moment of the intensity on the polarization state is investigate
and the polarimetric texture signature definition is introduced.
In [5], an extended Polarimetric Whitening Filter (PWM) on
multilook data (MPWM) is developed under the simplified
hypotheses of product model and fully developed speckle. In
addition, different estimators are compared in case of the a
priori distribution of the texture being known or unknown.
In [6], the polarization scattering properties of each pixel are
classified in a unsupervised way depending on even or odd
number of reflections or diffuse scattering.
A more discriminative method of unsupervised analysis for po-
larimetric SAR data is presented in [7], where the polarimetric
backscatter classes are selected based on a multi-dimensional
fuzzy clustering of the logarithm of the parameters composing
the polarimetric covariance matrix.
In [8] an unsupervised classification method is developed
starting from the supervised algorithm in [11] and giving
as input of each iteration the training set obtained from the
previous classification and as initialization the unsupervised
classification based on polarimetric target decomposition pro-
posed in [12]. The iterations stop when the number of pixels
switching classes become smaller than a threshold number or
when another convergence criteria is met.
A combined method, preserving the scattering properties,
is presented by [10]. It is based on the iterative Wishart
classifier, after a previous decomposition of the pixels into
three scattering categories [13].
Up to date, the exploitation of the contextual information
directly on complex polarimetric data is not available in the
literature.
In [9], a segmentation followed by a classification, both based
on the contextual information provided by the GMRF model,
are performed on SAR polarimetric detected images for the
discrimination of vegetated areas.
The task is to characterize the texture, i.e. the spatial prop-
erties of the signal, by texture parameter estimation from
the polarimetric complex signals. The contribution of this
study is the application of the complex GMRF for feature
extraction to complex PolSAR data and its comparison with
a multi-dimensional GMRF for spatial and inter-band feature
extraction.
The comparison has be done by k-means unsupervised clas-
sification. In the following, a short overview of the two
models/algorithms will be presented with their application and
the obtained results.



II. BAYESIAN INFERENCE

The Bayesian modeling allows us, based on two-level
inference, to perform model fitting and model selection.
The first level of inference assumes that the models to be
inverted are true. The task consists in fitting the model to the
data.
The Bayes’ rule:

p(θ|xs,Hi) =
p(xs|θ,Hi)p(θ|Hi)

p(xs|Hi)
(1)

is applied to the parameters θ of the chosen model Hi, in
order to obtain the probability distribution function (pdf) of
the model parameter vector θ given the data xs and the chosen
model Hi. In (1) p(θ|Hi) is the prior and p(xs|θHi) is the
likelihood, of the data.
The inference process is performed through the MAP estimate:

θ̂MAP = arg max
θ

{log p(xs|θ) + log p(θ)} (2)

which gives the estimated values of the model parameters.
In the notation of (2) we dropped the dependence on the model
Hi. At this level of inference, the evidence term p(xs|Hi) can
be neglected because it is a constant term.
The task of the second level of Bayesian inference is to find
the most plausible model explaining the data. At his level of
inference the evidence term becomes essential. Since, in gen-
eral, the model Hi is available as a forward model p(xs|θ,Hi)
of the data, the evidence is obtained by marginalization:

p(xs|Hi) =
∫

Θ

p(xs|θ,Hi)p(θ|Hi)dθ (3)

where the integral is in the parameter space Θ for which
we denote the volume element with dθ and the prior of
the parameters with p(θ|Hi). The evidence is a quantitative
measure of how good the model fits the data and it is useful
for model selection.

III. COMPLEX GMRF MODEL

Given a complex random variable x = xre + jxim, e.g. a
complex-valued image pixel, the conditional GMRF pdf has
the form:

p(xs|Ns,θ) =
1

πσ2
exp{−|xs − η|2

σ2
} (4)

η =
∑

m,n∈Ns

θmn,re(xmn + x′
mn)+

+
θmn,im

2
(x̄mn − x̄′

mn + jxmn − jx′
mn) (5)

where ·̄ is the complex conjugate, the indexing mn and ·′
refer to the neighborhood system of Fig. 1 and σ2 is the
variance of the process. Equation (4) is the distribution of a
circular complex Gaussian process. The factor 1/2 in (5), for
the imaginary part of the parameters, comes from the definition
of the cross cliques under the hypothesis of reciprocity.
The Hammersley-Clifford theorem, which states the equiva-
lence between Gibbs Random Fields and GMRF, allows to
write the GMRF conditional PDFs in the form of (4) as the

Fig. 1. Example of neighborhood Ns. xs is the center of the neighborhood,
the same subindex marks the pixels belonging to the same clique system and
the prime ·′ denotes the symmetry of the neighborhood with xmn = x′

mn.

value of each pixel depends only on a limited number of
surrounding pixels belonging to the neighborhood Ns.

