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ABSTRACT

In this paper we study asymptotic properties of weighted sam-
ples produced by the two-stage sampling (TSS) particle filter,
which is a generalization of the auxiliary particle filter pro-
posed by [1]. Besides establishing a central limit theorem
(CLT) for the particle estimator of the smoothing measure,
we also present bounds on theL

p error and bias of the same
for a finite particle sample size. The main contribution of this
article, being based on [2], is the identification of first-stage
importance weights for which the increase of asymptotic vari-
ance of the CLT at a single iteration of the algorithm is mini-
mal. Finally, we let a simple numerical example illustrate our
findings.

Index Terms— Auxiliary particle filter, CLT, sequential
Monte Carlo, state space models, two-stage sampling

1. INTRODUCTION

In this report a time seriesY , {Yk}∞k=0, taking values in a
measurable space(Y,Y), is modeled as a noisy observation
of the Markov chainX , {Xk}∞k=0 on some general state
space(X,X ). We letQ andν be the Markov transition kernel
and initial distribution ofX , respectively. More specifically,
the observed values ofY are conditionally independent given
the hidden states ofX , and the conditional distribution ofYk

depends on the stateXk only. In addition we assume that
there exist, for allx ∈ X, a probability density functiony 7→
g(y, x) and a measureλ on (Y,Y) such that fork ≥ 0,

P (Yn ∈ A|Xn = x) =

∫

A

g(y, x)λ(dy) for A ∈ Y .

Furthermore we introduce, fori ≤ j, the vector notation
Xi:j , (Xi, . . . , Xj); similar notation will be used for other
quantities.

When operating on astate space modelof the form de-
scribed above thesmoothing distribution

φk(A) , P (X0:k ∈ A|Y 0:k = y0:k) ,

for A ∈ X⊗(n+1), and its marginals will be highly interesting.
We will throughout this paper assume that we are given a se-
quence{yk; k ≥ 0} of fixedobservations, and henceforth we
let P andE denote the conditional probability measure and
expectation with respect to these observations, respectively.
We will also use the notationgk(x) , g(yk, x), x ∈ X. Using
Bayes’s formula we conclude that

φk+1(A) =

∫

A gk+1(xk+1)Q(xk, dxk+1)φk(dx0:k)
∫

Xk+2 gk+1(x′
k+1)Q(x′

k, dx′
k+1)φk(dx′

0:k)
,

(1)

for setsA ∈ X⊗(k+2). Nevertheless, the recursion presented
above is only delusory simple since it involves the evaluation
of complicated high-dimensional integrals.

Sequential Monte Carlo (SMC) methods, or particle fil-
ters, provide approximate solutions to the smoothing recur-
sion (1). These methods are based on the principle of, recur-
sively in time, approximating the smoothing distribution with
the empirical distribution associated with a weighted sample.

In this article we focus on thetwo-stage sampling (TSS)
algorithm suggested by [3]. The technique originates from
the pioneering work by [1], who named it theauxiliary par-
ticle filter and proposed it as a way to prevent weight degen-
eracy and to robustify standard SMC methods. We provide
rigorous results describing the convergence (weakly as well
as in probability andLp) of the produced approximations to
the true smoothed quantities for the method in question. In
addition, we discuss some possible improvements of the al-
gorithm in the light of our findings.

2. THE TWO-STAGE SAMPLING ALGORITHM

Let us recall the TSS algorithm as presented by [3, p. 256]. In
the following, denote byBb(X

m) the space of bounded mea-
surable functions onXm furnished with the supremum norm
‖f‖Xm,∞ , supx∈Xm |f(x)|. For any probability measureµ
on (E, E) andµ-integrable functionf , we define the expecta-
tion µf ,

∫

E
f(x)µ(dx).



