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Abstract—In this paper we consider the localization of a
mobile station (MS) in time division multiple access (TDMA)
based communication systems. We use joint angle and delay
measurements of the emitted signals, impinging on an antenna
array at different base stations (BSs). Contrary to previously
reported work, our technique takes into account not only the
measurement noise, but also multipath propagation and possible
BSs reporting only non line of sight (NLOS) measurements. Data
are processed using the maximum likelihood (ML) approach
based on an implementation of the Expectation Maximization
(EM) algorithm. We illustrate the proposed approach using
simulated data.

I. I NTRODUCTION

This paper is devoted to the problem of Mobile Station
(MS) localization in TDMA-based communication systems.
To this purpose, we use joint angle and delay measurements
of the emitted signals by the MS, which is assumed to be at a
fixed position during the localization procedure. We consider
that these signals impinge via multiple paths on an antenna
array situated at different BSs. Hence, the main issue of our
approach is to determine which one of the estimated multipath
parameters corresponds to the line of sight (LOS) path (if any).

The benefits and potential applications of MS localization
and tracking for various commercial and public safety oper-
ations have already been well documented in the literature
[1], [2]. The most popular techniques of locating mobile users
involve measurements of the time of arrival (TOA), time
difference of arrival (TDOA) and angle of arrival (AOA) of
radio signals transmitted by the MS and received by a number
of BSs (see [3], [4] for an overview). However, in order to
meet the U.S. Federal Communications Commission (FCC)
requirements on the accuracy of MS location for emergency
calls [5], heterogenous measurements (i.e. TOA and AOA)
may be used to improve such accuracy [6], [7]. Furthermore,
heterogenous data based techniques are especially useful in
hearability-restricted conditions when the number of BSs for
location purposes is low [1], [6].

The accuracy of such location techniques depends on the
LOS condition between MS-BS. Unfortunately, wireless com-
munication systems are characterized by multipath propaga-
tion of the emitted signal [2], i.e. the signal received by the
BS may be composed of LOS and NLOS propagation paths
[8]. Moreover, emitted signals may propagate in a NLOS
regime only producing severe accuracy degradation on the

MS location when using the estimated TOA and/or AOA of
these signals. Therefore, a method to distinguish LOS paths
(if any) from the detected multiple paths at different BSs
becomes mandatory to improve location accuracy [9]. Because
the use of antenna arrays at the BS provides for the means
to perform joint heterogenous measurements of the multipath
signals, whose advantages have already been discussed, and
at the same time permit to reduce the number of BSs needed
for localization purposes, we adopt such an approach.

Several location techniques based on antenna arrays to
estimate the TOA and/or AOA have already been proposed
[8], [10]–[13]. Authors in [10] and the first two approaches in
[11] propose algorithms to localize a source from the AOA of
an emitting radio source. They consider the first arrival path or
cluster of paths as the LOS paths, respectively. Jativa and Vidal
in [12] propose a generalized likelihood ratio test to detect
the first arrival path in a lag window before the first RAKE
finger in CDMA based communication systems. The main dis-
advantage of these approaches is evident: NLOS propagation
of the emitted signals will severely bias the location estimates.
Reference [13] and the second two algorithms proposed in
[11] select the path with the highest power as the LOS one.
However, as pointed out by [12], most powerful paths do not
necessarily include the first arrival path in a NLOS regime.
Boujemaa and Marcos in [8] consider the problem of source
localization from joint estimation of AOA and angular spread
of the received signals. However, in order to achieve this, prior
knowledge about angular spreading is assumed.

Herein we present a new approach to localize the position of
an MS from joint measurements of AOA and TOA performed
at different BSs. The statistical approach we propose takesinto
account the presence of multipath propagation and possible
BSs reporting NLOS observations only. Collected data are pro-
cessed using the maximum likelihood (ML) method based on
an implementation of the expectation maximization algorithm
[14]. The resulting location algorithm is able to select theLOS
paths from the multiple paths arriving at the participatingBSs
and at the same time remove the measurements delivered by
the BSs being in NLOS regime.

