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Résumé

Nowadays, speech interfaces have become widely employed in mobile devices, thus
recognition speed and power consumption are becoming new metrics of Automatic
Speech Recognition (ASR) performance.

For ASR systems using continuous Hidden Markov Models (HMMs), the compu-
tation of the state likelihood is one of the most time consuming parts. Hence, we
propose in this paper novel multi-level Gaussian selection techniques to reduce the
cost of state likelihood computation. The proposed algorithms are evaluated within
the framework of a large vocabulary continuous speech recognition task.
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1 Introduction

The proliferation of mobile devices in daily life has created a great demand for
efficient and simple interfaces. In particular, speech recognition being a key
element of the conversational interface, there is a significant requirement for
low-resource and accurate automatic speech recognition systems.
Recent mobile devices (GPS 1 , GSM 2 , PDA 3 , . . .) offer a large set of func-
tionalities but their resources are too limited for accurate continuous speech
recognition engines. Indeed, state-of-the-art continuous speech recognition sys-
tems use hidden Markov models (HMM) with many tens of thousands of Gaus-
sian distributions to achieve improved recognition. As the performance and the
speed of such systems are closely related to the number of HMM Gaussians,

1 GPS : Global Positioning System
2 GSM : Global System for Mobile Communications
3 PDA : Personal Digital Assistant
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reducing the number of Gaussians without decreasing the system performance
is of major interest.
According to previous studies (Bocchieri (1993); Mak et al. (2001); Jurgen
et al. (1996); Gales et al. (1996)) only a few Gaussians dominate the state
likelihood computation. Hence, different techniques were developed to select
them.
These methods can be divided into two categories :
– State based methods : These methods are often applied to systems having

acoustic models with a high number of Gaussians per state such as semi-
continuous or monophone based systems (Jurgen et al. (1995); Woszczyna
(1998)).

– Model based methods : Gaussian selection is applied to the distributions
belonging to all the states of the acoustic models. This is for example the
case of triphone based recognition systems (Bocchieri (1993); Mak et al.
(2001); Gales et al. (1999)).

In this paper, we propose several Gaussian selection techniques that reduce
the cost of likelihood computation either in the state or in the model level. The
proposed algorithms are evaluated within the framework of a large vocabulary
continuous speech recognition task.

2 State-based clustering and selection

The state-based Gaussian selection is performed in two steps : classification
and selection. During the first step, state Gaussians are grouped into clusters.
Generally, they are organised into a tree structure based on their mean vector
values (Ortmanns et al. (1998); Jurgen et al. (1996); Woszczyna (1998)) and
the Euclidian distance. The second step consists in selecting Gaussians to be
used for the likelihood computation.
In the present section, we introduce a Gaussian similarity metric and em-
pirical criteria to improve the classification process. Then, we evaluate this
clustering/classification within the framework of model shortening by vector
quantification. Finally, we investigate a state-based multi-level Gaussian se-
lection.

2.1 Gaussian classification

For each Gaussian mixture, distributions are grouped into a binary tree struc-
ture and every cut in the tree defines a possible classification. To determine
the optimal cut of the tree, two criteria are considered : data driven and dis-
similarity based.
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2.1.1 Clustering process

The bottom-up clustering algorithm is applied to each mixture of components
as follows :

– Compute distances between all pairs of distributions.

– Merge the closest distributions : Let g1(n1, µ1, Σ1) and g2(n2, µ2, Σ2) be two
Gaussians to which n1 and n2 frames have been assigned during the trai-
ning. If g1 and g2 are merged into g3(n3, µ3, Σ3) then :

n3 = n1 + n2 (1)

µ3 =
n1

n1 + n2

µ1 +
n2

n1 + n2

µ2 (2)

Σ3 =
n1

n1 + n2
Σ1 +

n2

n1 + n2
Σ2 +

n1n2

(n1 + n2)2
(µ1 − µ2)(µ1 − µ2)

T (3)

g3 replaces g1 and g2 in the set which size is reduced by one.

– If the number of Gaussians is greater than 1 go to the first step.

Fig. 1. Hierarchical clustering of Gaussian distributions.

