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ABSTRACT for A € x®(»+1 and its marginals will be highly interesting.

) ) ) i We will throughout this paper assume that we are given a se-
In this paper we study asymptotic properties of welghtedsamquence{yk; k > 0} of fixedobservations, and henceforth we

ples produced by the two-stage sampling (TSS) particlé/filte et p andE denote the conditional probability measure and
which is a generalization of the auxiliary particle filteropr expectation with respect to these observations, resggtiv

posed by [1]. Besides establishing a central limit theoremyse will also use the notatiogy,(z) 2 g(yx, z), = € X. Using
(CLT) for the particle estimator of the smoothing measuregayes’s formula we conclude that

we also present bounds on the error and bias of the same
for a finite particle sample size. The main contribution d$ th

article, being based on [2], is the identification of firsigs bri1(A) = Ja 911 @hi1) Qor, dTii1) dr(doir)

importance weights for which the increase of asymptotie var Sz Gra1 (@) 1) Qo dag ) dr(day,)
ance of the CLT at a single iteration of the algorithm is mini- 1)
mal. Finally, we let a simple numerical example illustrate o

findings. for setsA € X®(++2) Nevertheless, the recursion presented

above is only delusory simple since it involves the evaarati
of complicated high-dimensional integrals.
Sequential Monte Carlo (SMC) methods particle fil-

ters provide approximate solutions to the smoothing recur-

1. INTRODUCTION sion (1). These methods are based on the principle of, recur-
sively in time, approximating the smoothing distributioittw

In this report a time serie¥ £ {Yi}32,, taking values in a the empirical distribution associated with a weighted semp

measurable spad#’, ), is modeled as a noisy observation  In this article we focus on thewo-stage sampling (TSS)

of the Markov chainX £ {Xi}2, on some general state algorithm suggested by [3]. The technique originates from

space X, X). We letQ andv be the Markov transition kernel the pioneering work by [1], who named it tlaeixiliary par-

and initial distribution ofX, respectively. More specifically, ticle filter and proposed it as a way to prevent weight degen-

the observed values &f are conditionally independent given eracy and to robustify standard SMC methods. We provide

the hidden states of, and the conditional distribution &f,  rigorous results describing the convergence (weakly at wel

depends on the stat&, only. In addition we assume that as in probability and.?) of the produced approximations to

there exist, for all: € X, a probability density functiop —  the true smoothed quantities for the method in question. In

g(y,z) and a measurgon (Y, Y) such that fork > 0, addition, we discuss some possible improvements of the al-

gorithm in the light of our findings.

Index Terms— Auxiliary particle filter, CLT, sequential
Monte Carlo, state space models, two-stage sampling

P(Y, € A X, =x) = / g(y,x) Mdy) forAe ).
A

2. THE TWO-STAGE SAMPLING ALGORITHM
Furthermore we introduce, far < j, the vector notation
X..; & (X,,...,X;); similar notation will be used for other Let us recall the TSS algorithm as presented by [3, p. 256]. In

guantities. the following, denote bys5,(X™) the space of bounded mea-
When operating on atate space modeif the form de- surable functions oX™ furnished with the supremum norm
scribed above themoothing distribution | flIxm, 00 = SUPgexm | f(2)|. For any probability measuye

on (E, £) andu-integrable functiory, we define the expecta-
(bk(A) é ]P)(X()k S A| Y()ik’ = yO:k) 9 tion ,Ltf é fE f(:l?) M(d$)



Assume that we at timé have at hand a weighted sam- particles according to the normalized second-stage w&ight
ple {(ékN’l, w,iv"z) N, eachfff’Z being referred to asjgarti-  Note that the number of particles in the last two samplés,
cle, approximatingp;. in the sense thatyy f ~ ¢ f forall  andN, may be different. The procedure is now recursively re-
F € By(XktL), whereg (4) 2 Zif\il w;iv’i%gw(/l)/ﬂkjy peated (Withu,ivfl = 1,1 < i < N)and can be initialized by
andQY 2 YV NP Foraz e X™, 4, here denotes the drawing {gév’;}f”g from ¢®~, yieldingwy™ = Wo(&p'™)
Dirac mass located at. To approximates,; we simply ~ With Wo(z) = go(x) dv/d<(z), x € X. We summarize one
plug ¥ into the recursion (1) when the observatign , be- ~ Step of the algorithm below.
comes available, yielding fof € X®(++2) the mixture

