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Abstract – We propose a batch-recursive algorithm for tracking ground moving targets on constrained paths using bearings-
only measurements in clutter collected by a ground moving observer. The proposed algorithm, in its batch stage, uses a fast and
low-complexity procedure based on the maximum-likelihood method to obtain a raw estimate of the line-of-sight direction. Once
this is achieved, such an estimate is employed at the recursive stage to initialize a regularized particle filter, which provides track
maintenance by recursively estimating a modified polar coordinate representation of the state vector. The scenario represents
a target moving along a realistic road network with junctions, roads branching or crossing, where the probability of having
measured the line-of-sight bearing, among the multiple observed ones, is less than the unity. Realistic simulations are presented
to support our findings.

1 Introduction

The problem of bearings-only tracking (BOT) is to track
the kinematical parameters (i.e. position, velocity, etc.)
of a transmitting target from passive measurements of the
line-of-sight (LOS) bearings. The use of a single observer
requires an observer maneuver in order to estimate the
target range (see [1] for further reference). In practical
situations, BOT is further complicated by the presence of
spurious measurements due to clutter. Moreover, obsta-
cles between target and observer may produce a tempo-
rally disappearance of the LOS bearing. When tracking
ground moving targets, complex target motion models are
usually used in order to handle its high capability to per-
form sudden maneuvers [2].

Due to the increasing development of digital maps con-
taining terrain information, such as roads, open fields,
hills, tunnels, etc., recent contributions to the target
tracking problem consider this valuable source of infor-
mation to improve accuracy (see [2] as example). In
this paper we incorporate such information in a batch-
recursive algorithm for tracking a ground moving target
using bearings-only measurements in clutter. The sce-
nario represents a target and an observer moving along
a realistic road network with junctions, roads branching
and crossing, where the probability of having measured
the LOS bearing, among the multiple observed ones, is
less than the unity. We use the maximum-likelihood (ML)
method at the algorithm’s batch stage to obtain an ini-
tial estimate of the LOS direction. At the recursive stage,
such an estimate is used to propose initial particles in the
regularized particle filter (RPF) which tracks the target.
Our approach differs from [3], because i) we use the modi-
fied polar (MP) coordinates system to represent the state
vector, ii) the batch procedure is not intended to obtain
an initial estimate of the full state vector, but an estimate
of the LOS direction only, which results in a faster and
low-complexity procedure to initialize the recursive stage,

iii) we incorporate road network information to improve
accuracy and observability in the estimation of the state
vector, which also permits the use of a simpler target mo-
tion model, and iv) target tracking is performed using the
regularized particle filter.

The organization of the paper is as follows. In section 2,
we present the state and measurement equations to road
constrained motion. In section 3 we describe the RPF
implementation. Section 4 presents the batch procedure to
provide track initialization. In section 5 simulation results
are given. Finally, in section 6 we give the conclusions.

2 Target State Equations

Commonly, road network information is modeled as a
large collection of roads, each of which consists of a num-
ber of interconnected segments. Each segment is assumed
to be a straight line between two georeferenced nodes.
Our approach incorporates such information at three dif-
ferent stages: i) constraining the direction of the velocity
components of the target state vector [4], ii) using the
concept of directional process noise [2], that assumes for
on-road targets more uncertainty along a road segment
than orthogonal to it, and iii) considering the road net-
work information as a pseudo-measurement [5].

2.1 Constrained Dynamic Model

Knowing the event that the target is evolving on a specific
road segment s and considering that its relative velocity
vector is parallel to the direction of s [4], it can be proved,
by combining the noiseless approximate dynamic equa-
tions [6] and the cartesian to MP coordinates (and vice
versa) transformation equations [1], that the constrained
relative dynamics of a constant velocity target w.r.t. a
maneuvering observer can be expressed as

χχχk+1 = fffs(χχχk) − ̺̺̺k + υυυk (1)



where

• χχχk is the relative discrete target state vector at time k
in modified polar coordinates defined as

χχχk =
[

θk θ̇k ξk rk
]T

(2)

where θk and rk stand, respectively, for the relative bear-
ing angle and range, with first order derivatives θ̇k and ṙk,
and where ξk = ṙk/rk is the normalized range rate,

• fffs(χχχk) is a vector function describing the noiseless rel-
ative dynamics of a target, w.r.t a non-maneuvering ob-
server, whose velocity vector is parallel to the road seg-
ment s, and which is given by

fffs(χχχk) =
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with
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where ms stands for the slope of the road segment s and
T represents the sampling time,

• ̺̺̺k is a vector function accounting for a constant observer
acceleration and given by
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where (γx, γy) stand, respectively, for the known observer
acceleration components in x and y directions, and

• υυυk is the process noise used to model unpredictable tar-
get accelerations, assumed to be zero-mean, white and
Gaussian whose covariance matrix is given by

Qk,s = Jk

[

Q
p
k,s 0

0 Qv
k,s

]

JTk (5)

where Jk stands for the Jacobian matrix containing the
partial derivatives of χχχk w.r.t. to the position and ve-
locity components, Q

p
s,k and Qv

s,k stand, respectively, for
the noise covariance matrices for the position and velocity
components built using the directional process noise [2].

