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Abstract—In this paper we consider the localization of a MS location when using the estimated TOA and/or AOA of
mobile station (MS) in time division multiple access (TDMA) these signals. Therefore, a method to distinguish LOS paths
based communication systems. We use joint angle and delay it 5ny) from the detected multiple paths at different BSs
measurements of the emlttgd signals, impinging on an anteian b datorv to i | fi 91 B
array at different base stations (BSs). Contrary to previowly —P€COMES Mandatory to Improve location acguracy[ ]. Bexaus
reported work, our technique takes into account not only the the use of antenna arrays at the BS provides for the means
measurement noise, but also multipath propagation and posisle  to perform joint heterogenous measurements of the muftipat
BSs reporting only non line of sight (NLOS) measurements. Da  signals, whose advantages have already been discussed, and
are processed using the maximum likelihood (ML) approach  4; the same time permit to reduce the number of BSs needed
based on an |mplem§ntat|on of the Expectation MaX|m|za'F|on for | lizati doot h h
(EM) algorithm. We illustrate the proposed approach using 'O '0Callizalion purposes, we adopt such an approach.
simulated data. Several location techniques based on antenna arrays to

estimate the TOA and/or AOA have already been proposed
. INTRODUCTION [8], [10]-[13]. Authors in [10] and the first two approaches i

This paper is devoted to the problem of Mobile Statiofil1] propose algorithms to localize a source from the AOA of
(MS) localization in TDMA-based communication systemsan emitting radio source. They consider the first arrivah mat
To this purpose, we use joint angle and delay measuremetitsster of paths as the LOS paths, respectively. Jativa &hal V
of the emitted signals by the MS, which is assumed to be atra[12] propose a generalized likelihood ratio test to detec
fixed position during the localization procedure. We coesidthe first arrival path in a lag window before the first RAKE
that these signals impinge via multiple paths on an antenfireger in CDMA based communication systems. The main dis-
array situated at different BSs. Hence, the main issue of caglvantage of these approaches is evident: NLOS propagation
approach is to determine which one of the estimated mulftipaif the emitted signals will severely bias the location eat&s.
parameters corresponds to the line of sight (LOS) path (if.anReference [13] and the second two algorithms proposed in

The benefits and potential applications of MS localizatiofi1] select the path with the highest power as the LOS one.
and tracking for various commercial and public safety operowever, as pointed out by [12], most powerful paths do not
ations have already been well documented in the literaturecessarily include the first arrival path in a NLOS regime.
[1], [2]- The most popular techniques of locating mobilersse Boujemaa and Marcos in [8] consider the problem of source
involve measurements of the time of arrival (TOA), timdocalization from joint estimation of AOA and angular spdea
difference of arrival (TDOA) and angle of arrival (AOA) of of the received signals. However, in order to achieve thisyp
radio signals transmitted by the MS and received by a numbearowledge about angular spreading is assumed.
of BSs (see [3], [4] for an overview). However, in order to Herein we present a new approach to localize the position of
meet the U.S. Federal Communications Commission (FC&) MS from joint measurements of AOA and TOA performed
requirements on the accuracy of MS location for emergenaydifferent BSs. The statistical approach we propose tiates
calls [5], heterogenous measurements (i.e. TOA and AOAcount the presence of multipath propagation and possible
may be used to improve such accuracy [6], [7]. FurthermorSs reporting NLOS observations only. Collected data awe pr
heterogenous data based techniques are especially usefudeissed using the maximum likelihood (ML) method based on
hearability-restricted conditions when the number of B&s fan implementation of the expectation maximization aldponit
location purposes is low [1], [6]. [14]. The resulting location algorithm is able to select t&S