Assume that we at timek have at hand a weighted sam-
ple{(ξN,i

k , ωN,i
k )}N

i=1, eachξN,i
k being referred to as aparti-

cle, approximatingφk in the sense thatφN
k f ≈ φkf for all

f ∈ Bb(X
k+1), whereφN

k (A) ,
∑N

i=1 ωN,i
k δ

ξ
N,i

k

(A)/ΩN
k

andΩN
k ,

∑N
i=1 ωN,i

k . For x ∈ Xm, δx here denotes the
Dirac mass located atx. To approximateφk+1 we simply
plugφN

k into the recursion (1) when the observationyk+1 be-
comes available, yielding forA ∈ X⊗(k+2) the mixture

φ̃N
k+1(A) ,

N
∑

i=1

ωN,i
k Hu

k (ξN,i
k , Xk+2)

∑N
j=1 ωN,j

k Hu
k (ξN,j

k , Xk+2)
Hk(ξN,i

k , A) .

Here we have introduced, forx0:k ∈ Xk+1 andA ∈ X⊗(k+2),
Hu

k (x0:k, A) ,
∫

A gk+1(x
′
k+1) δx0:k

(dx′
0:k)Q(xk, dx′

k+1),
Hk(x0:k, A) , Hu

k (x0:k, A)/Hu
k (x0:k, Xk+2). Now, since

we want to form a new weighted sample estimatingφk+1,
heading for a completely recursive approximation scheme,
we need to find a convenient mechanism for simulating from
φ̃N

k+1 given the sample{(ξN,i
k , ωN,i

k )}N
i=1; in fact, this is the

main objective of all particle filters. In most cases cases itis
possible—but generally computationally expensive—to sim-
ulate fromHk directly using auxiliary accept-reject sampling,
rendering exact simulation from̃φN

k+1 possible. In this case
the expected number of accepted draws is however inversely
proportional to‖gk+1‖X,∞, which might be very large ifgk+1

is highly peaked. A computationally cheaper solution con-
sists in producing a weighted sample approximatingφ̃N

k+1 by
sampling from the importance sampling distribution

ρN
k+1(A) ,

N
∑

i=1

ωN,i
k τN,i

k
∑N

j=1 ωN,j
k τN,j

k

Rp
k(ξN,i

k , A) ,

for A ∈ X⊗(k+2). Here τN,i
k , 1 ≤ i ≤ N , are positive

numbers referred to asfirst-stage weightsand the proposal
kernelRp

k is, for x0:k ∈ Xk+1 andA ∈ X⊗(k+2), of form
Rp

k(x0:k, A) =
∫

A δx0:k
(dx′

0:k)Rk(xk, dx′
k+1). Thus, a draw

from Rp
k(x0:k, ·) is produced by extending the pathx0:k ∈

Xk+1 with an additional component obtained by simulating
from Rk(xk, ·). In this article we consider first-stage weights
of type τN,i

k = Tk(ξN,i
k ) for some functionTk : Xk+1 →

R
+. DefiningWk+1(x0:k+1) , [gk+1(xk+1)/Tk(x0:k)] ×

dQ(xk, ·)/dRk(xk, ·)(xk+1), x0:k+1 ∈ Xk+2, we have

dφ̃N
k+1

dρN
k+1

(x0:k+1) ∝
N

∑

i=1

�

ξ
N,i

k

(x0:k)Wk+1(x0:k+1) ,

for x0:k+1 ∈ Xk+2. A new sample{(ξ̃N,i

k+1, ω̃
N,i
k+1)}MN

i=1 tar-

geting φ̃N
k+1 is hence generated by simulatingMN particles

ξ̃
N,i

k+1, 1 ≤ i ≤ MN , from ρN
k+1 and associating with these

particles thesecond-stage weights̃ωN,i
k+1 , Wk+1(ξ̃

N,i

k+1).

Finally, a uniformly weighted sample{(ξN,i
k+1, 1)}N

i=1, still

targetingφ̃N
k+1, is obtained by resamplingN of the proposed

particles according to the normalized second-stage weights.
Note that the number of particles in the last two samples,MN

andN , may be different. The procedure is now recursively re-
peated (withωN,i

k+1 = 1, 1 ≤ i ≤ N ) and can be initialized by

drawing{ξN,i
0 }MN

i=1 from ς⊗MN , yielding ωN,i
0 = W0(ξ

N,i
0 )

with W0(x) , g0(x) dν/dς(x), x ∈ X. We summarize one
step of the algorithm below.