2.1.2 Metrics

Two distances are used : the existing likelihood loss based distance and the
proposed weighted relative entropy based metric.

- Loss likelihood based metric : If g1 and g2 are merged into g3 then the likeli-
hood loss (PV ) is the difference between the likelihoods of g1 and g2 and the
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likelihood of g3 :

PV (g1, g2, g3) = log
‖Σ3‖

(n1+n2)/2

‖Σ1‖n1/2‖Σ2‖n2/2
(4)

This metric is somewhat similar to the loss of entropy based distance used by
Digalakis ( Digalakis et al. (2000)). It was successfully used in model adap-
tation ( Mokbel (2001)).

- The Weighted symmetric Kullback-Leibler divergence (KLP ) : it is expressed
as the distance between two probability density functions weighted by the
amount of training data.

KLP (g1; g2) =
1

2
tr(n1

Σ1

Σ2
+ n2

Σ2

Σ1
) +

1

2
(µ1 − µ2)

T (
n1

Σ1
+

n2

Σ2
)(µ1 − µ2) − (n1 + n2)d(5)

where d is the dimension of the parameters vectors.

The information provided by the amount of training data is only advantageous
if training and testing data have the same proportions.

2.1.3 Tree cutting

From the root of the tree to the leaves, cuts result in many different classifi-
cations. Three cutting ways are proposed :

– Fixed : We consider a constant number of classes. So, the tree is traversed
from the leaves till the number of nodes reaches the predefined number of
classes.

– Weight based : The number of classes depends on the amount of training
data. So the tree is processed (from the root) and we stop at the node whose
children’s weight is less than a predefined threshold.

– Distance based : The tree cutting is performed when the distance between
two levels reaches a maximum value.

For weight and distance criteria, the number of Gaussians per state is variable.
Hence, a mean value is computed.

Codewords refer to the nodes (Gaussian distributions) resulting from cutting
the tree at a specified level. A shortlist is a set of tree leaves having a common
codeword.
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Fig. 2. Gaussian distributions classification

2.2 Model shortening

As a first application of the clustering algorithm, we propose to apply it to
model shortening. Then we investigate its impact on the system performance.

2.2.1 Experimental setup

For all the experiments we use :

– parameter vectors with 12 MFCC coefficients, energy, and their first and
second derivatives.

– 40 context independent models trained with 82 hours of the Ester train
database ( Galliano et al. (2005)).

– a dictionary containing 118000 words.
– a language model formed by 4 millions of bigrams and trigrams.
– an hour of Broadcast News extracted from the Ester test data set.

In order to compare the different systems, several reference systems 32, 64,
80, 128, 180, 256, 220 and 256 Gaussians per state are produced.

Considering the system with 256 Gaussians per state, the clustering algorithm
is applied to each Gaussian mixture. Depending on the experiments, either
the likelihood loss or the weighted cross entropy based metric is used. The
previously tree cutting criteria (fixed, weight based or distance based) are
also evaluated.
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2.2.2 Fixed classes

The same number of classes is used by the reference system (REF ) and by
the loss likelihood (PV ) and weighted Kullback-Leibler (KLP ) based systems.
After clustering, the PV and KLP models obtained are trained. We find that
two iterations are sufficient for a good parameter estimation.Results within a
confidence interval of 1% are as follows :

Tab. 1
WER for REF , PV , and KLP systems

Number of Gaussians REF (%) PV (%) KLP (%)

32 42.6 40.6 39.5

64 40.4 38.0 37.5

80 38.3 37.4 36.9

128 37.3 36.2 36.2

180 36.4 36.1 36.2

220 36.3 35.8 35.5

256 36.3 - -

512 35.5 - -

Table 1 and Figure 3 show that :

– Both PV and KLP systems outperform the reference one.
– Performance of the KLP system using 220 Gaussians per state is similar to

the reference with 512.
– WER decreases by about 3% compared to the reference system.
– With a large number of clusters differences are less noteworthy.
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Fig. 3. WER vs number of Gaussians, for REF , PV and KLP systems
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2.2.3 Weight based classes

By using this criterion, we ensure that each cluster has a sufficient amount of
training data to estimate it. As the number of Gaussians per state is variable (it
depends on the acoustic variability of each state), a mean value is considered.
Results are as reported in Table 2 and Figure 4.