For completeness of this paper we include the theory of joint
angle and delay estimation (JADE) [15], [16], which has been
selected as the parametric method for channel estimation. The
asymptotic behavior of JADE-MUSIC and JADE-ML based



estimators are also reviewed [15], [17]. However, other para-
metric channel models and algorithms of multipath parameter
estimation can be used (see [13], [18], [19] as alternativesand
the references therein). The analysis of the proposed approach
through simulated data, by using both JADE-MUSIC and
JADE-ML methods, is an original contribution of this paper.

The remainder of this paper is organized as follows. In
sections II, III and IV we show the basis of the adopted method
to estimate the space-time channel parameters. In section V, we
present the proposed approach and we derive the algorithm to
perform the localization of the source. Section VI presentsthe
simulation results and performance of the proposed algorithm.
Finally, in section VII, we present the conclusions.

II. D ISCRETECHANNEL MODEL

Following [16], joint estimation of AOA and TOA for a
multipath propagation channel consists in two steps: (i) esti-
mating the global channel response using learning sequences
and observed data, (ii) exploiting the expression of the channel
response as a function of AOAs and TOAs. As shown in [16],
the discrete channel model capturing the effects of the array
responsea(θ) in directionθ, delayτ , symbol waveformg(t)
and path fadingβ takes the form

H = A(θθθ)DGT (τττ ) (1)

whereA(θθθ) is anM ×Q matrix whose columns are theM -
element antenna-array responsea(θq) to theqth path arriving
from angleθq, with q ∈ {1, . . . , Q} andQ being the number of
the propagating paths.D is a diagonal matrix whose elements
are the path fadings.G(τττ ) is aLP×Q matrix whose columns
are theLP column-vectors

gT (τq) =
[

g(−τq) g(T
P
− τq) ... g(T (L− 1

P
) − τq)

]

which contain the samples of the waveform delayed ofτq. The
samples are taken at a rate ofP times the symbol rateT and it
is considered that the modulation waveform has finite support
and that the channel lengthL is also finite.

III. JADE M ETHOD

The strength of the JADE method is that of exploiting the
stationarity of the AOA and TOA over a successive numberS
of channel estimations of the form

H
(s)
est = H(s) + V

(s)
est

where V
(s)
est is the zero-mean complex Gaussian estimation

noise matrix at time slots. Applying the vect operator to the
above yields

y(s) = vect(H(s)
est) = U(θθθ,τττ )b(s) +v(s), wheres = 1, . . . , S

(2)
where U(θθθ,τττ ) =

[

u(θ1, τ1) ... u(θQ, τQ)
]

is the
MPL×Q space-time matrix, withu(θq, τq) = a(θq)⊗g(τq)
(where⊗ is the Kronecker product). Vectorbs contains the
Q fading coefficients for thes-th channel estimation and
v(s) = vect(V(s)

est).

IV. A LGORITHMS FORPARAMETER ESTIMATION AND

ASYMPTOTICAL BEHAVIOR OF THE ESTIMATORS

Among the great variety of algorithms we can find in the
literature to obtain the multipath parameters{θ, τ} from
equation (2), we will focus on ML and MUSIC [15]. Here,
we are also interested in the asymptotical distribution of their
estimates{θ̂, τ̂}. To simplify mathematical notations, we let
ηηη = [η1, η2]T = [θ, τ ]T proceeding the same for its estimate
η̂ηη, and we drop the dependence ofU on the parameterηηη.