Algorithm 1 The TSS algorithm

Ensure: {(ξN,i
k , ωN,i

k )}N
i=1 approximatesφk.

1: for i = 1, . . . , MN do . First stage
2: drawIN,i

k multinomially with respect to the normal-
ized weightsωN,j

k τN,j
k /

∑N
`=1 ωN,`

k τN,`
k , 1 ≤ j ≤ N ;

3: simulateξ̃
N,i

k+1 ∼ Rp
k(ξ

N,IN,i

k

k , ·), and

4: setω̃N,i
k+1 , Wk+1(ξ̃

N,i

k+1).
5: end for
6: for i = 1, . . . , N do . Second stage
7: drawJN,i

k+1 multinomially with respect to the normal-

ized weights̃ωN,j
k+1/

∑N
`=1 ω̃N,`

k+1, 1 ≤ j ≤ N , and

8: setξN,i
k+1 , ξ̃

N,JN,i

k+1

k+1 .

9: Finally, reset the weights:ωN,i
k+1 = 1.

10: end for
11: Take{(ξN,i

k+1, ω
N,i
k+1)}N

i=1 as an approximation ofφk+1.

The advantages of the TSS algorithm not possessed by
standard SMC methods is the possibility of, firstly, choos-
ing the first-stage weightsτN,i

k arbitrarily and, secondly, let-
ting N and MN be different. It is well known that SMC
methods perform well when the importance weights are well-
balanced, and thus [1] propose, in the caseRk ≡ Q andX =
R

d, the first-stage importance weight functionT P&S
k (x0:k) ,

gk+1[
∫

X
x′ Q(xk, dx′)]. The analysis presented in the follow-

ing sections will however show that this choice is not opti-
mal in terms of minimal asymptotic (asN tends to infinity)
sample variance. Moreover, theoretical results on the parti-
cle approximation stability will indicate that the second stage
resampling pass should, at least for the caseMN = N , be
cancelled, since additional resampling exclusively increases
the sampling variance. Thus, the idea that the second-stage
resampling pass is necessary for preventing the particle ap-
proximation from degenerating does not apparently hold. Re-
cently, a similar conclusion was reached independently in the
manuscript [4]. Consequently, we advocate the scheme de-
scribed in Algorithm 2. By lettingτN,i

k ≡ 1, 1 ≤ i ≤ N , in
Algorithm 2 we obtain the so-calledbootstrap particle filter.

3. BOUNDS AND ASYMPTOTICS FOR PRODUCED
APPROXIMATIONS

In [2, Theorem 3.10(i)] we establish, under the assumption
that each measureQ(x, ·), x ∈ X, has a density that is uni-
formly bounded from below and above—pointing to appli-



Algorithm 2 Single-stage auxiliary particle filter (SSAP)

Ensure: {(ξN,i
k , ωN,i

k )}N
i=1 approximatesφk.

1: for i = 1, . . . , N do
2: drawIN,i

k multinomially with respect to the normal-
ized weightsωN,j

k τN,j
k /

∑N
`=1 ωN,`

k τN,`
k , 1 ≤ j ≤ N ;

3: simulateξ̃
N,i

k+1 ∼ Rp
k(ξ

N,IN,i

k

k , ·), and

4: setωN,i
k+1 , Wk+1(ξ̃

N,i

k+1) andξ
N,i
k+1 , ξ̃

N,i

k+1.
5: end for
6: Take{(ξN,i

k+1, ω
N,i
k+1)}N

i=1 as an approximation ofφk+1.

cations whereX is a compact set—, anLp error bound for
approximations produced by the TSS algorithm of type

∥

∥

∥

∥

∥

∥

(Ω̃N
n )−1

MN
∑

j=1

ω̃N,i
n fi(ξ̃

N,i

n ) − φnfi

∥

∥

∥

∥

∥

∥

p

≤

‖fi‖Xn+1,∞

[

1√
MN

n
∑

k=0

Ckρ0∨(i−k) +
1√
N

B (1 + n − i)

]

