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ABSTRACT

We propose a new recursive algorithm for tracking ground ingpv
targets from multiple bearings-only measurements in etuttol-
lected by a ground moving observer. The scenario repreaeatget
moving along a realistic road network with junctions, roadsnch-
ing or crossing, where the probability of having measurexlitine-
of-sight bearing, among the multiple observed ones, istless the
unity. This constrained motion estimation is performechgspar-
ticle filters. Realistic simulations are presented to suppor find-
ings.

1. INTRODUCTION

Tracking the kinematical parameters (i.e. position, vigypetc.) of
a transmitting target from passive measurements of theolirsght
(LOS) bearings collected by a moving observer, is a clakpicd-
lem in the field of nonlinear estimation [1, 2]. Such a probleom-
monly known as bearings-only tracking (BOT), has been theabb
of several contributions over the last two decades [3-6] eari be
applied in passive sonar tracking and aircraft surveilialog using
radar in a passive mode.

BOT is a challenging problem because of the nonlinearithef t

measurements, which even in the absence of noise, may @italuc

a non-observability of the state vector (it is not possiblestimate
the parameters of the target motion) if the observer doemaoeu-
ver [7]. In addition, such non-observability may producestable
behavior in some Cartesian coordinates based-algoritBm80T

is further complicated by presence of multiple spurious suezx
ments due to clutter [6], which may be originated from muaitip
propagation from valid targets due to ground reflection casipheric
ducting or ionospheric reflection/refraction.

More stable algorithms have been reported in the literabyre
representing the BOT problem in alternative coordinatetesys
[3,8]. Aidala and Hammel proposed the utilization of the nod
fied polar (MP) coordinates in order to stabilize extendediiea
filters [3]. They noted that the MP coordinates represestati the
state vector automatically decouples observable and enadide
components of the estimated state vector.
tribution [8], Bréhard proposed the use of logarithmicguolLP)
coordinates in order to render particle filter-based atgors more
stable. However, the accuracy of the proposed algorithmatienly
strongly dependent on the observer's maneuver, but alstsonid
tialization [9]. Besides, these algorithms have not beeméred in
situations where the probability of target detection isl#sn the
unity (i.e. when LOS bearings are not always present).

In a more recent co

tion (PDA) technique, in conjunction with the maximum likelod
(ML) approach, resulting in a batch procedure to estimatestate
vector of a constant velocity target. On the other hand, [85ents
a batch-recursive algorithm for tracking maneuveringasgwhich
first uses the batch procedure of [10] to better track inz#ion and
then, a recursive approach to provide track maintenancerder
to improve observability, a common strand of these appead
the incorporation of signal’'s amplitude information (A the BOT
algorithm.

Due to the increasing development of digital maps contginin
terrain information, such as roads, open fields, hills, @mnetc.
[11,12], recent contributions to the target tracking peoblconsider
this valuable source of information to improve accuracy (48-16]
as examples). In this paper, we adopt such an approach apt ada
it to the classical problem of bearings-only tracking. Thermrio
represents two platforms (target and observer) moving umees-
lance region constrained by known road networks. Moreower,
also consider the presence of multiple spurious bearingsanea
ments at each sensor scan where, due to obstacles betwdempa
the probability of having measured the LOS bearing is lean the
unity. We use the modified polar coordinates system to reptes
the state vector and we perform its estimation via partidters.
The proposed algorithm results in a new recursive procethae
exploits road network information by incorporating it iritee target
state and measurement equations. This not only leads toificagt
improvement on the observability and accuracy in the esiomaf
the target state vector, but also permits the use of a low ity
target dynamic model to deal with target maneuvers. Theyaisabf
the proposed approach trough simulated data is an origomatibu-
tion of this paper.

The remainder of this paper is organized as follows. In ea@;j
we present the state and measurement equations to roadatoedt
motion. In section 3, we describe the particle filter impletagon.
In section 4, simulation results are given. Finally, in sgth, we
give the conclusions.

2. ROAD CONSTRAINED TARGET DYNAMICSAND
MEASUREMENT MODELS

The basis of the BOT problem relies on estimating the trajgaif a
target, i.e. position and velocity from noise-corruptedri®y mea-
surements, performed by a single-maneuvering observaceSin
this paper, the target and the observer are supposed toeevoby
surveillance region constrained by known road networks core
sider such an information asprior to be integrated in the tracker

The treatment of multiple simultaneous bearing measurgsnmensystem.

at each sensor scan has been treated in [10] and [9]. Cadidribu
[10] proposes an algorithm based on the probabilistic dssaca-

Commonly, road network information is modeled as a large col
lection of roads, each of which consists of a number of imterc



nected segments. Each segment is assumed to be a straggbédin
tween two georeferenced nodes [17], [18].