IV. MULTI-DIMENSIONAL GMRF

The multi-dimensional GMRF model comes from the clas-
sical definition of auto-regressive processes to estimate the
parameters of a Markovian chain:

xs =
∑

m,n∈Ns

θmn(xmn + x′
mn) + ns (6)

The extension over the third dimension is obtained by defining
a certain number of cliques across the bands. Considering the
central band in a set of three bands, the number of centers for
a pixel belonging to the reference band is equal to three for
model order one and to nine for a second order model.
Under the hypotheses of ergodic processes and stationary
signals in the analyzing window, a sufficient number of
samples over the third dimension can be collected. A cross-
band parameter is obtained by spatial averaging of the clique
in the analyzing window.

V. MAP ESTIMATOR

Using a matrix formalism we can rewrite (6) as follows:

xs = Gθ + ns (7)

xs,G,ns ∈ C

θ ∈ R

where G is the matrix of the cliques, θ is the parameter vector
and xs is the noisy image. The G matrix has P ×Q elements
where P is the number of the non-border pixels and Q is the
total number of parameters to be estimated.
Based on the following assumptions:

• the symmetry of the Gaussian pdf ensures that the θ̂MAP

estimate equals the LSE θ̂LSE , and
• the covariance matrix of the noise n is equal to the

identity complex matrix,

where the latter assumption comes from the fact that we can
make the simplest allowed assumption.



Thus, they result in the equivalence between a MAP estimate
and LSE, which takes the form:

θ̂ =
(
GHG

)−1
GHxs (8)

where ·H is the Hermitian operator and θ̂ is the estimated
parameter vector.
The pseudo-inverse matrix (GHG

)−1
represents the complex

covariance matrix of the model.

VI. RESULTS

The results are presented for an E-SAR scene of the city of
Mannheim, Germany. All the full complex polarimetric data
are available, acquired in L band with azimuth resolution 1.2
m and range resolution 1.99 m.
We selected a representative part of the scene, shown in Fig.
2.
Under the hypothesis of reciprocity, we neglected the cross-
polarization VH band and we analyzed the HH-VV-HV full
complex bands.
We processed each band separately by complex GMRF with
model order two and an analyzing window size of 35×35
pixels. Then, we joined all the parameters and we classified
the feature space through unsupervised k-means classification
fixing the number of classes to five.
For the analysis by multi-dimensional GMRF the order of
the bands is important because the central one is used as
reference. We chose the order HH-VV-HV because the coher-
ence between the co-polar bands is higher than between the
co-polar/cross-polar bands. Thus, we guess to extract more
information through this configuration. Nevertheless, further
analyses are going to be carried out in order to ascertain the
correct band arrangement.
We analyzed the data with an analyzing window of 35×35
pixels and we got nine parameters from the multi-dimensional
analysis. Once more, we classified the feature space through
an unsupervised k-means classifier with the same setup.
The classification results are shown in Fig. 2. We provide also
the classification performed on the parameters extracted only
from the HH complex band.
An unsupervised classification is automatically performed by
the classifier which is building the class without any reference
or training data, thus we verified the result by Google Earth
ground truth.
The five classes, within the limit of the sensor resolution and
the analyzing window size, correspond to water (white), non-
built area (pink and blue), residential area (green) and strong
scatterers (black). The classifications appear similar but details
are better discriminated for the multi-band analysis than for
the single band complex feature extraction, e.g. the strong
scatterers (black) class.

VII. CONCLUSION

The paper presents two algorithms for texture feature ex-
traction, both based on complex GMRF model.
The first model extracts feature from two-dimensional complex
signals whereas the second is able to characterize the spatial

and the cross-band correlation.
The extracted parameters are compared by unsupervised clas-
sification.
The results are provided for E-SAR PolSAR image selected
from a scene acquired over the city of Mannheim, Germany.
The data do not present large polarization diversities due to
the acquisition in L-band in the urban area.
The model selection reveals higher values for the evidence of
complex GMRF model. On the other hand, it is not a full
approach because it is based on the separate analysis of each
band, thus the inter-band information is ignored.
In contrast, multi-dimensional GMRF collects the cross-band
information even if in our case we estimate the parameters
only by one configuration while a full approach would con-
sider all potential configurations in order to capture as much
information as possible.
Further steps will be to perform classifications with texture
primitive feature extracted from the complex covariance matrix
or Mueller matrix elements and/or to find data transformations
better fitting the model.
Eventually, the classification method to assess the quality of
the parameters has to be verified with alternative techniques,
e.g. simulations, distance measures or image information min-
ing system.
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slightly more details are preserved in the classification based on the multi-dimensional model. It is notable for the strong scatterers class (black).
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