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ABSTRACT

We propose a new recursive algorithm for tracking ground moving
targets from multiple bearings-only measurements in clutter, col-
lected by a ground moving observer. The scenario representsa target
moving along a realistic road network with junctions, roadsbranch-
ing or crossing, where the probability of having measured the line-
of-sight bearing, among the multiple observed ones, is lessthan the
unity. This constrained motion estimation is performed using par-
ticle filters. Realistic simulations are presented to support our find-
ings.

1. INTRODUCTION

Tracking the kinematical parameters (i.e. position, velocity, etc.) of
a transmitting target from passive measurements of the line-of-sight
(LOS) bearings collected by a moving observer, is a classical prob-
lem in the field of nonlinear estimation [1,2]. Such a problem, com-
monly known as bearings-only tracking (BOT), has been the object
of several contributions over the last two decades [3–6] as it can be
applied in passive sonar tracking and aircraft surveillance by using
radar in a passive mode.

BOT is a challenging problem because of the nonlinearity of the
measurements, which even in the absence of noise, may conduce to
a non-observability of the state vector (it is not possible to estimate
the parameters of the target motion) if the observer does notmaneu-
ver [7]. In addition, such non-observability may produce unstable
behavior in some Cartesian coordinates based-algorithms [3]. BOT
is further complicated by presence of multiple spurious measure-
ments due to clutter [6], which may be originated from multipath
propagation from valid targets due to ground reflection, atmospheric
ducting or ionospheric reflection/refraction.

More stable algorithms have been reported in the literatureby
representing the BOT problem in alternative coordinate systems
[3, 8]. Aidala and Hammel proposed the utilization of the modi-
fied polar (MP) coordinates in order to stabilize extended Kalman
filters [3]. They noted that the MP coordinates representation of the
state vector automatically decouples observable and unobservable
components of the estimated state vector. In a more recent con-
tribution [8], Bréhard proposed the use of logarithmic polar (LP)
coordinates in order to render particle filter-based algorithms more
stable. However, the accuracy of the proposed algorithms isnot only
strongly dependent on the observer’s maneuver, but also on its ini-
tialization [9]. Besides, these algorithms have not been examined in
situations where the probability of target detection is less than the
unity (i.e. when LOS bearings are not always present).

The treatment of multiple simultaneous bearing measurements
at each sensor scan has been treated in [10] and [9]. Contribution
[10] proposes an algorithm based on the probabilistic data associa-

tion (PDA) technique, in conjunction with the maximum likelihood
(ML) approach, resulting in a batch procedure to estimate the state
vector of a constant velocity target. On the other hand, [9] presents
a batch-recursive algorithm for tracking maneuvering targets, which
first uses the batch procedure of [10] to better track initialization and
then, a recursive approach to provide track maintenance. Inorder
to improve observability, a common strand of these approaches is
the incorporation of signal’s amplitude information (AI) in the BOT
algorithm.

Due to the increasing development of digital maps containing
terrain information, such as roads, open fields, hills, tunnels, etc.
[11,12], recent contributions to the target tracking problem consider
this valuable source of information to improve accuracy (see [13–16]
as examples). In this paper, we adopt such an approach and adapt
it to the classical problem of bearings-only tracking. The scenario
represents two platforms (target and observer) moving in a surveil-
lance region constrained by known road networks. Moreover,we
also consider the presence of multiple spurious bearing measure-
ments at each sensor scan where, due to obstacles between platforms,
the probability of having measured the LOS bearing is less than the
unity. We use the modified polar coordinates system to represent
the state vector and we perform its estimation via particle filters.
The proposed algorithm results in a new recursive procedurethat
exploits road network information by incorporating it intothe target
state and measurement equations. This not only leads to a significant
improvement on the observability and accuracy in the estimation of
the target state vector, but also permits the use of a low complexity
target dynamic model to deal with target maneuvers. The analysis of
the proposed approach trough simulated data is an original contribu-
tion of this paper.

The remainder of this paper is organized as follows. In section 2,
we present the state and measurement equations to road constrained
motion. In section 3, we describe the particle filter implementation.
In section 4, simulation results are given. Finally, in section 5, we
give the conclusions.

2. ROAD CONSTRAINED TARGET DYNAMICS AND
MEASUREMENT MODELS

The basis of the BOT problem relies on estimating the trajectory of a
target, i.e. position and velocity from noise-corrupted bearing mea-
surements, performed by a single-maneuvering observer. Since, in
this paper, the target and the observer are supposed to evolve in a
surveillance region constrained by known road networks, wecon-
sider such an information asa prior to be integrated in the tracker
system.

Commonly, road network information is modeled as a large col-
lection of roads, each of which consists of a number of intercon-



nected segments. Each segment is assumed to be a straight line be-
tween two georeferenced nodes [17], [18].