Our approach incorporates such information at three differ
stages: 1) constraining the direction of the velocity conguas of
the target state vector to be parallel to the direction ofrtizel seg-
ment in which the target is supposed to travel [19], 2) usimg t
concept ofdirectional process noisfl6], that assumes for on-road
targets more uncertainty along a road segment than ortlabgon
it, and 3) considering the road network information as a geeu
measurement [14,15,17].

In the following, the stochastic target dynamic and the mesas
ment models are presented.

2.1. Constrained Dynamic Model Formulation

Knowing the event that the target is evolving on a specifid reeg-
ments and considering that its relative velocity vector is palaid
the direction ofs (eg. A.3), it can be proved, by combining the noise-

less approximafedynamic equations (egs. A.1) and the Cartesian

to MP coordinates (and vice versa) transformation equat{eqs.
A.2), that the constrained relative dynamics of a constafaoity
target w.r.t. a maneuvering observer can be expressed as

Xit+1 = fs(Xr) — 0k + vk 1

where

e X1 iS the relative discrete target state vector at thria modified
polar coordinates defined as

Xt = [ Ok 0 & Tk ]/ 2

whered,, andr; stand, respectively, for the relative bearing angle

and range, with first order derivativés andrx, and wheref, =
7% /71 1S the normalized range rate,

e f.(xx) is a vector function describing the noiseless relative dy-

namics of a target, w.r.t a non-maneuvering observer, whelseity
vector is parallel to the road segmerdind which is given by

arctan (Ar/Br)
Ey(msBr — Ag)

Fs(xx) = Ex(By + msAy) (3)
rCk
with

Ar = sinlp +msT Dy

B = cosOi + TDyg

C; = Al+B}

Dk = fk COS ek —ék sin&k

Er, = Dk/C,f

wherem  stands for the slope of the road segmeandT represents
the sampling time,
e o is a vector function accounting for a constant observerlacce

ation and given by
0
T ’yyBk — ’ywAk
= 4
o reC% | YAk + V2B “)
0

1in order to make it exact we must consider the appropriagatisment
terms for the position resulting from an observer accatamatHowever, be-
cause the time between samples is small relative to the timstants of the
dynamics, these terms have been neglected as in [20].

where(vz, vy ) stand, respectively, for the known observer accelera-
tion components i andy directions, and

e vy, is the process noise used to model unpredictable targdeacce
ations, assumed to be zero-mean, white and Gaussian whas® co
ance matrix is given by

0

k,s

Qk,s =Jx Q(I)Z:’S (5)

E

where J stands for the Jacobian matrix containing the partial
derivatives ofyx w.r.t. the position and velocity components and
whereQ? , and Q¢ , stand, respectively, for the noise covariance
matrices for the position and velocity components builhgghedi-
rectional process noigd 6]. Therefore, considering? ando? as the
(generic) variances along and orthogonal to the road segs(@or

the position or the velocity components), subject to thestaimt

o2 >> o2, the expression aB? |, or Qg , in Cartesian coordinates

sin o

is given by
o2 0
COS (s 0 03

where ;s is the angle between the geographic north and the road
segment [16].

sin ovg
COS (s

— COS (vg
sin g

— COS (vg
sin s

porv __
k,s

2.2. Measurement Equations

Traditional BOT scheme considers a single bearing measmem
at each sensor scan. However, in practical situations Isigmen-
ing from the target may propagate via multiple paths due flece
tion/refraction before reaching the observer. Furtheendrmay
happen that in presence of obstacles between target andebat
measured bearings belong to non-line-of-sight paths oHlgnce,
measurement models which take into account such impaimazat
necessary to track the target properly.

2.2.1. Bearing Measurements

The M;. bearing measurements available at tilnare disposed in
vectorz; i, whose elements are given by

Z’W‘:{ if g #j or =0

where the following assumptions take place:
e jc{l,..., My} denotes the index element in vectary,
e w1 ;IS a zero-mean independent Gaussian noise with var'taj'gce

e vy, is a random variable accounting for the bearings due toezlutt
For simplicity, we assume that for a bearing due to cluttevallies
in the intervalZ = [0, 2x] are equally likely. Meaning thaiy, is
distributed as an uniform random variabl€eZif10],

O + w1k

up,

(6)

e ¢ isa{0,1,..., M}-valued random variable with probability
‘ 1—pPp if i=0

p(Yr =1) = . 7
PD/Mk if 140

where Pp is the prior probability of target detection. It should be
noticed that for), # 0, ¥ denotes the index of the LOS bearing
in vectorz; i, and fory, = 0, it represents the absence of LOS
bearing inz; .