Algorithm 1 The TSS algorithm

W)LY wp THR (& XEH2) Ho(eY A) Ensure: {(¢7°",w)"")}Y, approximatesy..
k1 _ ZN wNajHu(gNu‘ Xk+2) RSk 4 1. fori=1,...,Mydo > First stage
i=1 7=1"k kE\SE > N.i . . .
2: draw I, " multinomially with respect to the normal-
Here we have introduced, fat,., € X" andA € x®(*+2), ized weightsoy /7,07 / 37w r 1 < < N
u ) A / ! i / ) <N, TN
Hi (@0, 4) A Ja 941(@y) 5z°:k(dm0:]§€) ?(zk’ dzkﬂ)’ 3 simulate€ | ~ Rg(gkN’Ik ,-), and
Hi(xox, A) = HN@ok, A)/HP (0.1, X"T2). Now, since . “Ni A SN
we want to form a new weighted sample estimatifg ;, 4 setw ) = Wi (€ppa)-
heading for a completely recursive approximation scheme,® end'for
we need to find a convenient mechanism for simulating from ® fori =1, D Ndo . > Second stage
&N, | given the samplé( Ni NN Cin fact, this is the 7 draw J; | mgltmojzmallyvvgnth respect to the normal-
main objective of all particle filters. In most cases casés it ized weightso, 7 / 32, @71, 1 < j < N, and

N,i
N,i & ~N7']k+1

possible—but generally computationally expensive—to-sim
set§; 1 = &ppa

ulate fromH,, directly using auxiliary accept-reject sampling, . ) N
rendering exact simulation from, ; possible. In this case Finally, reset the weightss, /', = 1.

the expected number of accepted draws is however inversefif: ndfor N o
proportional tol| g+ 1|y .., which might be very large ify, % Take{(&.{},wy{1)}i=1 as an approximation @fy.1.
is highly peaked. A computationally cheaper solution con-
sists in producing a weighted sample approximalzfifj’g1 by
sampling from the importance sampling distribution

The advantages of the TSS algorithm not possessed by
standard SMC methods is the possibility of, firstly, choos-
ing the first-stage Weighbsiv '* arbitrarily and, secondly, let-

N Ll WIJCWT;VZ N ting N and My be different. It is well known that SMC
Pi1(A) = Z mR}Z (& A4), methods perform well when the importance weights are well-
i=1 Zj:l “k Tk balanced, and thus [1] propose, in the c&ze= ) andX =

R4, the first-stage importance weight functifi“*> (x.;,) =
gk+1] [y ' Q(xx, dz’)]. The analysis presented in the follow-
ing sections will however show that this choice is not opti-
mal in terms of minimal asymptotic (a¥ tends to infinity)
sample variance. Moreover, theoretical results on thd-part
cle approximation stability will indicate that the seconage
resampling pass should, at least for the cdtg = N, be
cancelled, since additional resampling exclusively insgs

4 fini N the sampling varignce. Thus, the idea tha_lt the secon_d-stage
R*. Defining Wit (@o.r+1) = [gk“(ﬁ’?}l)/Tk(%:k)] X resampling pass is necessary for preventing the particle ap
dQ(ak, ) /AR (@, ) (@h+1), Zoskr1 € X7, we have proximation from degenerating does not apparently hold. Re
cently, a similar conclusion was reached independentliyen t

for A ¢ x®0+2) Herer)", 1 < i < N, are positive
numbers referred to d#st-stage weightand the proposal
kernel R}, is, for zo., € X*! andA € x®*+2) of form
Ry (xo:k, A) = [ 0w,y (dfyy,) Ri (2, daj, ;). Thus, adraw
from R} (xo.x, -) is produced by extending the paif., <
XF+1 with an additional component obtained by simulating
from Ry (xk, -). In this article we consider first-stage weights

of type 7" = Ty(&,") for some functionT}, : X! —

- N
j(bj’%“ (@:pt1) X Z Lo (o) Wit1 (Zo:k11) 5 manuscript [4]. Consequently, we advocate the scheme de-
Pr+1 -1 scribed in Algorithm 2. By letting;,* = 1,1 < i < N, in