Our approach incorporates such information at three different
stages: 1) constraining the direction of the velocity components of
the target state vector to be parallel to the direction of theroad seg-
ment in which the target is supposed to travel [19], 2) using the
concept ofdirectional process noise[16], that assumes for on-road
targets more uncertainty along a road segment than orthogonal to
it, and 3) considering the road network information as a pseudo-
measurement [14,15,17].

In the following, the stochastic target dynamic and the measure-
ment models are presented.

2.1. Constrained Dynamic Model Formulation

Knowing the event that the target is evolving on a specific road seg-
ments and considering that its relative velocity vector is parallel to
the direction ofs (eq. A.3), it can be proved, by combining the noise-
less approximate1 dynamic equations (eqs. A.1) and the Cartesian
to MP coordinates (and vice versa) transformation equations (eqs.
A.2), that the constrained relative dynamics of a constant velocity
target w.r.t. a maneuvering observer can be expressed as

χχχk+1 = fffs(χχχk) − ̺̺̺k + υυυk (1)

where
• χχχk is the relative discrete target state vector at timek in modified
polar coordinates defined as

χχχk =
�
θk θ̇k ξk rk

�
′

(2)

whereθk andrk stand, respectively, for the relative bearing angle
and range, with first order derivativesθ̇k and ṙk, and whereξk =
ṙk/rk is the normalized range rate,
• fffs(χχχk) is a vector function describing the noiseless relative dy-
namics of a target, w.r.t a non-maneuvering observer, whosevelocity
vector is parallel to the road segments and which is given by

fffs(χχχk) =

264 arctan (Ak/Bk)
Ek(msBk − Ak)
Ek(Bk +msAk)
rkCk

375 (3)

with

Ak = sin θk +msTDk

Bk = cos θk + TDk

C2
k = A2

k +B2
k

Dk = ξk cos θk − θ̇k sin θk

Ek = Dk/C
2
k

wherems stands for the slope of the road segments andT represents
the sampling time,
• ̺̺̺k is a vector function accounting for a constant observer acceler-
ation and given by

̺̺̺k =
T

rkC2
k

264 0
γyBk − γxAk
γyAk + γxBk

0

375 (4)

1In order to make it exact we must consider the appropriate displacement
terms for the position resulting from an observer acceleration. However, be-
cause the time between samples is small relative to the time constants of the
dynamics, these terms have been neglected as in [20].

where(γx, γy) stand, respectively, for the known observer accelera-
tion components inx andy directions, and

• υυυk is the process noise used to model unpredictable target acceler-
ations, assumed to be zero-mean, white and Gaussian whose covari-
ance matrix is given by

Qk,s = Jk

�
Q
p
k,s 0

0 Qv
k,s

�
J
T
k (5)

where Jk stands for the Jacobian matrix containing the partial
derivatives ofχχχk w.r.t. the position and velocity components and
whereQ

p

s,k andQv
s,k stand, respectively, for the noise covariance

matrices for the position and velocity components built using thedi-
rectional process noise[16]. Therefore, consideringσ2

a andσ2
o as the

(generic) variances along and orthogonal to the road segment s (for
the position or the velocity components), subject to the constraint
σ2
a >> σ2

o , the expression ofQp

s,k or Qv
s,k in Cartesian coordinates

is given by

Q
p or v
k,s =

�
− cosαs sinαs
sinαs cosαs

��
σ2
o 0
0 σ2

a

� �
− cosαs sinαs
sinαs cosαs

�
whereαs is the angle between the geographic north and the road
segments [16].

2.2. Measurement Equations

Traditional BOT scheme considers a single bearing measurement
at each sensor scan. However, in practical situations signals com-
ing from the target may propagate via multiple paths due to reflec-
tion/refraction before reaching the observer. Furthermore, it may
happen that in presence of obstacles between target and observer all
measured bearings belong to non-line-of-sight paths only.Hence,
measurement models which take into account such impairments are
necessary to track the target properly.

2.2.1. Bearing Measurements

TheMk bearing measurements available at timek are disposed in
vectorz1,k, whose elements are given by

zk,j =

�
θk + w1,k if ψk = j,
uk if ψk 6= j or ψk = 0

(6)

where the following assumptions take place:

• j ∈ {1, . . . ,Mk} denotes the index element in vectorz1,k,

• w1,k is a zero-mean independent Gaussian noise with varianceσ2
θ ,

• uk is a random variable accounting for the bearings due to clutter.
For simplicity, we assume that for a bearing due to clutter all values
in the intervalI = [0, 2π] are equally likely. Meaning thatuk is
distributed as an uniform random variable inI [10],

• ψk is a{0, 1, . . . ,Mk}-valued random variable with probability

p(ψk = i) =

8<: 1 − PD if i = 0

PD/Mk if i 6= 0
(7)

wherePD is the prior probability of target detection. It should be
noticed that forψk 6= 0, ψk denotes the index of the LOS bearing
in vectorz1,k, and forψk = 0, it represents the absence of LOS
bearing inz1,k.