A. JADE-ML Estimates

We assume that both the estimation noisev(s) and the path
fadingsb(s) are stationary Gaussian random processes. The
channel estimatesy(s) are complex Gaussian random vectors
with zero mean and covariance matrixR = E

[

y(s)y(s)H
]

=
URβUH + σ2I, whereRβ = E

[

b(s)b(s)H
]

. Thus by em-
ploying stochastic maximum likelihood techniques, it is well
know that this is a separable optimization problem [20] that
reduces to

η̂ηη = max
ηηη

{

−log | ΦR̂Φ +
1

MPL−Q
Tr(Φ⊥R̂)Φ⊥ |

}

(3)

whereR̂ = S−1
∑S

s=1 y(s)y(s)H is the estimated covariance
matrix, Φ = U(UHU)−1UH is an orthogonal projector
which projects any vector onto the space spanned by columns
of U, Φ⊥ = I − Φ is the orthogonal complement projector.

Now, applying classical limit theory it may be proved that,
asS goes to infinity,

√
S(Ψ̂−Ψ), whereΨ = [ηηη, σ2,Rβ], is

asymptotically a zero-mean Gaussian random vector, with co-
variance matrix given by the inverse of the Fisher Information
Matrix (FIM). FIM’s elements can be determined from [17]

fi,j = S Tr

(

R−1 ∂R

∂ψj

R−1 ∂R

∂ψi

)

(4)

whereψl is the l-th component ofΨ.

B. JADE-MUSIC Estimates

Using (2) and MUSIC approach,η̂ηη is given by theQ minima
of the cost function

J(ηηη) = uH(ηηη)Π̂u(ηηη) (5)

whereΠ̂ is the estimated orthogonal projector onto the noise
subspace obtained from the eigendecomposition ofR̂.

Applying the same principle as in the JADE-ML case, it
can be shown that, whenS goes to infinity,

√
S(η̂ηη − ηηη) is

asymptotically a zero-mean Gaussian random vector with a
(2 × 2) covariance matrixΓθ,τ whose entries are given by

γvw =
2
∑

j,j′=1

C
(−1)
vj C

(−1)
wj′ ·

MPL
∑

l,p,l′,p′=1

∂Kj

∂πlp

∂Kj′

∂πl′p′

cov(π̂lp, π̂l′p′) (6)



where v, w ∈ {1, 2}, C(−1)
ii′ denotes the four entries of the

inverse matrix of

C(ηηη) =









∂K1

∂η1

∂K1

∂η2

∂K2

∂η1

∂K2

∂η2









(7)

with

Ki △

=
∂J(ηηη)

∂ηi
(8)

and where the covariance between the elements ofΠ̂ is given
by

cov(π̂ij , π̂kl) = S−1
[

(ΠRΠ)il(R
−1
s RR−1

s )kj

+(R−1
s RR−1

s )il(ΠRΠ)kj

] (9)

whereΠ is the orthogonal projector onto the noise subspace
andRs = URβUH .

Obviously the limit covariance matrixΓθ,τ depends on the
unknown true parameter values,ηηη, Rβ andσ2. In practical sit-
uations, these values may be replaced by consistent estimates,
as for example MUSIC estimates forηηη and ML estimates for
Rβ andσ2 [21].

V. PROPOSEDAPPROACH

Let us assume that we collectQ joint angle-delay measure-
ments, corresponding to theQ paths seen for each of theI
participating BSs (for simplicity we consider the same number
of paths at each BS). Thus, according to (4) and (6), we further
assume that the distribution of the LOS measurements may be
approximated asymptotically by a normal distribution

η̂ηηLOS
i,q ∼ N (ηηηi,q, Γ̂

(i,q)
θ,τ ) (10)

with mean located at the “true” value of the parameters vector
ηηηi,q = [θi,q τi,q ]

T and covariance matrix given bŷΓ(i,q)
θ,τ ,

whereq denotes the index of theqth path at positioni, for
i ∈ {1, 2, . . . , I} and q ∈ {1, 2, . . . , Q}. Moreover, these
measurements are directly related to the cartesian coordinates
(x, y) of the MS and the cartesian coordinates(xi, yi) of the
i-th BS by the following expressions











tan (θi,q + αi) =
x− xi

y − yi

,

τi,q = c−1
√

(x− xi)2 + (y − yi)2
(11)

whereαi denotes the angle between the normal’s array at BS
i and the geographic north of the cartesian system and where
c denotes the speed of light. It is assumed here that both the
BS locations(xi, yi) andαi are known without error.