N , Algorithm 2 we obtain the so-calldabotstrap particle filter
for zo.1 € XF2. A new sample{ (€., @p: ) Y tar-
geting ¢y, , is hence generated by simulatindy particles 3. BOUNDS AND ASYMPTOTICS FOR PRODUCED
éfj:l, 1 < i < My, from py,, and associating with these APPROXIMATIONS

. . AN ~N,i
particles thesecond-stage weights, £ mj\ffl(ﬁkﬂ)' In [2, Theorem 3.10(i)] we establish, under the assumption
5T 1

Finally, a uniformly weighted samplg,;";, 1)}, still  that each measui@(z, -), = € X, has a density that is uni-
targetinggbkf?’ﬂ, is obtained by resamplinyy of the proposed formly bounded from below and above—pointing to appli-



Algorithm 2 Single-stage auxiliary particle filter (SSAP)

Ensure: {(&;',w, ")}, approximates.

1 fori=1,...,Ndo
2: drawINZ muItinomiaIIy with respect to the normal-
ized Welghtszu,C NN Wt << N;
N,i
3: slmulateé,€+1 ~ RP(S,ICV’I’“ -), and
Ni a 2N
4 setw)| £ Wk+1(£k+1) and¢,| £ &1

5: end for
6: Take{(£k+1, wk+1)}N 1 @s an approximation afy 1.

cations whereX is a compact set—, ah? error bound for
approximations produced by the TSS algorithm of type

My 4
@) N RE) — oufi|| <

—
J p

1 . 1
llgnir o |——=—= Cpp®™V My —B(l4+n—i)|,
Hf HX +1,00 \/M—Nkz:% kP \/N ( )

for f; € B,(X"*1) depending on the last+ 1 —i states of the Ao C L1(X, ¢b0)

trajectory only. Here the constapt< 1 is the mixing rate of

the hidden Markov chain when evolving conditionally on the
observations. In [2, Theorem 3.10(ii)] we also state an-anal

ogous bound, this time inversely propotionalXoand My,

Definition 2 (Asymptotic normality) A weighted sample
{(&" w1} M in X™ is asymptotically normafabbr. a.n.)

m m

for (u, A, W, 0,v,{an}) if,as N — oo,

2 wNz

—nf] BN, *(f)], f €A,

MN
_ i i P
A ()Y (W ENT) —af . fEW,
i=1
an ()"  Jnax. w250
i<Mn

The following result ([2, Theorem 3.5]) states consistency
and asymptotic normality of weighted samples produced by
the TSS algorithm. For brevity, we present the calse My
only; similar results are however available also in the gane
case. A recent result in the same spirit has, independehtly o
[2], been established in the manuscript [4].

Theorem 1 Suppose thafly, € L2(XF1 ¢) and W), €
LY(Xk+1 @) for all k& > 1, and that the equally weighted
sample{ (&), 1) fvl is consistent forfL! (X, ¢o), ¢o] and
a.n. for [(bo7 Ao, L ( ¢0) 00, ¢0, {Nl/z}] In addition, let
and deflne the famil§Ay }r>1 by

Apgr = {f € L2 (X2 ppa) -
RE(- Wit [ VHE G f]) € LEOXMT gn), HR (| f]) €

on the bias of the approximations. Under the mentioned as-
sumption we may expect the model depending constapts

k > 0, to be roughly uniformly bounded ih. Furthermore,

by inspecting the proof of this result, a similar bound is ob-Furthermore, letoy : Ag — R* be a functional and define
tained for approximations produced by Algorithm 2 by simplythe family{oy } > of functionalss;, : Ay — R* by

letting B = 0 andM = N inthe formula above. Especially,

using this latter bound far= 7 yields a bound on the errorof (F) 2 Var,, () + o [HR( [ = drsr f)]

the approximatéilter distribution (that is, the marginal o, k+1 Pt [r H ! (XE+2)]2

with respect to theith component) that igniformly bounded O { TR RY [, W;f+1(f — b1 )2 T