,

for fi ∈ Bb(X
n+1) depending on the lastn+1−i states of the

trajectory only. Here the constantρ < 1 is the mixing rate of
the hidden Markov chain when evolving conditionally on the
observations. In [2, Theorem 3.10(ii)] we also state an anal-
ogous bound, this time inversely propotional toN andMN ,
on the bias of the approximations. Under the mentioned as-
sumption we may expect the model depending constantsCk,
k ≥ 0, to be roughly uniformly bounded ink. Furthermore,
by inspecting the proof of this result, a similar bound is ob-
tained for approximations produced by Algorithm 2 by simply
lettingB = 0 andMN = N in the formula above. Especially,
using this latter bound fori = n yields a bound on the error of
the approximatefilter distribution(that is, the marginal ofφn

with respect to thenth component) that isuniformly bounded
in n. From this it is obvious that the first-stage resampling
pass is enough to preserve the sample stability.

In this article, focus is however set on convergence of the
approximations in the following senses.

Definition 1 (Consistency) A sample{(ξN,i
m , ωN,i

m )}MN

i=1 in Xm

is said to beconsistentfor the probability measureµ and the
setC ⊆ L1(Xm, µ) if for anyf ∈ C, asN → ∞,

(ΩN
m)−1

MN
∑

i=1

ωN,i
m f(ξN,i

m )
P−→ µf ,

(ΩN
m)−1 max

1≤i≤MN

ωN,i
m

P−→ 0 .

Let µ be a probability measure on(Xm,X⊗m), γ a finite
measure on(Xm,X⊗m), A ⊆ L1(Xm, µ) andW ⊆ L1(Xm, γ)
be sets of real-valued functions onXm, andσ a real-valued
non-negative functional onA.

Definition 2 (Asymptotic normality) A weighted sample
{(ξN,i

m , ωN,i
m )}MN

i=1 in Xm isasymptotically normal(abbr. a.n.)
for (µ, A, W, σ, γ, {aN}) if, asN → ∞,

aN (ΩN
m)−1

MN
∑

i=1

ωN,i
m [f(ξN,i

m ) − µf ]
D→ N [0, σ2(f)] , f ∈ A ,

a2
N (ΩN

m)−1
MN
∑

i=1

(ωN,i
m )2f(ξN,i

m )
P−→ γf , f ∈ W ,

aN (ΩN
m)−1 max

1≤i≤MN

ωN,i
m

P−→ 0 .

The following result ([2, Theorem 3.5]) states consistency
and asymptotic normality of weighted samples produced by
the TSS algorithm. For brevity, we present the caseN = MN

only; similar results are however available also in the general
case. A recent result in the same spirit has, independently of
[2], been established in the manuscript [4].

Theorem 1 Suppose thatTk ∈ L2(Xk+1, φk) and Wk ∈
L1(Xk+1, φk) for all k ≥ 1, and that the equally weighted
sample{(ξN,i

0 , 1)}N
i=1 is consistent for[L1(X, φ0), φ0] and

a.n. for [φ0, A0, L
1(X, φ0), σ0, φ0, {N1/2}]. In addition, let

A0 ⊆ L1(X, φ0) and define the family{Ak}k≥1 by

Ak+1 ,

{

f ∈ L
2(Xk+2, φk+1) :

Rp
k(·, Wk+1|f |)Hu

k (·, |f |) ∈ L
1(Xk+1, φk), Hu

k (·, |f |) ∈
Ak ∩ L

2(Xk+1, φk), Wk+1f
2 ∈ L

1(Xk+2, φk+1)
}

.

Furthermore, letσ0 : A0 → R
+ be a functional and define

the family{σk}k≥1 of functionalsσk : Ak → R
+ by

σ2
k+1(f) , Varφk+1

(f) +
σ2

k[Hu
k (·, f − φk+1f)]

[φkHu
k (Xk+2)]2

+
φk{TkRp

k[·, W 2
k+1(f − φk+1f)2]}φkTk

[φkHu
k (Xk+2)]2

.