2.2 Measurement Equations

In the following, we present the measurement model
corresponding to the bearings collected by the ground
moving sensor and we introduce the concept of pseudo-
measurement to constraint the position of the target to
the road network.

2.2.1 Bearing Measurements

The Mk bearing measurements available at time k, are
disposed in vector yk, whose elements are given by

yj,k =

{

θk + w1,k if ψk = j,
uk if ψk 6= j or ψk = 0

(6)

where j ∈ {1, . . . ,Mk} denotes the index element in vec-
tor yk, w1,k is a zero-mean independent Gaussian noise
with variance σ2

θ , uk is a random variable accounting
for the bearings due to clutter, assumed to be uniformly
distributed in the interval I = [0, 2π] [7], and ψk is a
{0, 1, . . . ,Mk}-valued random variable with probability
p(ψk = i) = 1 − PD if i = 0 and p(ψk = i) = PD/Mk

if i 6= 0, where PD is the prior probability of target detec-
tion. It should be noticed that for ψk 6= 0, ψk denotes the
index of the LOS bearing in vector yk, and for ψk = 0, it
represents the absence of LOS bearing in yk.

2.2.2 Pseudo-Measurement

An alternative approach to incorporate road network in-
formation is through the use of pseudo-measurements [5].
In this paper we propose to use them for three purposes;
i) to define the road segment in which the target is evolv-
ing, ii) to handle target transitions between road segments
(e.i. when the target approaches a node) and iii) to penal-
ize the target evolution far away from the road network.
Thus, let define

dk = h(pxk
, s) + w2,k (7)

as an independent pseudo-measurement of the minimum
Euclidian distance between the target’s position pxk

at
time k and the nearest road segment s [5], where h(·) de-
notes the non linear function providing the distance, and
ω2,k is the measurement noise, assumed to be zero-mean
white Gaussian process with variance σ2

d. We consider
that the dynamics of the target state is constrained to the
road segment s, if s is the nearest road segment to the
current position of the target.

3 Regularized Particle Filter

Consider the system described by equations (1), (6) and
(7) and let denote the set of available observations at time
k by Zk = {z0, . . . , zk}, with zk = [ yTk dk ]T . From a
Bayesian perspective, the tracking problem is to recur-
sively calculate some degree of belief in the state χχχk at
time k, taking different values, given the data Zk up to
time k. Hence, it is required to construct the posterior
density p(χχχk|Zk). In this procedure, it is assumed that
the initial density p(χχχ0) = p(χχχ0|Z0) is available.

One simple method to approximate the posterior den-
sity is by means of particle filters [8]. Thus, starting with
a weighted set of samples (particles) {χχχik−1

, ωik−1
}Ni=1 ap-

proximately distributed according to p(χχχk−1|Zk−1), new
samples are drawn from a suitable proposal distribution,
which may depend on the previous state and the new mea-
surements, however, for simplicity it is often chosen to be
the prior, i.e. χχχik ∼ p(χχχk|χχχk−1). In order to maintain
a consistent sample, the new importance weights are set
to ωik ∝ ωik−1

p(Zk|χχχik) where
∑N

i=1
ωik = 1. Thus, the

new particle set {χχχik, ωik}Ni=1 is then approximately dis-
tributed according to p(χχχk|Zk) and, therefore, an estimate
of the state can be obtained using, for instance, the min-
imum mean square (MMS) [5]. It should be noticed that
in order to consider multiple bearing measurements and



pseudo-measurements, the likelihood of the observations
p(Zk|χχχik) may be written as

p(Zk|χχχik) =p(dik|χχχik)
Mk
∑

ψk=0

p(yk|χχχik, ψk)p(ψk) (8)

where dik is the minimum Euclidian distance from particle
i to the nearest road segment, eq. (7).

To avoid degeneracy and sample impoverishment [8]
we draw new samples if 1/

∑

i(ω
i
k)

2 < Nthr, from
a continuous approximation of the posterior density
p(χχχk|Zk) ≈

∑N

i=1
ωikKh(χχχk − χχχik) where Kh(χχχ) =

1

hnK(χχχ
h
) is the rescaled Epanechnikov kernel K(·), h =

((8(n+ 4)(2
√
π)n)/cn)

1
n+4 N−

1
n+4 is the Kernel band-

width and n is the dimension of the state vector χχχ, with
cn denoting the volume of the unit sphere in R

n[8].