The accuracy of such location techniques depends on theeths from the multiple paths arriving at the participatBfgs
LOS condition between MS-BS. Unfortunately, wireless conand at the same time remove the measurements delivered by
munication systems are characterized by multipath propadfae BSs being in NLOS regime.
tion of the emitted signal [2], i.e. the signal received bg th For completeness of this paper we include the theory of joint
BS may be composed of LOS and NLOS propagation patasgle and delay estimation (JADE) [15], [16], which has been
[8]. Moreover, emitted signals may propagate in a NLOSelected as the parametric method for channel estimatioa. T
regime only producing severe accuracy degradation on thgymptotic behavior of JADE-MUSIC and JADE-ML based



estimators are also reviewed [15], [17]. However, otheapar V. ALGORITHMS FORPARAMETER ESTIMATION AND
metric channel models and algorithms of multipath paramete ~ ASYMPTOTICAL BEHAVIOR OF THE ESTIMATORS
estimation can be used (see [13], [18], [19] as alternatwek
the references therein). The analysis of the proposed appro,. . .
through simulated data, by using both JADE-MUSIC anlétel:gtt?gﬁ th) Ovl\j;aixr\;illﬂ:‘gcgugf?\m_ gi:jamjgﬁ% {1}5]fr|(i|r2re
JADE-ML methods, is an original contribution of this paper. q ! ' '

The remainder of this paper is organized as follows \we are also interested in the asymptotical distributionheirt
sections II, Il and IV we show the basis of the adopted methoeésﬂn[]altesg]ef ?'[JOT]ST'mF;g?e;n d?;hetmh:tlgglnzo;g:lci)trsls’egvﬂ?nge
to estimate the space-time channel parameters. In sectiva v _anz \’/vne dro_ thve dependence?dfon the paramet
present the proposed approach and we derive the algorithrﬁ’to P P P o

perform the localization of the source. Section VI presémés A JADE-ML Estimates
simulation results and performance of the proposed alyarit

Among the great variety of algorithms we can find in the

Finally, in section VII, we present the conclusions. We assume that both the estimation noi$¢ and the path
fadingsb(®) are stationary Gaussian random processes. The
[I. DISCRETECHANNEL MODEL channel estimateg(®) are complex Gaussian random vectors

Following [16], joint estimation of AOA and TOA for a With zero mean and covariance matix= E [y(*)y ("] —

multipath propagation channel consists in two steps: @iy esURsU” + o1, whereR; = E [b()b(*#]. Thus by em-
mating the global channel response using learning seqeen@®ying stochastic maximum likelihood techniques, it isliwe
and observed data, (i) exploiting the expression of thexpeh know that this is a separable optimization problem [20] that
response as a function of AOAs and TOAs. As shown in [16]gduces to
the discrete channel model capturing the effects of theyarra R 1 LA
responsea(f) in directiond, delayr, symbol waveforny(t) 1= m;mx{—log | PR® + mTr(@ R)® |} 3)
and path fadings takes the form
whereR = 1Y% y(9)y()H js the estimated covariance
H = A(@)DG”(r) (1) matrix, ® = U(UHYU)"'UH is an orthogonal projector

. . which projects any vector onto the space spanned by columns
where A (@) is an M x @ matrix whose columns are thel - of U, & — I — & is the orthogonal complement projector.

element antenna-array responge,) to theqth path arriving Now, applying classical limit theory it may be proved that

from angleeq,_wnh qe€ {1_7 . ,_Q} and@ bel_ng the number of as S goes to infinity,/S(¥ — ), where® — [, o2, Ry), is
the propagating path®) is a diagonal matrix whose elements . . ;
are the path fading€ (r) is a L P x Q matrix whose columns asymptotically a zero-mean Gaussian random vector, with co

are theL P column-vectors variance matrix given by the inverse of the Fisher Informati
Matrix (FIM). FIM's elements can be determined from [17]
g’ (r) =1 g(-7) 9&—-7) .. g(TL-%)-r
(rg) = [ 9(=79) 9(F —74) (T(L—3)—7q) | oR 6R)

which contain the samples of the waveform delayed,ofThe fig=25Tr (R 13—¢_R ' i
samples are taken at a rate@times the symbol raté’ and it ! '
is considered that the modulation waveform has finite supp#¢here, is thel-th component ofP.

and that the channel length is also finite.

