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Abstract—With the development of remotely-sensed multisen-
sor satellites like Pleiades Cosmo-Skymed that have the partic-
ularity of providing both SAR and optic data, new techniques
in image processing are needed. These techniques must take into
account the complementarities and differences in nature of these
data.
A preliminary operation for advanced techniques that use multi-
sensor images such as fusion, classification, etc. is registration. In
the case of SAR and optic data, we can do automatic registration
if we exactly know the sensor parameters and have a digital
terrain model (DTM) or a digital elevation model (DEM) at
our disposal. If we do not have an exact knowledge of these
parameters, the registration becomes difficult.
Another approach to achieve the automatic registration which
does not need sensor parameters will rely on comparison mea-
sures between both data.
In this paper, we present a comparison of several similarity
measures between multisensor SAR and optic images used
in matching algorithms. An evaluation of these measures for
synthetic data based on their distributions is given. Then results
on real images are analyzed.

Index Terms—Similarity measures, multisensor image regis-
tration.

I. INTRODUCTION

In the literature of multisensor remote sensing imagery,
relatively few works address the problem of fine registration
[1]. One of the reasons is that it must be generally based on a
matching approach which presents difficulties in front of non
similar data with different radiometric properties, such as SAR
and optic images.
Usually, to rectify and adjust an automatic global registration,
fine registration is needed and is often done manually by a hu-
man expert. However, in presence of data with a great number
of local distortions (like, for instance, high resolution images
with different elevations), we need to make this procedure
automatic. The most adapted approach is the use of some
matching criteria. In fact, selecting homologous primitives in
both multisensor data and matching them is a good way to
estimate a local deformation model. Applying this model on
data, registration will be more accurate in all parts of the
image.
Thus, the problem of registration becomes a problem of finding
the nature of similarity existing between our multisensor data:
SAR and optic.
Because the real scene imaged is common to these two data,

similarity measure must take into account the relationship
existing between them. This relationship can be: common
objects in images, primitives, contrast, distribution, noise, etc.
In this work, we will study which kind of similarity between
SAR and optic images can be found. In section II, we present
some similarity measures that will be analyzed in our study.
Then, we propose to use a statistical approach to evaluate
performances of these measures and compare them. Since
analytical expressions of probability density functions are not
always available, we first study the robustness of simulation
approaches to estimate them (section III). Then we study
the similarity measures in section IV. First, we analyze the
dependency of a similarity measure to parameters of SAR and
optic scene data and we compute ROC (Receiver Operating
Characteristics) curves expressing efficiency of a similarity
measure for corner patterns. Finally, in section V, we vali-
date results and conclusions on real images in a multisensor
registration application.

II. SIMILARITY MEASURES

Registration problem based on similarity measure can be
expressed in the following analytical form:

ArgmaxT (Sc(I, ToJ)) (1)

Aligning an image J (slave) to an image I (master) is finding
the optimal geometric transformation T that maximize the
similarity Sc between images I and ToJ in the sense of
criterion c. Here c is the similarity measure used to register
two images. So, we note in this expression the importance of
the similarity measure used in the optimization procedure.
In this work, we have studied the most known similarity
measures in the literature. We present in this paper only the
study done for the five measures that were considered as the
most accurate measures in related works.
These measures can be classified into two different concepts:

• Similarities that express functional dependence:
1) Correlation coefficient (ρ): it measures linear depen-

dence between two images [2],
2) Correlation ratio (η): this is a generalization of the

correlation coefficient to a functional dependence
[3],

3) Woods criterion (Woods): this measure is quite sim-
ilar to the previous one, but it takes into account the



variation coefficient (ratio of standard deviation and
mean) [4].

• Similarities that express statistical dependence:
1) Normalized mutual information (IMN): a variant of

the mutual information that measures the amount
of information that one image (seen as a random
variable) contains about the other [5],

2) Distance to independence (X2): it measures the
degree of statistical dependence between data.

Performances of these measures will be compared based on an
empirical study of their distributions (pdf : probability density
function). So, we first validate the use of simulations to study
similarity measures. Then, we evaluate them and compare their
results on optic and SAR synthetic images: optic image with
Gaussian noise and radar image with Gamma distribution of
intensity.