[Gr H i (XEH2)]2 '

A N L2(XEE ), Wigr f2 € LY (XFT2, ¢k+1)} :

in n. From this it is obvious that the first-stage resampling
pass is enough to preserve the sample stability.
In this article, focus is however set on convergence of th

&hen each samplé(¢X*, 1)} |, k > 1, is consistent for
approximations in the following senses. PIB(E,. ™, 1)}imy 7

[LY (X5, br), o] and a.n. forigy, Ar, L (XFT, o), o, i,
Definition 1 (Consistency) A sample{ (¢, N} My inxm  {N'/2}]. O
is said to beconsistenfor the probability measurg and the

setC C L'(X™, p) ifforany f € C, asN — oo, The sets{A }1>1 can be controlled by imposing some addi-

tional restrictions on the model and the importance wejghts

Mn . .
_ i i P indeed, if for allk > 0, < oo and||W; 1 <
(@)D w e o uf | = 0 ll9kllx.oc < 00 And[Wiklxis1 oo
] oo, then it can be proved th#ty = L*(X, ¢o) implies that

A = L2(Xk+1 @) for all K > 1. Moreover, by inspecting
the proof of Theorem 1 one concludes that the iy, (f)
of a,%H (f) represents the cost of introducing the second-stage

QN1 max W) 0.

1<i<Mn

Let u be a probability measure X, X®™), v a finite
measure oiX™, X®™), A C L}(X™, p) andW C L}(X™, v)
be sets of real-valued functions &, ando a real-valued
non-negative functional oA.

resampling pass, and the asymptotic variance obtained when
inactivating this operation is obtained by simmypunging

the term in question from the presented formulaus, bear-

ing the stability results of SSAP algorithm in mind, there ar



indeed reasons for strongly questioning whether secaagkst with, for z € E,
resampling should be performed at all.

2
We call a first-stage importance weight functidp opti- ai(f) 2 / [dui (w)] 12[f](z) vi(dz)
malif it implies a minimal increase of asymptotic variance at ‘ £ Ldy; ’ ’
a single iteration of the scheme. We should expect that such a [f)(z) £ f(z) —nf .

weight involves the target functiof Indeed, define
Minimizing the asymptotic variancE:f:1 [w2a;(f)/] with

J(#o.1) = respect tor;, 1 < i < N, (e.g. by means of the Lagrange
(g 2 multiplicator method) yields the optimal weights
/ dRY mOk’ (ivo:k,fﬂ') D21 [fl(mo, ') R (2, da’),
, duz
where, for(zg., ') € X**2, T X wia \// dyZ w I2[f](z) vi(d) ,
M(%:k’ a') = gk+1(x/)M 2, and the similarity between this expression and that of the op
ARy (@o:k, ) ARk (2, -) timal first-stage importance weight functioi§ is striking.
Qi1 [fl(xok, ') 2 fxouk, @) — a1 f This strongly supports the idea of interpreting optimal pkam

allocation for particle filters in terms of variance redoatfor
and let;', , [f] be the induced second-stage weight functiongratified sampling.

we then have the following result. In general the optimal weights lack closed form expres-
Theorem 2 Letk > 0 and suppose thaf € {f’ € Ay, :  SiOns, butin [2] it is discussed how approximations of the
Tr[f') € L2(XFHL, o), Wiep 1 [F1] € LE(XF+2 ¢y 1)}, Then  Samecan be obtained by means of a prefatory simulation pass.
T} is optimal and the minimal variance is given by Since the TSS procedure was suggested as an improve-
ment of the bootstrap filter it is of great interest to compare
o [HR(C f = drr f)] + (0u T [£])? the minimal asymptotic variance of Theorem 2 with the one
Varg, ., (f) + [ H 2 (XF+2)]2 ‘ (see e.g. [5, Theorem 6]) for the latter scheme when the same

proposal kerneR} is used in both cases. In this context we

The functionsl;’ have a natural interpretation in terms of show that the minimal TSS variance is the smaller of the two
optimal sample aIIocat|on fostratified sampling Consider  if and only if

the mixturer = Zle w; 4, €achyu; being a measure on
(E,€) andY."_, w; = 1, and the problem of estimating, for ~ Varg, ({RP[:, W2, (f — dost1f)?]}?)