Then each sample{(ξN,i
k , 1)}N

i=1, k ≥ 1, is consistent for
[L1(Xk+1, φk), φk] and a.n. for[φk, Ak, L1(Xk+1, φk), σk, φk,

{N1/2}]. 2

The sets{Ak}k≥1 can be controlled by imposing some addi-
tional restrictions on the model and the importance weights;
indeed, if for allk ≥ 0, ‖gk‖X,∞ < ∞ and‖Wk‖Xk+1,∞ <

∞, then it can be proved thatA0 = L2(X, φ0) implies that
Ak = L2(Xk+1, φk) for all k ≥ 1. Moreover, by inspecting
the proof of Theorem 1 one concludes that the termVarφk+1

(f)
of σ2

k+1(f) represents the cost of introducing the second-stage
resampling pass, and the asymptotic variance obtained when
inactivating this operation is obtained by simplyexpunging
the term in question from the presented formula. Thus, bear-
ing the stability results of SSAP algorithm in mind, there are



indeed reasons for strongly questioning whether second-stage
resampling should be performed at all.

We call a first-stage importance weight functionTk opti-
mal if it implies a minimal increase of asymptotic variance at
a single iteration of the scheme. We should expect that such a
weight involves the target functionf . Indeed, define

T ∗
k [f ](x0:k) ,

√

∫

X

[

dHu
k (x0:k, ·)

dRp
k(x0:k, ·) (x0:k, x′)

]2

Φ2
k+1[f ](x0:k, x′)Rk(xk, dx′),

where, for(x0:k, x′) ∈ X
k+2,

dHu
k (x0:k, ·)

dRp
k(x0:k, ·) (x0:k, x′) = gk+1(x

′)
dQ(xk, ·)
dRk(xk, ·) (x′) ,

Φk+1[f ](x0:k, x′) , f(x0:k, x′) − φk+1f ,

and letW ∗
k+1[f ] be the induced second-stage weight function;

we then have the following result.

Theorem 2 Let k ≥ 0 and suppose thatf ∈ {f ′ ∈ Ak+1 :
T ∗

k [f ′] ∈ L2(Xk+1, φk), W ∗
k+1[f

′] ∈ L1(Xk+2, φk+1)}. Then
T ∗

k is optimal and the minimal variance is given by

Varφk+1
(f) +

σ2
k[Hu

k (·, f − φk+1f)] + (φkT ∗
k [f ])2

[φkHu
k (Xk+2)]2

.

The functionsT ∗
k have a natural interpretation in terms of

optimal sample allocation forstratified sampling. Consider
the mixtureπ =

∑d
i=1 wiµi, eachµi being a measure on

(E, E) and
∑d

i=1 wi = 1, and the problem of estimating, for
some given measurable andπ-integrable target functionf , the
expectationπf . In order to relate this to the particle filtering
paradigm, we will make use of the following algorithm.

Algorithm 3 Stratified importance sampling
1: for k = 1, . . . , N do
2: draw an indexIk multinomially with respect to some

weightsτi, 1 ≤ i ≤ d,
∑d

i=1 τi = 1;
3: simulateξk ∼ νIk

, and

4: compute the weightsωk , wi

τi

dµi

dνi

∣

∣

∣

i=Ik

5: end for
6: Take{(ξk, ωk)}N

k=1 as an approximation ofπ.

In other words, we perform Monte Carlo estimation ofπf

by means of sampling from some proposal mixture
∑d

i=1 τiνi

and forming a self-normalized estimate—cf. the technique
applied in Section 2 for sampling from̃φN

k+1. In this setting,
the following central limit theorem can be established under
weak assumptions:

√
N

[

N
∑

k=1

ωkf(ξk)
∑N

`=1 ω`

− πf

]

D−→ N
[

0,
d

∑

i=1

w2
i αi(f)

τi

]

,

with, for x ∈ E,

αi(f) ,

∫

E

[

dµi

dνi
(x)

]2

Π2[f ](x) νi(dx) ,

Π[f ](x) , f(x) − πf .

Minimizing the asymptotic variance
∑d

i=1[w
2
i αi(f)/τi] with

respect toτi, 1 ≤ i ≤ N , (e.g. by means of the Lagrange
multiplicator method) yields the optimal weights

τ∗
i ∝ wiα

1/2
i (f) = wi

√

∫

E

[

dµi

dνi
(x)

]2

Π2[f ](x) νi(dx) ,

and the similarity between this expression and that of the op-
timal first-stage importance weight functionsT ∗

k is striking.
This strongly supports the idea of interpreting optimal sample
allocation for particle filters in terms of variance reduction for
stratified sampling.