From the above, it follows that, in a cartesian coordinates
system, the asymptotical distribution of the MS position mea-
surementsX̂LOS

i,q may be approximated by

X̂LOS
i,q ∼ N (X,Γi,q) (12)

with

Γi,q = J

(

x, y

θi,q, τi,q

)

Γ
(i,q)
θ,τ J

(

x, y

θi,q, τi,q

)H

whereX = [x y]T is the “true” MS position vector andJ(·)
is the jacobian matrix allowing to go from(θ, τ) to (x, y)
domain.

On the other hand, NLOS measurements are considered
in this paper as outliers, from which no information about
the position of the MS can be obtained [22], [23]. Thus, for
simplicity, we assume that for these measurements all values
within a delimited regionR are equally likely, that is

X̂NLOS
i,q ∼ U(R) (13)

whereU(R) stands for the uniform distribution in the region
R. In practice this region may be delimited by the area
containing the BSs participating in the localization process.

A. Algorithm Derivation

For the i-th BS, we consider a sequenceXi,1:Q =
{Xi,1, . . . , Xi,Q} of Q MS position observations. Referring
to (12) and (13), we assume that these observations are
independent random variables distributed as

P(Xi,1:Q;X,γγγi) =

Q
∑

k=0

γi
kfk(Xi,1:Q;X)

whereγγγi = {γi
0, . . . , γ

i
Q} are the weighting coefficients for

the probability functionsfk(Xi,1:Q;X), at thei-th BS, given
by8<:QQ

l=1
υ(X̂NLOS

i,l ), for k = 0

φ(X̂LOS
i,k ; X,Γi,k)

QQ

l=1,l6=k
υ(X̂NLOS

i,l ), for k ∈ {1, . . . , Q}
(14)

whereυ(X̂NLOS
i,l ) and φ(X̂LOS

i,k ;X,Γi,k) stand respectively
for the pdfs of an uniform distribution and a Gaussian distri-
bution with mean vectorX and covariance matrixΓi,k.

Because direct maximization of the likelihood of the ob-
servations is intractable, we suggest to use the EM approach.
The EM algorithm [14] is a very popular tool for maximum-
likelihood (or maximum a posteriori) estimation. The common
strand to problems where this approach is applicable is a
notion of incomplete-data, which includes the conventional
sense of missing data but is much broader than that. The EM
algorithm demonstrates its strength in situations where some
hypothetical experiments yield (complete) data that are related
to the parameters more conveniently than the measurements
are.

According to the model introduced above, we may write the
joint probability density of the complete data as

P(Xi,1:Q, Zi;X,γγγ
i) =

Q
∑

k=0

γi
kfk(Xi,1:Q;X)1{Zi = k} (15)

whereZi is a discrete hidden random variable taking its values
from the set{0, 1, . . . , Q}.

The EM algorithm is an iterative algorithm to compute
maximum likelihood estimate. Each iteration may be formally



decomposed in two steps: an E-step and an M-step. The E-
step consists in evaluating the conditional expectation ofthe
complete data likelihood

Q(Θ, Θ̃) =

I
∑

i=1

E{log(P(Xi,1:Q, Zi;X,γγγ
i))|Xi,1:Q, Θ̃} (16)

where Θ = {X,γγγi} denotes, for alli, the full parameter
vector and where the expectation is taken w.r.t. the probability
distribution associated with the valuẽΘ of the parameter.
In the (generalized) M-step, we compute a new parameter
estimate,Θ, which is chosen in such a way thatQ(Θ, Θ̃) ≥
Q(Θ̃, Θ̃) with equality if and only ifΘ̃ is a stationary point
of the likelihood function. This two step process is repeated
until convergence is apparent. The essence of the EM is that
increasingQ(Θ, Θ̃) forces an increase of the incomplete data
likelihood.