2.2.2. Pseudo-Measurement

An alternative approach to incorporate road network information is
through the use of pseudo-measurements [14] or fictitious measure-
ments [15, 17], which represent “synthetic” measurements usually
created to constrain the target dynamics to the road network. In this
paper we use such an approach for three purposes;i) to define the
road segment in which the target is evolving,ii) to handle target
transitions between road segments (e.i. when the target approaches a
node) andiii) to penalize the target evolution far away from the road
network. Thus, let define

z2,k = h(pxk
, s) +w2,k (8)

as an independent pseudo-measurement of the minimum Euclidian
distance between the target’s positionpxk

at timek and the nearest
road segments [15,17],h(·) denotes the non linear function provid-
ing the distance, andω2,k is the measurement noise, assumed to be
zero-mean white Gaussian process with varianceσ2

d.
In order to satisfy purposei) we consider that the dynamics of

the target state is constrained to the road segments, if s is the nearest
road segment to the current position of the target. To avoid computa-
tion burden in the search of the nearest road, we compute sucha dis-
tance for a reduced number of road segments laying within a bound-
ing box which guaranties that no road laying outside of it is closest to
the target [17]. It should be noticed that such a search also satisfies
ii) . Purposeiii) is satisfied by assuming the pseudo-measurements
as normally distributed with zero-mean (on-road condition).

3. PARTICLE FILTER IMPLEMENTATION

Consider the system described by equations (1), (6) and (8) and
let denote the set of available observations at timek by Zk =
{z0, . . . , zk}, with zk = [ zT1,k z2,k ]T . From a Bayesian per-
spective, the tracking problem is to recursively calculatesome de-
gree of belief in the stateχχχk at timek, taking different values, given
the dataZk up to timek. Hence, it is required to construct the poste-
rior densityp(χχχk|Zk). In this procedure, it is assumed that the initial
densityp(χχχ0) is available.

One simple method to approximate the posterior density is by
means of particle filters [21]. Thus, starting with a weighted set
of samples (particles){χχχik−1, ω

i
k−1}Ni=1 approximately distributed

according top(χχχk−1|Zk−1), new samples are generated from a suit-
able proposal distribution, which may depend on the previous state
and the new measurements, however, for simplicity it is often cho-
sen to be the prior, i.e.χχχik ∼ p(χχχk|χχχk−1). In order to maintain a
consistent sample, the new importance weights are set to

ωik ∝ ωik−1p(Zk|χχχik) (9)

where
PN

i=1
ωik = 1. Thus, the new particle set{χχχik, ωik}Ni=1 is then

approximately distributed according top(χχχk|Zk) and, therefore, an
estimate of the state can be obtained using, for instance, the mini-
mum mean square (MMS) [15]. It should be noticed that in orderto
consider multiple bearing measurements and pseudo-measurements,
the likelihood of the observationsp(Zk|χχχik) may be written as

p(Zk|χχχik) = p(zi2,k|χχχik)
MkX
ψk=0

p(z1,k|χχχik, ψk)p(ψk) (10)

wherezi2,k is the minimum Euclidian distance from particlei to the
nearest road segment, eq. (8).

It is well known that particle filters suffer fromdegeneracy prob-
lem, where after a few iterations all but one particle will have negli-
gible weight [21]. To overcome this problem the concept ofresam-
pling is used. Therefore, we takeN samples with replacement from
the set{χχχik}Ni=1 if

Neff =
1P

i
(ωik)

2
< Nthr (11)

where the probability to take samplei is ωik and whereNeff is the
effective number of samples andNthr = 2/3N is a threshold [15].

4. SIMULATION RESULTS

The scenario used to demonstrate the performance of the proposed
algorithm is depicted in figure 1. The road network consists in
twenty six roads (dashed lines) crossing at different nodes(solid
triangles labeled by its node number). The target initiallysituated
at node 11 maintains a constant velocity course,vT = 19 m/s,
changing its direction at nodes{16, 15, 2, 3, 4, 18} and describing
the solid line trajectory at the bottom of figure 1. The observer de-
parts from node 12 with a constant velocity ofvo = 15 m/s and
undergoes a constant acceleration ofao = 0.5 m/s2 in the interval
0.5-1.0 minutes. Afterwards, it maintains the initial constant velocity
changing its course at nodes{13, 9, 10, 5} and describing the doted
line trajectory at the top of figure 1. Three bearing measurements
are received at each sensor scanT = 0.5 s, for an approximated
observation period of 6 minutes. When present, the LOS bearings
are measured with an accuracy ofσθ = 0.5 deg.