III. VALIDATION OF THE EMPIRICAL STUDY OF THE
DISTRIBUTIONS CURVES

The criteria will be compared using their pdf depending
on various parameters: analysis window size, contrast of the
scene for the optic and SAR data, etc. Because it is not
always possible to derive analytical expressions of the pdf,
we propose to simulate samples to compute it.
To validate this approach, we first compare results given by a
theoretical approach (analytical expression) and an empirical
approach (computation of pdf using simulated data). To do
this comparison, we study a very simple case of optic and
SAR data where we can compute analytical expressions of a
similarity measure. Then, results will be compared with those
given by simulations.
The simple model is Constant/Gamma data: constant areas
on optic image and generalized Gamma distribution on SAR
image. The underlying scene is supposed to be divided into
two areas W 1 and W 2 where we can locate a corner (see
Fig.1.). Let I represents the SAR image and J the optic image.
For the SAR image, µ1

I (resp. µ2
I ) is the mean of W 1

I (resp.
W 2

I ), n1 (resp. n2) is the pixel number of W1 (resp. W2),
S(i,j) the sample of a generalized Gamma distribution noise
with mean equal to 1 and L is the number of looks. For the
optic image, m1

J (resp. m2
J ) is the gray level intensity of W 1

J

(resp. W 2
J ). So, the studied model is:

I(i, j) =
{

µ1
IS(i, j) , if (i, j) ∈ W 1

I

µ2
IS(i, j) , if (i, j) ∈ W 2

I

J(i, j) =
{

m1
J , if (i, j) ∈ W 1

J

m2
J , if (i, j) ∈ W 2

J

Based on this simplified model, we can clearly express
response of similarity measures on the corresponding corners
in the SAR and the optic images. For example, computing the-
oretical expression of the correlation coefficient on extracted
corners, we obtain:

ρ2
I,J =


1

1+
(n1+n2)(n1c2

I
+n2)

Ln1n2(cI−1)2

; if m1 6= m2

0 ; else
(2)

Where cI = µ1
I

µ2
I

is the contrast between the two regions
W 1

I and W 2
I . Plot of this function depending on cI and L is

given in Fig.2.
Then, we simulate this model into images and we draw plots
of the correlation coefficient responses. Examples of the two
plots are presented in the same figure (Fig.2.) to compare them.

Fig. 1. Simplified model of a corner: (left) image without noise corresponding
to the optic data (J); (right) image with gamma distribution corresponding to
the radar data (I).

Fig. 2. Theoretical and empirical plots of the correlation coefficient response
depending on contrast and number of looks in SAR image. The empirical plots
are drawn using 20 samples for each contrast value and number of looks.

We conclude that the empirical study of a similarity measure
can be a good approach to evaluate it since the results are
similar to the theoretical ones. For the rest of this paper,
all plots to evaluate a similarity criterion are done based on
simulations.

IV. EVALUATION OF SIMILARITY MEASURES

In this part, we consider a model closer to the reality
to evaluate accuracy of measures. For the optic image, we
generate a Gaussian noise and for the SAR image, we generate
a Gamma distribution. Position of the regions on simulated
images is the same as in the last simple model.
Note that in this part, only the number of samples of the two
regions in the window is taken into account since the criterion
is computed for the true match position.

A. Evaluation of criteria

Criteria used to evaluate performance of measures are based
on the pdf computed empirically using simulations. For each



fixed distribution parameters, we generate in practice 100
simulations of our model to estimate pdfs. Then, efficiency
of a similarity measure is studied according to two ways:

1) Understanding measure behavior by studying their de-
pendence on distribution parameters: contrast (cI = µ1

I

µ2
I

)
and number of looks (LI ) on SAR image and contrast
(cJ = µ1

J

µ2
J

) and standard deviation (σJ ) on optic image.
2) Evaluating the measure by drawing ROC plots: probabil-

ity Pd of detecting a corner versus the probability PF of
false alarm. Expressions of these probabilities are given
by:

Pd(s,Θ) =
∫ 1

s

f(t/Θ)dt (3)

PF (s) = Pd(s, cJ = 1, cI 6= 1) (4)

Θ is the parameter vector of the distribution model. f(t)
is the density probability function of a measure. The set
of parameters (cJ = 1, cI 6= 1) means that no corner
exists in the optic image whereas it was found in the
SAR image.

All plots corresponding to the five similarity measures are
drawn and used to compare the behavior of each measure.
Images simulated in this part, that correspond to the real
scene, are closer to Fig.3. Only distribution parameters
(cI , LI , cJ , σJ ) are changing during simulations.

Fig. 3. Left : image with Gaussian noise (contrast cJ , standard deviation of
the noise σJ ). Right : Image with Gamma distribution (contrast cI , number
of looks LI ).

B. Pdf of the similarity measure

We first trace pdf plots with fixed distribution parameters
in these cases :

1) For SAR (resp. optic) contrast impact on a similarity
measure, we generate three series of pdfs: cI = 1 (resp.
cJ = 1) (no contrast in image), cI = 1.5 (resp. cJ =
1.5) (good contrast) and cI = 2 (resp. cJ = 2) (high
contrast).

2) For the number of looks impact, we generate two series
of pdfs: LI = 1 and LI = 3.

3) For optic standard deviation influence, we generate two
series of pdfs: σJ = 3 and σJ = 10.

