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Résumé – Ce travail présente un nouvel estimateur de la distribution de la durée de vie en fluorescence. Un échantillonneur
de Gibbs est développé pour estimer les paramètres quand le minimum d’un nombre aléatoire de variables distribuées selon un
mélange exponentiel est observé. L’algorithme est testé avec des données simulées, et une comparaison avec des méthodes utilisées
en pratique est faite. Nos résultats indiquent que la méthode proposée requiert moins d’observations que des méthodes classiques
pour obtenir la même qualité statistique de l’estimation.

Abstract – This work presents a new estimator of the fluorescence lifetime distribution. A Gibbs sampler is developed for
estimating the parameters when the minimum of a random number of variables following an exponential mixture distribution
is observed. The algorithm is tested on simulated data and compared to methods used in practice. It turns out that the new
method requires less measurements than standard methods to obtain the same statistical quality of estimation.

1 Model

In time-resolved fluorescence the technique of Time Cor-
related Single Photon Counting (TCSPC) measures the
fluorescence lifetime, i.e. the time from a laser pulse that
excites a random number of fluorescent molecules until the
emission of photons (see [8], [4]). For technical reasons only
the lifetime of the first arriving photon can be measured.
The current practice to estimate the probability distribu-
tion of the lifetime is to diminish the laser intensity such
that there is (almost) never more than one photon per
light pulse. Then the recorded arrival times can be consi-
dered as i.i.d. observations of the lifetime distribution, but
as a result for more than 90% of the laser pulses there is
no photon at all and the experiment takes long. From a
statistical point of view it is a waste to carry out measure-
ments where most of the observations do not contain any
information about the distribution of interest. In this work
we propose an MCMC algorithm to estimate the lifetime
distribution for more intensive laser pulses, so the proba-
bility of several photons per excitation pulse is no longer
negligible. Then one says that ‘pile-up’ occurs, i.e. the dis-
tribution of the measurements is a nonlinear transforma-
tion of the lifetime distribution since only the minimum is
observed. Fluorescence measurements are highly sensitive
to unstable experimental conditions, so whenever a large
number of lifetimes have to be estimated methods may be
useful that require less observations and so allow faster
experiments. Those mehtods can be obtained by dealing
with pile-up affected data.

Actually, in 1968 Coates proposed a correction formu-
lae for histograms of TCSPC data for the pile-up case [1].
Although this method works well, it has rarely been used
in practice, maybe for the reason that it can only be an
intermediate step on the way to parameter estimation of
the lifetime distribution. That means that after correcting

the data by Coates, another method like the least squares
method or an EM algorithm has to be applied to obtain
parameter estimates, whereas the MCMC method that is
proposed here provides parameter estimates directly. Sec-
tion 4 includes a comparison of the MCMC method to an
estimation using the method of Coates.

The lifetime of a single molecule is known to be expo-
nentially distributed, and so the distribution of a mixture
of molecules represents an exponential mixture whose den-
sity is given by

f(y) =
K∑

k=1

αkνke−νky (1)

where νk > 0,
∑K

k=1 αk = 1 and the number of compo-
nents K is supposed to be known. We assume to observe
the following variable

Z =
{

T if N = 0
min{Y1, . . . , YN , T} otherwise. (2)

where
– the sequence (Yk)k≥1 consists of i.i.d. variables from

the exponential mixture distribution (1),
– the random variable N follows a Poisson distribution

Poi(λ) and is independent from (Yk)k≥1,
– T denotes the observation time, i.e. photons arriving

after T cannot be observed and are censored.
For the variable Z we have for all z ∈ (0, T )

P(Z > z) =
∞∑

n=0

P(N = n)P(min{Y1, . . . , Yn, T} > z)

=
∞∑

n=0

λn

n!
e−λ(F (z))n

= e−λF (z)

where F (.) denotes the cdf of the exponential mixture dis-
tribution given by (1) and F (.) = 1−F (.). Thus, Z admits



a density p(.) w.r.t. L(0,T ) � δT where L(0,T ) denotes the
Lebesgue measure on (0, T ) and δT the measure having
mass one in T . The density is given by

p(z) =
{

λf(z)e−λF (z) if z ∈ (0, T )
e−λF (T ) if z = T.