2.2.2. Pseudo-Measurement

An alternative approach to incorporate road network inftion is
through the use of pseudo-measurements [14] or fictitiowssore-
ments [15, 17], which represent “synthetic” measuremestsily
created to constrain the target dynamics to the road netviottkis
paper we use such an approach for three purposés;define the
road segment in which the target is evolving, to handle target
transitions between road segments (e.i. when the targetagies a

Itis well known that particle filters suffer fromlegeneracy prob-
lem, where after a few iterations all but one particle will haegii
gible weight [21]. To overcome this problem the conceptesfam-
pling is used. Therefore, we také samples with replacement from
the set{x: Y, if

1
Neff = =35 < N (12)
eff > (wi)? thr

node) andii) to penalize the target evolution far away from the roadwhere the probability to take samplés wj, and whereNgg is the

network. Thus, let define

®)

zok = h(px,, S) + wa

as an independent pseudo-measurement of the minimum Euclid

distance between the target's positjoy), at timek and the nearest
road segment [15,17],h(-) denotes the non linear function provid-

ing the distance, and- ; is the measurement noise, assumed to b

zero-mean white Gaussian process with variarfe
In order to satisfy purpos@ we consider that the dynamics of

the target state is constrained to the road segmehs is the nearest
road segment to the current position of the target. To avandprita-
tion burden in the search of the nearest road, we computessdish
tance for a reduced number of road segments laying withiruadbo
ing box which guaranties that no road laying outside of itasest to
the target [17]. It should be noticed that such a search alsfies

effective number of samples aidy, = 2/3N is a threshold [15].

4. SIMULATION RESULTS

The scenario used to demonstrate the performance of thegedp
algorithm is depicted in figure 1. The road network consists i
twenty six roads (dashed lines) crossing at different nqdetd
etriangles labeled by its node number). The target initialtyated
at node 11 maintains a constant velocity course, = 19 m/s,
changing its direction at nod€d6, 15, 2, 3,4, 18} and describing
the solid line trajectory at the bottom of figure 1. The obsemle-
parts from node 12 with a constant velocity @f = 15 m/s and
undergoes a constant acceleratiorugf= 0.5 m/s’ in the interval
0.5-1.0 minutes. Afterwards, it maintains the initial ctzmg velocity
changing its course at nodé$3, 9, 10, 5} and describing the doted
line trajectory at the top of figure 1. Three bearing measergm

ii). Purposeii) is satisfied by assuming the pseudo-measurementgre received at each sensor sdan= 0.5 s, for an approximated

as normally distributed with zero-mean (on-road condjtion

3. PARTICLEFILTERIMPLEMENTATION

observation period of 6 minutes. When present, the LOS hgsri
are measured with an accuracyoef = 0.5 deg.

The following nominal filter parameters were used in the simu
lations: the directional process noise standard devigi{si Ds) for

Consider the system described by equations (1), (6) andr@) a the position and velocity components orthogonal to the etk

let denote the set of available observations at tinby Z,
{zo,...,2ze}, Withz, = [ 2], 22, |". From a Bayesian per-
spective, the tracking problem is to recursively calcukdee de-
gree of belief in the statg,. at timek, taking different values, given

respectively set te,, , = 14 m ando, ., = 3 m/s. The correspond-
ing STDs for the components along the direction of the roatewe
Gap = V100, , ando,, = V/30,,,. The pseudo-measurement
STD wasoy = 4.5 m and the particle filter usety = 1000 parti-

the dataZ;, up to timek. Hence, itis required to construct the poste- cles, carrying out resampling Wef < Ny, With Nyy = 2/3N.
rior densityp(xx|Zx). In this procedure, itis assumed that the initial Initial particles were uniformly spread over the whole roedwork

densityp(xo) is available.

and its velocity components were set to zero.