4 Track Initialization

Whereas spreading particles over the entire road network
may be the simplest way to initialize the RPF it may
present some serious drawbacks: i) the number of parti-
cles required to cover road networks with a large collection
of roads may be quiet hight, and ii) for low target de-
tection probabilities, it may occur that the first available
observations do not include the LOS bearings, producing
particles to concentrate on roads that may be far away
from the one on which the target is actually evolving. In
such a situation, it may happen that those particles be re-
sampled, and then become very unlikely and soon die out
as the new observations are available. Therefore, a proce-
dure to spread particles only in the direction of the LOS
bearing becomes necessary to properly track the target.
Thus, we propose to estimate the LOS direction by means
of a batch procedure. In order to deduce a tractable ex-
pression to compute such a direction we assume that the
relative position of the target with respect to the observer
does not change significatively over a short period of time,
implying that the pdf of the measurements vector yk at
time k with elements given by (6) may be written as

p(yk) =

Mk
∏

j=1

(

1 − PT
2π

+ PTφ(yj,k; θLOS, σ
2)

)

1 (9)

where PT = PD/Mk, and where φ(z;m,σ2) stands for
the pdf of a Gaussian random variable z with mean
m and variance σ2. Therefore, collecting Nm measure-
ments within such a short period of time, and using the
maximum-likelihood method it can be proved that the es-
timated direction of the LOS bearing and its estimated
variance are given by

(θ̂LOS , σ̂
2) ≈ argmax

θLOS ,σ2

(

Nm
∑

k=1

log p(yk)

)

(10)

1It should be noticed that, in order to make (9) exact the LOS
bearing θLOS should be a function of k. However, since we are inter-
ested in spreading particles only in the direction of the LOS bearing,
approximation (10) not only results precisely enough to do so, but
also computationally inexpensive compared to the approaches where
at the batch stage obtain an estimate of the full target state vector.

Thus, initial particles may be uniformly spread within
a circular sector such that θi ∼ U [θ̂LOS− σ̂, θ̂LOS+ σ̂] and
ri ∼ U [0, R], setting θ̇ik = 0, and ξik = 0, for i = 1 : N ,
where R stands for the maximum range which guaranties
the coverage of the surveillance region and U [a, b] stands
for the uniform distribution in the interval [a, b].

5 Simulation Results

The scenario used to demonstrate the performance of the
proposed algorithm is depicted in figure 1. The target
initially situated at node 16 maintains a constant veloc-
ity course, vT = 15 m/s, changing its direction at nodes
{15, 2, 3, 4, 18} and describing the solid line trajectory at
the bottom of figure 1. The observer departs from node
12 with a constant velocity of vo = 17 m/s and undergoes
a constant acceleration of ao = 0.3 m/s2 in the interval
0.5-1.0 minutes, afterwards it maintains the initial con-
stant velocity changing its course at nodes {13, 9, 10, 6, 7}
and describing the doted line trajectory at the top of fig-
ure 1. Three bearing measurements are received at each
sensor scan T = 0.5 s, for an approximated observation
period of 5.70 minutes. When present, the LOS bearings
are measured with an accuracy of σθ = 0.5 deg.

The batch stage used Nm = 50 measurements to esti-
mate the LOS direction, and the following nominal filter
parameters were used at the recursive stage: the direc-

tional process noise standard deviations (STDs) for the
position and velocity components orthogonal to the road
were respectively set to σo,p = 5.5 m and σo,v = 3 m/s.
The corresponding STDs for the components along the
direction of the road were σa,p =

√
10σo,p and σa,v =√

2σo,v. The pseudo-measurement STD was σd = 5.5 m
and the regularized particle filter used N = 1000 particles,
carrying out resampling for Nthr = 2/3N .

The estimation performance of the proposed algorithm
is provided in terms of the root-mean-square (RMS) po-
sition errors using 100MC runs. Figure 2 shows the RMS
error curves corresponding to four different target detec-
tion probabilities PD = {1, 0.9, 0.8, 0.7}. As expected, low
target detection probabilities leads to a degradation on the
accuracy of the target tracking. However, in spite of mul-
tiple spurious bearing measurements at each sensor scan,
a target detection probability of less than the unity and of
the use of a low-complexity target motion model, the pro-
posed algorithm exhibits a comparable performance with
respect to the algorithms studied in [9] (RMS errors be-
tween 0.20-1.04kms) for a maneuvering target in a typical
BOT scenario, i.e. without spurious measurements and a
target detection probability equal to one. Figure 3 depicts
the average over the trajectories followed by the target for
100MC runs. As we can see, even for a target detection
probability of 0.7, in most of the cases the estimated tra-
jectory is the right one.

6 Conclusions

We proposed a new batch-recursive bearings-only tracking
algorithm for ground moving targets constrained to roads,



able to handle multiple bearing measurements in clutter.
Observer maneuver may not be a requirement because the
information provided by the road network improves ob-
servability of the state vector. Simulation results showed
an improvement on the accuracy of target tracking over
those using complex target evolution models, even for a
probability of target detection less than the unity.
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Fig. 1: Simulation scenario: dashed lines and solid triangles
represent respectively the road segments and nodes of the road
network. Bottom solid trajectory represents the target path.
Top doted trajectory is the observer’s path.
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Fig. 2: RMS position error versus time. Vertical dashed lines
represent transition instants between road segments in the tar-
get trajectory.
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