Tab. 2
PV and KLP weight based cutting

Metric Number of Gaussians WER (%)

KLP 28 40.0

53 36.6

150 35.9

195 36.0

PV 53 39.5

101 36.8

156 36.5

We notice KLP outperforms both the PV and the reference system. Espe-
cially, with a mean of only 53 Gaussians per state, its performance is close to
that of the reference system with 256 Gaussians per state. Besides, the WER

decreases by about 4.8% compared to the initial system using the same num-
ber of Gaussians.
28 Gaussians per state on the KLP system perform better than 64 Gaussians
in the reference system.
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Fig. 4. Weight based tree cutting
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2.2.4 Distance based classes

This criterion prevents the clustering of too distant Gaussians. Gaussians are
considered distant when they are too different (in the case of KLP distance) or
when merging leads to a big likelihood loss (if PV based metric is employed).

We consider several levels of the tree and cut when the distance between two
levels reaches a maximum value. The obtained results are reported in table 3.

Tab. 3
PV and KLP distance based cutting

Metric Number of Gaussians WER (%)

KLP 30 40.7

59 37.7

101 36.1

196 35.9

PV 44 39.4

94 36.7

204 35.8

Once again, we notice that PV and KLP systems outperform the reference,
and that the KLP divergence based system is the best. Applying KLP or
PV clustering process, we obtain globally the same performance as the refe-
rence system using only about 40% of the total number of Gaussians. These
results are good but they remain not as good as the previous experiments (53
Gaussians) in which only 20% were used.

0 32 64 128 180 220 256
35

36

37

38

39

40

41

42

43

Gaussians per state

W
E

R

 

 

Initial sytem
KLP based system
PV based system

Fig. 5. Distance based tree cutting
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2.2.5 Weight versus distance

To compare distance and weight criteria we plot their curves using both KLP

and PV metric.
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Fig. 6. Weight and distance based tree cutting for the KLP system
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Fig. 7. Weight and distance based tree cutting for the PV system

For the KLP system, the weight criterion performs better than distance,
especially when the number of clusters is low. In the case of PV clustering,
the situation is the contrary. These results can be interpreted as follows :

– When the KLP clustering metric is used, no particular attention is given
to the amount of training data available for each cluster. Only resembling
Gaussians are merged, ensuring that at each level clusters are as distant
as possible. So in some levels many clusters may not have enough training
data, and cutting at these levels is of little value.

– In the case of PV based clustering, the loss of likelihood is minimum at
each level. So the resulting clusters are as representative as possible of the
training data. Knowing that no information about similarity of clusters to
each others is taken into account, many resembling clusters can be present in
the same level. In this case the distance based cutting criterion can remove
the redundant information.

9



2.3 State-based Gaussian selection

The second application of the classification algorithm is Gaussian selection.
We investigate a likelihood-based and multi-level Gaussian selection.
The overall algorithm operates in two steps : in the first state Gaussians are
organized into a binary tree. Several cuts of the tree are performed. Each
level of cut is characterised by its number of codewords. Tree leaves having a
common codeword form a shortlist.
In the second step (ie. selection) codeword likelihood is computed and sorted.
Only the most likely codewords are considered when descending down to the
lower level of cut. When the leaves of the tree are reached, the corresponding
Gaussian distributions are sorted by weight and the best of them contribute
to the likelihood computation.

2.3.1 The selection algorithm

Selection is applied during the decoding process. Its goal is to detect, for each
node of the decoding graph, Gaussians that dominate the likelihood compu-
tation. It operates as follows :

(1) For the current level of cut, codeword likelihoods are computed. Then
they are sorted and the most likely are kept before moving down to the
lower level of cut.

(2) When reaching the last level of cut, 2 sets of Gaussian distributions can
be selected for the likelihood computation :

a) leaves whose ancestors have all been kept.
b) leaves selected in a) with large weight values.