One simple method to approximate the posterior density is by = The estimation performance of the proposed algorithm is pro

means of particle filters [21]. Thus, starting with a weightet
of samples (particlesxi_1,wi_ 1}~ approximately distributed

vided in terms of the root-mean-square (RMS) position srusing
100MC trials. The RMS position error at timieis computed ac-

according te(xx—1|Zx—1), new samples are generated from a suit-cording to

able proposal distribution, which may depend on the previtate
and the new measurements, however, for simplicity it isrottieo-

sen to be the prior, i.exi ~ p(xx|xx—1). In order to maintain a
consistent sample, the new importance weights are set to

9)

where}" Y | wi = 1. Thus, the new particle sk}, w} }i, is then
approximately distributed according tdx|Z) and, therefore, an
estimate of the state can be obtained using, for instaneemthi-
mum mean square (MMS) [15]. It should be noticed that in otder
consider multiple bearing measurements and pseudo-nezasats,
the likelihood of the observations{Z |x}) may be written as

Wi < wi1P(Zi|Xk)

My,

P(Zelxi) =p(zailxi) Y p(z1klxi, bx)p(¥e)  (10)
P =0

Wherezé,k is the minimum Euclidian distance from partialéo the
nearest road segment, eq. (8).

n

G

=1

RMS;, = — )2+ (9% —yl)? (12)

where (z%,y;) and (2%, 7:) denote the true and estimated target
positions at time: at theith MC trial.

Figure 2 shows the RMS error curves corresponding to three
different target detection probabilitigd, = {1.0,0.9, 0.8}. As ex-
pected, low target detection probabilities lead to a degjrad of the
accuracy of the target tracking. However, in spite of mistipi-
multaneous bearing measurements and a target detectioaljility
of less than the unity, the proposed algorithm exhibits apzmable
performance to the algorithms studied in [22] for manewngetar-
gets in a typical BOT problem (RMS errors between 0.20-1n@g)k
Moreover, our approach may not require observer maneuvaulse
the road network provides enough information to improveyeaob-
servability.

It should be noticed that, for a fixed target detection prdbab
ity, the highest RMS position errors are observed at therinéggy



of the target tracking process (0-0.2 minutes) and whenatget
travels through road segmei®N3, N3N4 andN4N18 (3.59-5.97
minutes). The former case is due to the initialization psscevhere
particles, initially spread uniformly over the whole roagtwork, do
not approximate well the posterior density. The latter caseslated
to: 1) the number of connected roads at nodes N2, N3 and N4hwhi
produce particles to spread over the connected ones iimtgeas-
certainty about the road in which the target is actually @wng), and

2) the sudden turns performed by the target at nodes N2, NBland
which are not described by the constant velocity model.

Figure 3 depicts the average over the trajectories follduyetthe
target for 100MC trials. As we can see, even for a target tietec
probability of 0.8, in most of the cases the estimated ttajgds the
right one. This can be deduced by noticing that the averaggctory
resembles rather the true one than any other composedttrgjec
in the road network. Major differences can be observed afitsie
segment and in the last three segments, where the targetéistes
detected in a neighboring road of the road on which the tasyet
actually evolving.

5. CONCLUSIONS

We proposed a new recursive bearings-only tracking alyoritor
ground moving targets constrained to roads, able to handld-m
ple bearing measurements in clutter. Observer maneuvernoiay
be a requirement because the information provided by the me&
work improves observability of the state vector. Simulatiesults
showed an improvement on the accuracy of target trackingyusiv
complexity target evolution models, even for a probabitifytarget
detection less than the unity.
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A. APPENDIX

A.l. Relative Noiseless Target Dynamics

The relative noiseless target dynamics at time 1 w.r.t. a maneu-
vering observer is given by

Xps1 = Xip — X{ =FXp —

where X, = [zx wyx @1 9] stands for the relative target

state vector at timé;, with relative position and velocity compo-

nents given by(zx, yx) and(zx, yx ), respectively. The target and

observer state vectors defined similarlyXq, are denoted here as
X} and Xy respectivelyu,. accounts for the effects of observer ac-
celerations, and the transition matiixis defined as

1 0 T

— o No

0 1 0
0 0 1
0 0 O



A.2. MP < Cartesian Transformation Equations

MP to Cartesian

Cartesian to MP

T = 75 cos O

Yk = Tk sin ek

0, = arctan <y—k>
Tk

b, = YTk — TrYk

R
Tk + Yy
. z7 + i
gk = Eprpsin O + Opricos Oy | ri = /2 + 4}

:bk = fkrk COS ek — eka sin 9k fk =

A.3. Constraint on the Direction of the Velocity Vector

The velocity vector of the target evolving on a road segmeigt
parallel to the direction of that specific road, thus

((&r,9x) | 7is) =0

where,7i; is the orthogonal vector to the segment
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