(4)

B. JADE-MUSIC Estimates

Ill. JADE METHOD Using [2) and MUSIC approach,is given by the) minima
The strength of the JADE method is that of exploiting thgf the cost function

stationarity of the AOA and TOA over a successive number R
of channel estimations of the form J(n) = u" (n)ITu(n) (6)

Hf;l =H® 4 Vf;)t wherell is the estimated orthogonal projector onto the noise
(s) _ . subspace obtained from the eigendecompositioR.of
wh_ere Vest_ is th_e zero-mean c_omplex Gaussian estimation Applying the same principle as in the JADE-ML case, it
noise matrix at time slot. Applying the vect operator to the .. "\ .o shown that, whei goes to infinity, VS(# — n) is

above yields asymptotically a zero-mean Gaussian random vector with a

y(®) = VeCT(Hgi)t) =U@6,7)b +v®), wheres=1,...,8 (2 x 2) covariance matriX'y » whose entries are given by
2 2

where U@,7) = [u(f,71) ... u(lg,70) | is the Yow = Z cCHoD

MPL x @ space-time matrix, withu(6,, 7,) = a(6,) ® g(r,) Pt

(where® is the Kronecker product). Vectds; contains the MPL

@ fading coefficients for thes-th channel estimation and 0K’ 0K’
V(s) _ VeC(ngi)- Lp =1 87Tlp 87Tl/p/

COV(ﬁ'lp, ﬁ'l/p/) (6)



wherev,w € {1,2}, ¢V denotes the four entries of thewhere X = [z y]T is the “true” MS position vector and(-)

[

inverse matrix of is the jacobian matrix allowing to go frort¥,7) to (z,y)
IOK! 9K domain. _
8—771 8—772 On the other hand, NLOS measurements are considered
Cmn) = K2  OK? (7) in this paper as outliers, from which no information about
ol o2 the position of the MS can be obtained [22], [23]. Thus, for
. " K simplicity, we assume that for these measurements all salue
with 9 within a delimited regioriR are equally likely, that is
on' XNLOS L Y(R) (13)
and where the covariance between the elemenid &f given

wherel/(R) stands for the uniform distribution in the region
. R. In practice this region may be delimited by the area
coM(Fij, ) = S [(HRID); (R TRR, ) (9) containing the BSs participating in the localization prsxe
+(R;IRR; ) (TIRII)

wherell is the orthogonal projector onto the noise subspaée Algorithm Derivation
andR, = UR;U". For the i-th BS, we consider a sequenc¥; . =

Obviously the limit covariance matriky . depends on the (x| . x; o} of @ MS position observations. Referring
unknown true parameter valueg,R 3 ando?. In practical sit- o ) and [B), we assume that these observations are

uations, these values may be replaced by consistent esimghdependent random variables distributed as
as for example MUSIC estimates fgrand ML estimates for

by

Ry ando? [21]. _ Q
P(Xiq: X,v") = Z'Y}ngk(Xi,le§X)
V. PROPOSEDAPPROACH =0
Let us assume that we colle@t joint angle-delay measure- h i i i th iahti fficients f
ments, corresponding to th@ paths seen for each of the wherey' = {1,... ’VQ} are the weighting coemcients for

participating BSs (for simplicity we consider the same nembthe probability functionsfi (X;,1.0; X), at thei-th BS, given
of paths at each BS). Thus, accordingib (4) &id (6), we farth®Y
assume that the d|str|bu_t|on of the LOS measurements may §12 | v(XNLOS), for k=0
approximated asymptotically by a normal distribution
X - (i, XEOS. X Ty e XNEOSY for ke {l,...,
nZL,qOS ~ N('rli,qargyf)) (10) ¢( ke ,k)Hlfl,l¢k U( ) ) { 8-1’1)