In general the optimal weights lack closed form expres-
sions, but in [2] it is discussed how approximations of the
same can be obtained by means of a prefatory simulation pass.

Since the TSS procedure was suggested as an improve-
ment of the bootstrap filter it is of great interest to compare
the minimal asymptotic variance of Theorem 2 with the one
(see e.g. [5, Theorem 6]) for the latter scheme when the same
proposal kernelRp

k is used in both cases. In this context we
show that the minimal TSS variance is the smaller of the two
if and only if

Varφk

(

{Rp
k[·, W 2

k+1(f − φ0:k+1f)2]}1/2
)

≥ Varφk
{Rp

k[·, Wk+1(f − φ0:k+1f)]} . (2)

Intuitively, we may expect (see [1]) that including the ob-
servations in the first-stage weights is profitable only when
these are informative, whereas additional resampling for non-
informative observations exclusively leads to an increaseof
sampling variance. The inequality (2) confirms this idea; in-
deed, if the likelihoodgk+1 is highly peaked, squaring the
same will amplify the peakishness, which will increase the
quantity on the left hand side of (2).

4. A NUMERICAL EXAMPLE

A rigorous numerical study of the results in Section 3 is be-
yond the scope of this article, but in order to get an initial
idea of the performace of our optimal SSAP filter we apply
the method to a first order linear autoregressive process ob-
served in noise (cf. [3, Example 7.2.3]):

Xk+1 = φXk + σwWk ,

Yk = Xk + σvVk .

Hereφ = 0.9 and{Wk}∞k=0 and{Vk}∞k=0 are independent
Gaussian white noise processes such thatWk ∼ N (0, 1) and



Vk ∼ N (0, 1). We let the latent chain be put at stationarity
from the beginning, that is,X0 ∼ N [0, σ2

w/(1 − φ2)]. For a
linear/Gaussian model of this kind, exact expressions of the
optimal weights can be obtained using the Kalman filter. In
this setting we simulated, forσv = σw = 0.1, a recordy0:10

of observations and estimated the filter posterior means along
this trajectory by applying (1) SSAP based on true optimal
allocation weights, (2) SSAP based on the generic weights
T P&S

k of [1], and (3) the standard bootstrap filter (i.e., SSAP
with Tk ≡ 1). Since the optimal weights are derived using
asymptotic arguments we used as many as100,000 particles.
The result is displayed in Figure 1(a) and it is clear that oper-
ating with true optimal allocation weights improves—in line
with what we expect—the MSE performance in comparison
with the other methods. The main motivation of [1] for intro-
ducing auxiliary particle filtering was to roubustify the parti-
cle approximation to outliers. Thus, we follow the lines of [3,
Example 7.2.3] and repeat the experiment above for the obser-
vationsy0:5 = (−0.652,−0.345,−0.676, 1.142, 0.721, 20),
standard deviationsσv = 1, σw = 0.1, and particle sample
sizeN = 10,000. Note the large discrepancy ofy5. The out-
come is plotted in Figure 1(b) from which it is evident that
the optimal weights are the most efficient also in this case;
moreover, the performance of the standard auxiliary particle
filter is improved in comparison with the bootstrap filter. Fi-
nally, Figure 2 displays a plot of the weight functionsT ∗

4 and
T P&S

4 for the same extreme observation record. It is clear that
T P&S

4 is not too far away from the optimal weight function
(which is close to symmetric in this extreme situation) in this
case, even if the distance as measured by the supremum norm
is still significant.
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Fig. 1. Plot of MSE performances (on log-scale) of the boot-
strap particle filter (∗), SSAP based on optimal weights (�),
and SSAP based on the generic weightsT P&S

k of [1] (+). The
MSE values are computed using 400 replications for each al-
gorithm.
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Fig. 2. Plot of the first-stage importance weight functionsT ∗
4

(unbroken line) andT P&S
4 (dashed line) in the presence of an

outlier.