some giv_en measurable amdntegrapletarget fun_ctioﬁ_, thg > Varg, {R[, Wir (f — doxn £} - (2)
expectationr f. In order to relate this to the particle filtering
paradigm, we will make use of the following algorithm. Intuitively, we may expect (see [1]) that including the ob-
servations in the first-stage weights is profitable only when
Algorithm 3 Stratified importance sampling these are informative, whereas additional resamplingdor n
1. fork=1,...,Ndo informative observations exclusively leads to an increafse
2: draw an index(;, multinomially with respect to some sampling variance. The inequality (2) confirms this idea; in
weightsr;, 1 <i < d, Z‘if:l =1 deed, if the likelihoody,+1 is highly peaked, squaring the
3 simulate¢;, ~ vy, , and same will amplify the peakishness, which will increase the
4 compute the weights), 2 f_%y& -, quantity on the left hand side of (2).
5. end for o

6. Take{(&,wy) Y, as an approximation of. 4. ANUMERICAL EXAMPLE

A rigorous numerical study of the results in Section 3 is be-
In other words, we perform Monte Carlo estimationgf  yond the scope of this article, but in order to get an initial
by means of sampling from some proposal mixtﬁféz1 ;v;  idea of the performace of our optimal SSAP filter we apply
and forming a self-normalized estimate—cf. the techniquéhe method to a first order linear autoregressive process ob-
applied in Section 2 for sampling frodsy’fH. In this setting, served in noise (cf. [3, Example 7.2.3]):
the following central limit theorem can be established unde

weak assumptions: X1 = 0 X + oW ,
Ye =Xk +0,Vi .
N
VN [SD wi f (§k) DA wiai(f) - - .
=~ —*f| — O,Z - ; Here¢ = 0.9 and {W;.}72, and{V,}, are independent
Il 2ar—1 We i=1 ¢ Gaussian white noise processes suchtiat~ N (0, 1) and



Vi. ~ N(0,1). We let the latent chain be put at stationarity

from the beginning, that isX, ~ N[0,02 /(1 — ¢?)]. For a s
linear/Gaussian model of this kind, exact expressions ef th
optimal weights can be obtained using the Kalman filter. In sy
this setting we simulated, fer, = o, = 0.1, a recordy,.;,
of observations and estimated the filter posterior meamgalo T
this trajectory by applying (1) SSAP based on true optimal
allocation weights, (2) SSAP based on the generic weights
TFP%S of [1], and (3) the standard bootstrap filter (i.e., SSAP
with T, = 1). Since the optimal weights are derived using

1551

Mean square error

16k

asymptotic arguments we used as many@s000 particles. -tes)

The result is displayed in Figure 1(a) and it is clear thatrope

ating with true optimal allocation weights improves—indin i S e N T S - R
with what we expect—the MSE performance in comparison e

with the other methods. The main motivation of [1] for intro- S (a)‘

ducing auxiliary particle filtering was to roubustify therpa |
cle approximation to outliers. Thus, we follow the lines 8f [ ,
Example 7.2.3] and repeat the experiment above for the obser
vationsy,.s = (—0.652, —0.345, —0.676, 1.142,0.721, 20),
standard deviations, = 1, o, = 0.1, and particle sample
size N = 10,000. Note the large discrepancy gf. The out-
come is plotted in Figure 1(b) from which it is evident that
the optimal weights are the most efficient also in this case; ™

Mean square error

moreover, the performance of the standard auxiliary gartic

filter is improved in comparison with the bootstrap filter: Fi 2y 1
nally, Figure 2 displays a plot of the weight functidfis and : s : 5 : s : . : .
TY %S for the same extreme observation record. Itis clear that e

Tr%5 is not too far away from the optimal weight function (b)

(which is close to symmetric in this extreme situation) iis th =
case, even if the distance as measured by the supremum nog
is still significant.

ig. 1. Plot of MSE performances (on log-scale) of the boot-
ap particle filter £), SSAP based on optimal weighfsl,
and SSAP based on the generic weighfs* of [1] (+). The

MSE values are computed using 400 replications for each al-
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