with mean located at the “true” value of the parameters vectghere v(X\*©%) and ¢(X/0%; X, T, ;) stand respectively
Nig = [0iq Tig)" and covariance matrix given bﬁgTq) for the pdfs of an uniform distribution and a Gaussian distri

where ¢ denotes the index of theth path at positiom’for bution with mean vectoX and covariance matrik'; ;.
i € {1,2,...,1} andq € {1,2,...,Q}. Moreover, these Because direct maximization of the likelihood of the ob-

measurements are directly related to the cartesian caedin Servations is intractable, we suggest to use the EM approach
(z,y) of the MS and the cartesian coordinates, y;) of the The EM algorithm [14] is a very popular tool for maximum-

i-th BS by the following expressions likelihood (or maximum a posteriori) estimation. The commo
R strand to problems where this approach is applicable is a

tan (6, + o) = L notion of incomplete-data, which includes the conventional
YU (11) sense of missing data but is much broader than that. The EM

Tiq = (@ — )2 + (y — y:)? algorithm demonstrates its strength in situations whereeso

pothetical experiments yield (complete) data that aeged

whereq; denotes the angle between the normal’'s array at %‘g .
. : . 0 the parameters more conveniently than the measurements
1 and the geographic north of the cartesian system and where

¢ denotes the speed of light. It is assumed here that both
BS locations(z;, y;) and«; are known without error.
From the above, it follows that, in a cartesian coordinat

%\ccording to the model introduced above, we may write the
'%int probability density of the complete data as

system, the asymptotical distribution of the MS positiorame Q
surements¥29%may be approximated by P(X;1.0, Zi; X,7') = Z'y,ifk(Xiyle;X)ll{Zi =k} (15)
XEOS ~ N(X.Tiy) (12) o
. whereZ; is a discrete hidden random variable taking its values
with from the set{0,1,...,Q}.
L —3 T,y pla 3 T,y " The EM algorithm is an iterative algorithm to compute
Y\ Oy Tig ) 0T O gy Ting maximum likelihood estimate. Each iteration may be forgnall



decomposed in two steps: an E-step and an M-step. Thedge placed a{z;,v;) = {(1,0.5),(3.5,1.5),(2,3.5)}Km. In
step consists in evaluating the conditional expectatiothef each position the number of paths (assumed to be known)
complete data likelihood is @ = 3. The angles between the normal arrays and
I the geographic north werer = [45, —45,—179]. We also
0) = ZE{log(P(Xi,LQ,Zi;X,'Yi))IXi,LQ,é} (16) consider that BS1 observes only NLOS paths, viewed as
- possible sources picked out randomly from the redion=
{(z,y)| = € [0, 4000]m, y € [0, 4000]m}. To the rest of the
BSs that observe the LOS path two more paths were added,
randomly chosen frork. The path gains at each BS position
1 P=[0.8,1,0.9], | B2 [*= [0.9,08,1], | B5 |>=
|, respectively. The signal-to-noise ratio (SNR) is
taken as the ratio of the variance of the strongest path to the
variance of the noise? [15].
{n the simulations we mean by ML-based approach and
MUSIC-based approach the proposed approach using the
t covariance matrices and the angle-delay measuresnent
computed from JADE-ML and JADE-MUSIC models, respec-

where ® = {X,4'} denotes, for alli, the full parameter
vector and where the expectation is taken w.r.t. the prdibabi
distribution associated with the valu@ of the parameter.
In the (generalized) M-step, we compute a new parame%7 0.8, 1],
estimate,©, which is chosen in such a way thé{(©, ©)
Q(©,0) with equality if and only if© is a stationary p0|nt
of the likelihood function. This two step process is repdate
until convergence is apparent. The essence of the EM is t%a
increasingQ(©, ©) forces an increase of the incomplete datlam|
likelihood.