Thus plugging (15) in (16) we obtain

Q(Θ, Θ̃) =

I
∑

i=1

Q
∑

k=0

log(γi
kfk(Xi,1:Q;X))gk(Xi,1:Q; X̃, γ̃γγi)

(17)
where

gk(Xi,1:Q; X̃, γ̃γγi) = γ̃i
k

fk(Xi,1:Q; X̃)

P(Xi,1:Q; X̃, γ̃γγi)

We then optimize (17) w.r.t. the coefficientsγi
k and the

source locationX , which gives

γi
k = gk(Xi,1:Q; X̃, γ̃γγi) (18)

X =

(

I
∑

i=1

Q
∑

k=1

γi
kΓ−1

i,k

)−1(
I
∑

i=1

Q
∑

k=1

γi
kΓ−1

i,kXi,k

)

(19)

In practice, in order to avoid keeping local solutions, the
best approach consists in initiating the algorithm for a number
of departing points for the position only. These initial guesses
may be taken from a grid of equidistant points situated over
the region of interest. The weighting coefficients may initially
be considered as equally likely, i.e.γi

k = 1/(Q+ 1), for all i
and allk. Hence, the MS position will be given by the most
likely estimated parameter vector among those estimated for
each point of the grid.

VI. SIMULATION RESULTS AND REMARKS

Two simulations were performed in a system which approx-
imates GSM: where the symbol period isT = 3.7µs, the
channel is estimated at each time slot via least square s using
26 training bits. The binary sequence is modulated by a raised-
cosine pulse with roll-off0.35, assumed to be zero outside the
interval [−3, 3]. The sampling rate is considered to be twice
the symbol rate. Data are collected over 26 time slots using
an uniform linear array (ULA) with two sensors.

The MS is considered to stay at(2, 2)Km, in a 2-D
cartesian system. The BSs equipped with an antenna array

are placed at(xi, yi) = {(1, 0.5), (3.5, 1.5), (2, 3.5)}Km. In
each position the number of paths (assumed to be known)
is Q = 3. The angles between the normal arrays and
the geographic north wereα = [45,−45,−179]. We also
consider that BS1 observes only NLOS paths, viewed as
possible sources picked out randomly from the regionR =
{(x, y) | x ∈ [0, 4000]m, y ∈ [0, 4000]m}. To the rest of the
BSs that observe the LOS path two more paths were added,
randomly chosen fromR. The path gains at each BS position
are | β1 |2= [0.8, 1, 0.9], | β2 |2= [0.9, 0.8, 1], | β3 |2=
[0.7, 0.8, 1], respectively. The signal-to-noise ratio (SNR) is
taken as the ratio of the variance of the strongest path to the
variance of the noiseσ2 [15].

In the simulations we mean by ML-based approach and
by MUSIC-based approach the proposed approach using the
limit covariance matrices and the angle-delay measurements
computed from JADE-ML and JADE-MUSIC models, respec-
tively.

A. Simulation I

In this simulation we used the AOA and TOA measurements
as well as the asymptotic covariance matrix, for the MS
position, given by JADE-ML model (ML-based approach).
The SNR was considered 10dB. Figure 1 depicts the top view
of two superimposed likelihood surfaces for two cases: 1)
“Initial Likelihood” is the likelihood surface as a function of
the MS position with equal weighting coefficientsγi

k = 0.25
for all i and for allk (as feeded to the algorithm in order to
start), and 2) “Final Likelihood” is the likelihood surfaceas a
function of the MS position using the weighting coefficients
computed by the proposed approach. It should be noticed that
both surfaces present two intersecting “beams”, due to the
contribution of the BSs 2 and 3 which see the LOS paths
among the detected total number of paths (compare it to figure
2 for the three BSs seeing the LOS paths). Second, the “initial
likelihood” surface presents a maximum (intersection of two
beams) severely biased from the true MS position (2,2)Km.
This is due to the multipath propagation and measurements
taken in a NLOS regime in BS 1. Better accuracy of the source
position estimation is obtained after the proposed algorithm
has correctly chosen the optimal weighting coefficients forthe
functionsfk(Xi,1:Q;X).