2 Statistical Inference

Let Z1, . . . , ZM be M i.i.d. random variables having the
same distribution as Z defined in (2). Then, for T = ∞,
the distribution of Z can be interpreted as an exponential
mixture with an infinte number of components where the
set of exponential parameters is given by ν1N+ν2N+ . . .+
νKN and the weights depend on λ, ν1, . . . , νK , α1, . . . , αK .
Existing methods for estimating the mixing distribution
of a finite or infinite exponential mixture are the EM al-
gorithm as proposed in [3], the penalized dual method de-
veloped in [7] that searches the nonparametric maximum
likelihood estimator (NPMLE) and an MCMC approach
proposed in [2]. In our context the EM algorithm is hard
to handle since the maximisation step does not provide
explicit solutions for all parameters. The NPMLE method
seems to be irrelevant unless one takes into account the
particular structure of the parameter set and the weights.
In contrast the MCMC approach which is more precisely a
Gibbs sampler is easier to adapt to our context, although,
due to the more involved structure of the model, the data
augmentation scheme in [2] cannot be applied. Instead, we
propose to use the missing data (B1, . . . , BK) where Bk is
the number of photons generated from the k-th mixture
component. Due to our choice of the missing data the pos-
terior distributions turn out to be different from the ones
in [2].

3 Algorithm

Following the approach of [2] we obtain identifiability
of the model by ordering the exponential parameters

ν1 > ν2 > . . . > νK .

In order to use improper priors as in [6], the following
reparametrization of the exponential parameters is used

ϕ = ν1, τk =
νk

νk−1
for k = 2, . . . ,K.

In the Gibbs sampler new parameter values are genera-
ted one by one depending on the other parameter values.
So with the initial parametrization of the weights αk and
the constraint

∑K
k=1 αk = 1, the set of possible values of

(α1, . . . , αK) at one step of the algorithm is not the entire
set {(α1, . . . , αK) ∈ [0, 1]K :

∑K
k=1 αk = 1}. The following

reparametrization is necessary to elude that problem

qk =
αk

1−
∑k−1

j=1 αj

for k = 1, . . . ,K − 1.

Now we assume the noninformative prior distribution that
leads to proper posterior distributions as shown in [2]

π(λ, q1, . . . , qK−1, ϕ, τ2, . . . , τK)

=
1

λϕ

K−1∏
k=1

1{qk ∈ [0, 1]}
K∏

k=2

1{τk ∈ [0, 1]}.

The Gibbs sampling algorithm consists of two steps re-
peated many times. The first step is a data augmentation
and the second is the generation of new parameter values
drawn from the posterior distributions. For each observa-
tion Z we propose the data augmentation of the missing
data (B1, . . . , BK) where Bk is the number of photons ge-
nerated from the k-th mixture component. Denoting by
Yz a random variable following the Poisson distribution
Poi(λF (z)), the missing data can be generated by first
drawing the total number of photons N from the distri-
bution

N |Z D=
{

YZ + 1, if Z ∈ (0, T )
YT if Z = T,

then by drawing a vector (B1, . . . , BK) from the distribu-
tion

P(B1 = b1, . . . , BK = bK |N = n, Z)

=


(n−1)!

∏
k α

bk
k

∑
k bkνk

f(Z)(F (Z))n−1
∏

k bk!
e−Z

∑
k bkνk ,

for n ≥ 1 if Z ∈ (0, T )
n!

∏
k α

bk
k

(F (T ))n
∏

k bk!
e−T

∑
k bkνk , for n ≥ 0 if Z = T,

where bk ∈ N and
∑

k bk = n.
We introduce the notation θ = (λ, φ, τ2, . . . , τK , q1,. . . ,

qK−1) for the parameter vector and θ(−λ) for the vector θ
where the element λ is missing. The notations θ(−φ), θ(−τl)

and θ(−q) are defined the same way. Further, we put τ1 =
1. One can show that the posterior distributions for the
different parameters given the data Z = (Z1, . . . , ZM ), the
missing data B = (Bik, i = 1, . . . ,M, k = 1, . . . ,K) and
the other parameters turn out to be

λ|(Z, B, θ(−λ)) ∼ Γ

(
M∑
i=1

K∑
k=1

Bik,M

)

φ|(Z, B, θ(−φ)) ∼ Γ

(
M∑
i=1

1{Zi < T},
K∑

k=1

τ1 . . . τk

M∑
i=1

BikZi}

)

ql|(Z, B, θ(−ql)) ∼ Beta

(
M∑
i=1

Bil + 1,
M∑
i=1

K∑
k=l+1

Bik + 1

)
The posterior distribution of τl is a mixture of Gamma dis-
tributions restricted on the interval [0, 1] with