Thus plugging[[(Ib) in[(1l6) we obtain

tively.
I Q o A. Smulation |
=D log(fuXivs X))gk(Xi .05 X, 7) In this simulation we used the AOA and TOA measurements
=hk=0 (17) as well as the asymptotic covariance matrix, for the MS
where position, given by JADE-ML model (ML-based approach).
e The SNR was considered 10dB. Figllte 1 depicts the top view
gr(Xi 1. Q,X 7' = ”M of two superimposed likelihood surfaces for two cases: 1)
P(Xi 10 X,7") “Initial Likelihood” is the likelihood surface as a functioof
We then optimize[[I7) w.r.t. the coefficients, and the the MS position with equal weighting coefficientg = 0.25
source locationX, which gives for all ¢ and for allk (as feeded to the algorithm in order to
start), and 2) “Final Likelihood” is the likelihood surfaes a
i = ge(Xi10: X9 (18) function of the MS position using the weighting coefficients

computed by the proposed approach. It should be noticed that
both surfaces present two intersecting “beams”, due to the
I Q 1,1 Q contribution of the BSs 2 and 3 which see the LOS paths
(Z > il ) (Z > 'ﬁ;F;,iXi,k> (19) among the detected total number of paths (compare it to figure
1 k=1 i=1 k=1 B for the three BSs seeing the LOS paths). Second, the finitia

In practice, in order to avoid keeping local solutions, thékelihood” surface presents a maximum (intersection ob tw
best approach consists in initiating the algorithm for a ham beams) severely biased from the true MS position (2,2)Km.
of departing points for the position only. These initial gses This is due to the multipath propagation and measurements
may be taken from a grid of equidistant points situated ovédken in a NLOS regime in BS 1. Better accuracy of the source
the region of interest. The weighting coefficients may iy position estimation is obtained after the proposed algorit
be considered as equally likely, i.¢, = 1/(Q + 1), for all i has correctly chosen the optimal weighting coefficientdtier
and all k. Hence, the MS position will be given by the mosfunctions fi (X 1.; X).
likely estimated parameter vector among those estimated fo Estimated coefficients for this S|mulat|on at BS 1, 2, and

each po|nt of the gnd 3 were reSpectlvelyy = {1 0 0 O} ’Y = {0 O7 1,0} and
% ={0,1,0,0}. Which means that BS 1 reported only NLOS
VI. SIMULATION RESULTS AND REMARKS measurements, while at BSs 2 and 3, paths number 2 and 1,

Two simulations were performed in a system which approxrespectively, were chosen as the LOS ones. The estimated MS
imates GSM: where the symbol period 1 = 3.7us, the position is at(1993,2002)m
channel is estimated at each time slot via least square g usin
26 training bits. The binary sequence is modulated by a raisegt- Smulation Il
cosine pulse with roll-off).35, assumed to be zero outside the To assess the performance of the proposed algorithm, we
interval [—3, 3]. The sampling rate is considered to be twiceomputed the variance and the bias per component on the
the symbol rate. Data are collected over 26 time slots usiegtimation of the MS position from a 500 Monte-Carlo runs.
an uniform linear array (ULA) with two sensors. We compute the variance as the sumuf and y'S variances

The MS is considered to stay d®2,2)Km, in a 2-D and the bias per component as BIA$ = =5 S0 (i — ).

cartesian system. The BSs equipped with an antenna arFagures[B andd4 show respectively the experimental standard



deviations and bias on the MS position estimation usingl] R. Klukas and M. Fattouche, “Line-of-sight angle ofieat estimation
the proposed approach for different SNRs. As expected the in the outdoor multipath environment,EEE Transactions on Vehicular

Technology, vol. 47, pp. 342 — 351, Feb. 1998.

proposed approach based on ML presents better performaﬁgﬁ R. Jativa and J. Vidal, “Glrt detector for nlos error uetion in wireless
than MUSIC-based approach for low SNRs. As a matter of positioning systems,Proc. IST Mobile Communications Summit, June

fact, MUSIC-based approach does not give satisfactoryiteesy__ 2002.

in the range of 0-8dBs, because MUSIC algorithm is not ab[lle3]

to distinguish all the minima in its cost function. Thereafpthe _ _ ] -
associated asymptotic covariance matrices are bad coneiti [14] A P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum lekhood
and no valid result is produced by the algorithm.