The following nominal filter parameters were used in the simu-
lations: the directional process noise standard deviations (STDs) for
the position and velocity components orthogonal to the roadwere
respectively set toσo,p = 14 m andσo,v = 3 m/s. The correspond-
ing STDs for the components along the direction of the road were
σa,p =

√
10σo,p andσa,v =

√
3σo,v. The pseudo-measurement

STD wasσd = 4.5 m and the particle filter usedN = 1000 parti-
cles, carrying out resampling ifNeff < Nthr, with Nthr = 2/3N .
Initial particles were uniformly spread over the whole roadnetwork
and its velocity components were set to zero.

The estimation performance of the proposed algorithm is pro-
vided in terms of the root-mean-square (RMS) position errors using
100MC trials. The RMS position error at timek is computed ac-
cording to

RMSk =

vuut 1

n

nX
i=1

(x̂ik − xik)
2 + (ŷik − yik)

2 (12)

where(xik, y
i
k) and (x̂ik, ŷ

i
k) denote the true and estimated target

positions at timek at theith MC trial.
Figure 2 shows the RMS error curves corresponding to three

different target detection probabilitiesPD = {1.0, 0.9, 0.8}. As ex-
pected, low target detection probabilities lead to a degradation of the
accuracy of the target tracking. However, in spite of multiple si-
multaneous bearing measurements and a target detection probability
of less than the unity, the proposed algorithm exhibits a comparable
performance to the algorithms studied in [22] for maneuvering tar-
gets in a typical BOT problem (RMS errors between 0.20-1.04kms).
Moreover, our approach may not require observer maneuver because
the road network provides enough information to improve range ob-
servability.

It should be noticed that, for a fixed target detection probabil-
ity, the highest RMS position errors are observed at the beginning



of the target tracking process (0-0.2 minutes) and when the target
travels through road segmentsN2N3, N3N4 andN4N18 (3.59-5.97
minutes). The former case is due to the initialization process, where
particles, initially spread uniformly over the whole road network, do
not approximate well the posterior density. The latter case, is related
to: 1) the number of connected roads at nodes N2, N3 and N4, which
produce particles to spread over the connected ones increasing un-
certainty about the road in which the target is actually evolving, and
2) the sudden turns performed by the target at nodes N2, N3 andN4,
which are not described by the constant velocity model.

Figure 3 depicts the average over the trajectories followedby the
target for 100MC trials. As we can see, even for a target detection
probability of 0.8, in most of the cases the estimated trajectory is the
right one. This can be deduced by noticing that the average trajectory
resembles rather the true one than any other composed trajectory
in the road network. Major differences can be observed at thefirst
segment and in the last three segments, where the target is sometimes
detected in a neighboring road of the road on which the targetis
actually evolving.

5. CONCLUSIONS

We proposed a new recursive bearings-only tracking algorithm for
ground moving targets constrained to roads, able to handle multi-
ple bearing measurements in clutter. Observer maneuver maynot
be a requirement because the information provided by the road net-
work improves observability of the state vector. Simulation results
showed an improvement on the accuracy of target tracking using low
complexity target evolution models, even for a probabilityof target
detection less than the unity.
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A. APPENDIX

A.1. Relative Noiseless Target Dynamics

The relative noiseless target dynamics at timek + 1 w.r.t. a maneu-
vering observer is given by

Xk+1 = Xt
k −Xo

k = FXk − uk

whereXk =
�
xk yk ẋk ẏk

�
′

stands for the relative target
state vector at timek, with relative position and velocity compo-
nents given by(xk, yk) and(ẋk, ẏk), respectively. The target and
observer state vectors defined similarly toXk, are denoted here as
Xt
k andXo

k respectively,uk accounts for the effects of observer ac-
celerations, and the transition matrixF is defined as

F =

2641 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

375



A.2. MP ⇔ Cartesian Transformation Equations

MP to Cartesian Cartesian to MP

xk = rk cos θk θk = arctan

�
yk
xk

�
yk = rk sin θk θ̇k =

ẏkxk − ẋkyk
x2
k + y2

k

ẋk = ξkrk cos θk − θ̇krk sin θk ξk =
ẋkxk + ẏkyk
x2
k + y2

k

ẏk = ξkrk sin θk + θ̇krk cos θk rk =
p
x2
k + y2

k

A.3. Constraint on the Direction of the Velocity Vector

The velocity vector of the target evolving on a road segments is
parallel to the direction of that specific road, thus

〈(ẋk, ẏk)′ | ~ns〉 = 0

where,~ns is the orthogonal vector to the segments.
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