∑M
i=1 1{Zi <

T} components. Since the computation of all parameters
of this distribution is costly, it is more convenient to use
a slice sampler or the accept-reject method for simulation
from the distribution where the density function is given
by

p(τl|Z, B, θ(−τl)) ∝ exp

{
−

K∑
k=1

φτ1 . . . τk

M∑
i=1

BikZi

}

×
∏

i:Zi<T

(
K∑

k=1

φτ1 . . . τkBik

)
1{τl ∈ [0, 1]}.

Typically the parameter values from the first 5.000 steps
are thrown away to ensure convergence of the algorithm.
For a more sophisticated control of convergence an adap-
tion of the Rao-Blackwellized control variate presented in
[2] can be used. Parameter estimators are obtained by ta-
king the mean values of the generated values. Moreover,



the algorithm is robust to different starting values. We
recommend to use uniformly distributed values for the
weights αk and any distinct values for the exponential pa-
rameters νk (like 1, 2, 3, . . .). For the intensity λ the initial
value

− log

(
M∑M

i=1 1{Zi = T}

)
,

may be used since P(N = 0) = e−λ.

4 Experimental Results

In this section simulations are carried out to test the
performance of the new Gibbs sampler. Table 1 presents
results obtained for data simulated from models with dif-
ferent numbers of components K. Note that all estima-
ted values are close to the true parameter values and, of
course, by increasing the number of observations one may
obtain even higher precision. Especially in the monoex-
ponential case (K = 1) very good estimates are provided
for relatively intense laser pulses (λ = 3). For illustration
the quantile-quantile plot for the two-components model
is presented in Figure 1. It shows that the estimated dis-
tribution is close to the true one, which is also confirmed
by a high p-value of the Kolmogorov-Smirnov test (0.984).

Tab. 1 – Simulation results for K = 1, 2, 3 components
and 3000, 3000, 10.000 observations, resp.

K = 1 true values estimated values
λ 3 3.05
ν .1 .101
K = 2
λ 1 .994
α1, α2 .75 .25 .742 .258
ν1, ν2 6 .5 6.032 .518
K = 3
λ 1 1.01
α1, α2, α3 .33 .33 .33 .347 .329 .323
ν1, ν2, ν3 5 1 .1 4.88 .970 .101

From Table 2 we derive the typical reasons that wor-
sen the estimation for any mixture of distributions (see
[5]) : first, increasing the number of components which
means having more unknown parameters ; second, com-
ponent densities that are close to each other and hence
difficult to distinguish. In both cases one can show a heavy
decline of the Fisher information. For the problem where
the minimum of a mixture of distributions is considered
there is a third reason that is related to the intensity λ
that may worsen the estimation. Increasing λ means in-
creasing the mean number of emitted photons. So the ob-
served minimum is taken over more and more arrival times
and measurements are mostly close to zero and informa-
tion gets lost. Hence, we conclude that our MCMC method
provides reliable estimates when the model parameter va-
lues are such that the Fisher information is not too small.

Recall that our main goal is to obtain a method that

Fig. 1 – Quantile-quantile plot for the two-component
model with the true parameter values λ = 1, (ν1, ν2) =
(6, .5), (α1, α2) = (.75, .25).

Tab. 2 – Simulation results for K = 5, 2, 1 components
and 10.000, 3000, 3000 observations, resp.

K = 5 true values estimated values
λ 1 1.23
α1, α2, α3 .2 .2 .2 .476 .089 .105
α4, α5 .2 .2 .160 .171
ν1, ν2, ν3 10 7 5 7.25 1.29 1.14
ν4, ν5 1 .1 .104 .001
K = 2
λ 1 .972
α1, α2 .066 0.33 .811 .189
ν1, ν2 6 6.1 5.243 6.34
K = 1
λ 8 8.46
ν .1 .092