VII. CONCLUSIONS

C. Yung-Fang and Y. Szu-Lung, “Smart antenna with jaanigle and
delay estimation for the geolocalization, smart uplink af@ivnlink
beamforming,”|IEEE ICSP, vol. 1, pp. 393 — 397, Aug. 2002.

from Incomplete Data via the EM Algorithm,Journal of Royal Statis-
tical Society : series B, vol. no. 39, pp. 1-38, 1977.
[15] M. C. Vanderveen, “Estimation of parametric channeldels in wireless
communication networks,” Ph.D. dissertation, Stanfordveirsity, 1997.
[16] M. C. Vanderveen, C. B. Papadias, and A. Paulraj, “Jangle and delay

We proposed a new algorithm to locate a MS from joint estimation (jade) for multipath signals arriving at an ane array.”

measurements of TOA and AOA of the emitted signals in
multipath environment. We used an antenna array at differ

|IEEE Communications Letters, vol. 1, no. 1, Jan 1997.

é%] P. Stoica and A. Nehorai, “Music, maximum likelihooddathe cramer-

rao bound,”|EEE Transactions on Acoustics, Speech and Signal Pro-

BSs to perform such measurements. Collected data were cessing, vol. 37, no. 5, pp. 720-741, May 1989. o
processed using the maximum likelihood method, based Bl H- Qin, J. Huang, and Q. Zhang, "A novel joint estimatérigection-of-

arrival and time-delay for multiple source localizatiohZEE Int. Conf.

an ir_nplemgntation of the EM algqrithm. We did not consider  Neyral Networks & Signal Processing, pp. 1294-1297, 2003.
the first arrival path or the path with the highest power as tii] A.-J. van der Veen, M. Vanderveen, and A. Paulraj, “fJoimgle
LOS path. Instead we proposed a statistical approach which and delay estimation using shift-invariance propertid§EE Sgnal

Processing Letters, vol. 4, pp. 142 — 145, May 1997.

handles th_e presence Of. LOS paths and rejects the.NLOS OM&F- A. G. Jaffer, “Maximum likelinood direction finding of techastic
The resulting algorithm is able to locate the MS with at least  sources: A separable solutionEEE, 1988. o
two BSs “seeing" muItipIe paths, Comprising the LOS path?,ll G. Raleigh and T. Boros, “Joint space-time parameté¢imesion for

wireless communication channeld ZEE Transactions on Sgnal Pro-

while at the same time is able to remove information delidere  cesng, vol. 46, pp. 1333 — 1343, May 1998.
by BSs being in NLOS regime only.
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Fig. 1. Top view of two superimposed likelihood surfaces: 1)
“Initial Likelihood” is the likelihood surface as a functioof the
MS position with equal weighting coefficientg, = 0.25, and 2)
“Final Likelihood” is the likelihood surface as a functior the MS
position using the weighting coefficients computed by theppsed
approach. The true MS position is at (2,2)Km
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Fig. 2. Top view of the likelihood surface as a function of the MS
position using the weighting coefficients computed by theppsed
approach. It is considered here that the three BSs see theph®S
among the total number of detected paths. The true MS posiio
at (2,2)Km
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Fig. 3. Experimental standard deviations of the MS position estima
tion obtained from 500 Monte-Carlo runs.

12 // - - MUSIC-based approach: z
_12k | i
! 1 | - = MUSIC-based approach: y
i
—14} [ - - -ML-based approach: x i
//’ - - ML-based approach: y
716 F // i
-18 . . . . .
0 5 10 15 20 25 30
SNR (dB)

Fig. 4. Experimental BIAS for each cartesian componénty) of
the MS position estimation obtained from 500 Monte-Carlostu
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