We show in the next figure an example of a these plots.

Fig. 4. Pdf of the correlation coefficient when varying contrast on SAR
image (c1I = 1, c2I = 1.5, c3I = 2). Contrast on optic image is fixed to 1.5
and standard deviation is fixed to 3. The number of looks on SAR image is
equal to 1.

We will only mention in this article conclusions extracted
from these plots. In fact, varying distribution parameters we
note that, as expected, all measures give best response if cI

and LI are high and σJ is low and they do not depend or
depend slightly on cJ (which is less expected).

C. Evaluation of the similarity measures

We present, to evaluate and compare similarity measures,
their ROC curves; first, with low noise (σJ = 3) on optic
image then with a high noise (σJ = 10). Parameters chosen
for estimation of Pd (resp. PF ) are cI = 1.5, cJ = 1.5 and
LI = 1 (resp. cI = 1.5, cJ = 1 and LI = 1).

Fig. 5. ROC plots for the five similarity measures (Gaussian noise with
σJ = 3)

Fig. 6. ROC plots for the five similarity measures (Gaussian noise with
σJ = 10)



Based on these two figures, we can extract practical conclu-
sions. The first one is that statistical similarity measures are
more adapted to SAR and optic data than functional depen-
dence measures. The second one is that only the correlation
coefficient, as a functional dependency measure, gives a good
response with low noise.
Thus, the choice and the use of a similarity measure to match
corners in both optic and SAR images depend on the quality
of optic images. With low noisy optic images, correlation
coefficient is an efficient criterion to use for registration. And
to guarantee a good matching in high noisy optic images,
normalized mutual information is considered as the best and
the most adapted similarity measure for our multisensor data.

V. VALIDATION AND APPLICATION TO MULTISENSOR
IMAGE REGISTRATION

A. Validation

To validate conclusions drawn in the precedent section, we
test the five similarity measures on real data. The strategy
consists on selecting corners on optic images and manually
finding their homologous in the SAR corresponding images.
Then, we repeat this procedure automatically by introducing
similarity measure and a searching window (size: 21x21).
For each measure, we compute the error of matching which
corresponds to the Euclidean distance between the homolo-
gous corner found with automatic procedure and the one fixed
manually (which is obviously the right correspondent corner).
Tests are carried out on a pair of SAR and optic data
(2048x2048) with a high resolution and globally registered
based on a global registration approach (see the next para-
graph). On this image, we extracted 7 regions where we
found local alignment errors (generally caused by the presence
of relief). In each region, we extract corners and we apply
our strategy to compute error matching by the five similarity
measures.

Fig. 7. Example of region (128x128) where two corners are extracted
and automatically matched by IMN measure (left: SAR image, right: optic
image). The size of window used for the matching process is (21x21) and the
exploration area is ± 12 pixels around each pixel.

In the next table we present a summary of results obtained
when computing mean errors for all corners extracted in
regions :

ρ2 η woods IMN X2

Pixel Error 4,04 8,37 6,2 3,83 5,8

TABLE I
MATCHING ERROR : MEAN OF ERRORS, FOR EACH SIMILARITY MEASURE,

RECORDED WHILE MATCHING THE 7 REGIONS.

It is clear that results obtained with real images are closer
to those predicted empirically on simulated model with high
noise on optic image. So, we can confirm the interest of the
normalized mutual information compared to other similarity
measures. Nevertheless, the correlation coefficient has also a
good behavior

B. Application

Finding the best similarity measure between SAR and optic
data gives a solution to do a fine registration between these
multisensor data. In our work, we started by making a global
registration based on Fourier-Mellin approach [6]. Then, to
rectify locally registration errors, we estimate a non rigid local
transformation based on matching technique which uses the
best similarity measure adapted to SAR and optic images.

VI. CONCLUSION

In this work, we have studied performances of the most
known similarity measures to do a fine registration between
SAR and optic data. The study is based on a statistical
and empirical approach. First, we have analyzed the pdf of
each similarity measure and studied the influence of some
parameters (contrast, level of noise, etc.). Then, the efficiency
of these measures is evaluated through ROC plots. Conclusions
drawn show the most adapted measure to a pair of SAR and
optic images depending on distribution parameters.
The comparison presented here is of course not exhaustive,
since it would be interesting to include more scene types
(point target, cross-roads, etc.). However, this paper opens
many prospects to future works. In fact, we can add to our
empirical approach a theoretical study by computing analyt-
ical expressions of similarity measures to our scene model
(Gaussian/Gamma), like expression computed in section III
for correlation coefficient.
We can also extend this work to other types of primitives
than corners: targets, linear structures, regions, etc. and thus
we draw new conclusions related to the relationship existing
between one similarity measure and one primitive used for the
matching problem.
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