handles with pile-up distorsion (i.e. λ > 0.1) in order to
reduce the required number of measurements M . Let us
now compare the MCMC method to the following esti-
mation practice. Data from model (2) are obtained at a
small laser intensity (λ = 0.05) so that the probability
for 2 or more photons per laser pulse becomes negligible.
Then the observed arrival times, i.e. measurements smal-
ler than T , are considered as i.i.d. observations from the
exponential mixture distribution described by (1) and a
classical EM algorithm for this distribution is applied. Re-
peated simulations provide estimates of the bias and the
variance of the estimators for a model with two compo-
nents and various numbers of observations. For the same
two-components model we simulated data with a more
intense laser (λ = 1) and applied the MCMC method.
From the results shown in Table 3 we see first that for
both methods bias and variances decrease by increasing
the number of observations and, second and more notable,
that any bias and any variance from the standard method
exceeds the corresponding value of the MCMC method.
Actually, comparing the results for 10.000 observations of



the first method to the results for 3.000 observations of
the new method shows that all values except one from
the MCMC method are smaller than the first. Hence, we
conclude that for this choice of parameters for the MCMC
method less than a third of the observations of the stan-
dard method are necessary to obtain estimates having a
comparable statistical quality.

Tab. 3 – Comparison of a standard estimation method
and the MCMC method for a two-components model with
true parameter values α1 = .33, α2 = .66, ν1 = 0.5, ν2 = 6.

Standard estimation method (λ = 0.05)
nb of obs 1000 3000 5000 10000
α1 bias .0357 .0135 0.0116 .0098

var .0231 .0064 .0036 .0019
ν1 bias .0147 .0061 .0010 .0030

var .0173 .0042 .0026 .0014
ν2 bias 1.939 .4197 .2015 .1331

var 88.67 4.633 1.8343 .8316
MCMC method (λ = 1)

nb of obs 1000 3000 5000 10000
α1 bias .0138 .0027 .4333e-3 .0026

var .0012 .4599e-3 .3550e-3 .1769e-3
ν1 bias .0089 .0044 .0006 .0029

var .0142 .0003 .0001 .0001
ν2 bias .4984 .0518 .0023 .0465

var .3619 .1574 .0753 .0555

Finally, the MCMC method is compared to the ap-
proach of Coates another method dealing with the pile-
up case. In [1] Coates proposes a correction formulae for
histograms that works for any distribution F of photon ar-
rival times where the number of independent photons per
excitation N follows a Poisson distribution and only the
first arriving photon per laser pulse is observed. Denote
mi the counts in the i-th bin of the histogram based on
M laser excitations. Then the ‘corrected’ histogram that
estimates the density of the distibution of the arrival times
F is given by the new counts

− log

(
1− mi

M −
∑i−1

j=1 mj

)
.

As Coates’ method is a correction of histograms we
conducted the following simulation study : a histogram
from the distribution of Z defined in (2) is simulated with
a bin width in the range of the resolution of the TCSPC
technique, then the Coates correction is applied and finally
an EM algorithm for the exponential mixture distribution
provides parameter estimates. On the same data set the
MCMC method is applied. By repeated simulations we ob-
tained estimates of the bias and the standard deviation of
the estimators. The results for various model parameters
are displayed in Table 4 and we note that the performance
of the MCMC method is superior to the method based on
Coates’ correction when there are one or two components,
i.e. bias and variances of all estimators are smaller. In the
case of three components both methods may be considered
as comparable.

Tab. 4 – Comparison of the bias and standard deviation
for the Coates correction and the MCMC method, for mo-
dels with K = 1, 2, 3 components.

True values Coates MCMC
ν1 = 3 .414 (.138) .344 (.114)
λ = 3 - - .386 (.060)
True values
ν1 = 6 .655 (.219) .616 (.203)
ν2 = 0.5 .016 (.031) .003 (.025)
α1 = 0.66 .013 (.022) .003 (.020)
λ = 1 - - .953 (.047)
True values
ν1 = 3 .128 (.269) .204 (.157)
ν2 = 1 .151 (.345) .059 (.367)
ν3 = 0.1 .106 (.010) .003 (.015)
α1 = 0.50 .004 (.107) .035 (.081)
α2 = 0.25 .034 (.099) .036 (.070)
α3 = 0.25 .038 (.024) .049 (.031)
λ = 3 - - .404 (.043)

5 Conclusion

We conclude within the limits of these simulations that
the proposed Gibbs sampling algorithm requires less ob-
servations than the standard method based on less intense
lasers. Moreover, the method provides estimators of at
least the same statistical quality as a method using the
Coates correction. Thus, faster TCSPC measurements to
estimate the fluorescence lifetime distribution are possible.
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