Estimated coefficients for this simulation at BS 1, 2, and
3 were respectivelyγγγ1 = {1, 0, 0, 0}, γγγ2 = {0, 0, 1, 0} and
γγγ3 = {0, 1, 0, 0}. Which means that BS 1 reported only NLOS
measurements, while at BSs 2 and 3, paths number 2 and 1,
respectively, were chosen as the LOS ones. The estimated MS
position is at(1993, 2002)m.

B. Simulation II

To assess the performance of the proposed algorithm, we
computed the variance and the bias per component on the
estimation of the MS position from a 500 Monte-Carlo runs.
We compute the variance as the sum ofx’s andy’s variances
and the bias per component as BIAS(x) = 1

500

∑500
t=1(x̂t −x).

Figures 3 and 4 show respectively the experimental standard



deviations and bias on the MS position estimation using
the proposed approach for different SNRs. As expected, the
proposed approach based on ML presents better performance
than MUSIC-based approach for low SNRs. As a matter of
fact, MUSIC-based approach does not give satisfactory results
in the range of 0-8dBs, because MUSIC algorithm is not able
to distinguish all the minima in its cost function. Therefore, the
associated asymptotic covariance matrices are bad conditioned
and no valid result is produced by the algorithm.

VII. C ONCLUSIONS

We proposed a new algorithm to locate a MS from joint
measurements of TOA and AOA of the emitted signals in a
multipath environment. We used an antenna array at different
BSs to perform such measurements. Collected data were
processed using the maximum likelihood method, based on
an implementation of the EM algorithm. We did not consider
the first arrival path or the path with the highest power as the
LOS path. Instead we proposed a statistical approach which
handles the presence of LOS paths and rejects the NLOS ones.
The resulting algorithm is able to locate the MS with at least
two BSs “seeing” multiple paths, comprising the LOS paths,
while at the same time is able to remove information delivered
by BSs being in NLOS regime only.
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[22] N. Castañeda, M. Charbit, and E. Moulines, “Source localization from
quantized time of arrival measurements,”International Conference on
Acoustics, Speech and Signal Processing, 2006., vol. 4, pp. IV933–
IV936, May 2006.

[23] F. Gustafsson and F. Gunnarsson, “Mobile Positioning Using Wireless
Networks; possibilities and fundamental limitations based on available
wireless network measurements,”IEEE Signal Processing Magazine, pp.
41–53, 2005.

Fig. 1. Top view of two superimposed likelihood surfaces: 1)
“Initial Likelihood” is the likelihood surface as a function of the
MS position with equal weighting coefficientsγi

k = 0.25, and 2)
“Final Likelihood” is the likelihood surface as a function of the MS
position using the weighting coefficients computed by the proposed
approach. The true MS position is at (2,2)Km
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Fig. 2. Top view of the likelihood surface as a function of the MS
position using the weighting coefficients computed by the proposed
approach. It is considered here that the three BSs see the LOSpaths
among the total number of detected paths. The true MS position is
at (2,2)Km
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Fig. 3. Experimental standard deviations of the MS position estima-
tion obtained from 500 Monte-Carlo runs.
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Fig. 4. Experimental BIAS for each cartesian component(x, y) of
the MS position estimation obtained from 500 Monte-Carlo runs.


	Introduction
	Discrete Channel Model
	JADE Method
	Algorithms for Parameter Estimation and asymptotical behavior of the estimators
	JADE-ML Estimates
	JADE-MUSIC Estimates

	Proposed Approach
	Algorithm Derivation

	Simulation Results and Remarks
	Simulation I
	Simulation II

	Conclusions
	References