The following example (Figure 8) illustrates an application of this algorithm
to a mixture of 24 Gaussian distributions. In this case two levels of cut are
considered : level 1 and level 2.

First, likelihoods of the codewords 31, 32 and 33 are computed and sorted. As
the codeword 31 is the most likely it is selected.
Then we move to the next level of cut (level 2) and compute the likelihood of
the corresponding nodes that are 25 and 26. If codeword 26 is more likely, the
corresponding leaves which are the Gausians 4,5, 6 and 7 are selected.
Finally we can decide to compute the likelihood with all of them or to keep
only those with the highest weight values.
Hence we computed a total of 9 likelihoods which is less time consuming than
24.
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Fig. 8. Bi-level Gaussian selection example

2.3.2 Experimental setup

The Sirocco-Htk large vocabulary speech recognition system was used to com-
pare the performance of the different schemes. This reference system makes
use of 40 context independent acoustic models with 3 states each and 512
Gaussians per state. The parameters of these models are estimated on the
Ester train database. The same parametrisation and textuel resources (dic-
tionnary and language model) of the previous experiments are employed.
Tests are conducted using an hour of Broadcast News extracted from the Ester
test data set.
The performance is addressed in terms of Word Error Rate (WER) and per-
centage of likelihood computation C. The latter is defined as :

C =
computed likelihoods

all likelihoods
(6)

For the reference system : WER = 35.5% and C= 100%

2.3.3 One-level based selection

For each state, the 512 Gaussian distributions are organized into a tree struc-
ture. We experimented cutting the tree at the levels 40 and 120 which corres-
pond respectively to 40 and 120 codewords.

2.3.3.1 Shortlist scores : We vary the number of selected codewords
and use the corresponding tree leaves for the likelihood computation.
For each number, the Gaussians and WER are reported in Figure 9. As the
number of the selected Gaussians is variable, a mean value is considered. The
fraction C is also computed and depicted in Figure 10.
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Fig. 9. Computing the likelihood using the best shortlists
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Fig. 10. Computing the likelihood using the best shortlists

For the same WER, the 120 codeword system makes use of fewerless Gaus-
sians than the 40 codewords one. In particular, with only 23 Gaussians per
state (Figure9) it gives exactly the same results as the reference system
The same experiments (Figure10) show that the value of C is lower for the 40
codeword system. This is because this fraction takes into account the codebook
size. The best tradeoff between C and the WER is obtained by the selection of
2 codewords. This corresponds to the pair of values (C,WER)=(15.16%,35.6%).
In this case the WER increases by only 0.1% and the likelihood computation
cost is reduced by a factor of seven.

2.3.3.2 Data-based selection : We take the best system of the previous
experiments : 40 codewords among which the 2 likeliest are selected.
As the training process is based on the ”Maximum Likelihood” criterion, the
likely distributions have large weight values. So, to reduce further the number
of selected Gaussians, they are sorted by weight and only the components with
highest weights are kept.
When varying the number of selected Gaussians, we obtain the results of
Figure 11.
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Fig. 11. Computing likelihood using the highest weight Gaussians

The best tradeoff between C and WER is (12.48%,35,6%). These results are
better than those of the previous experiments. Indeed, for the same value of
WER (35.6%) the value of C is reduced. In this case, the likelihood computa-
tional cost is decreased by a factor of eight.

2.3.4 Bi-level selection

Now the clustering tree is cut simultaniously into two levels of cut.Two bi-
levels of cut are experimented : 40-60 codewords and 40-120 codewords.

2.3.4.1 Shortlist scores : In order to improve the results of the ex-
periments in 2.3.3.1, all densities of level 40 are computed and the two best
codewords are selected. Then we move to the second level of cut (that is 60
or 120). The corresponding codewords are computed and the most likely of
them are kept. Finally, the Gaussians for there codewords are used for the
likelihood computation.
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Fig. 12. Computing likelihood using two levels of cut and the best shortlists
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The 40-120 system gives better results than 40-60. This is foreseeable because
the level 120 is lower than the level 60 so the classification is more precise. The
best tradeoff between C and WER corresponds to the pair of values (C,WER)
= (13,21%,35.6%). This result is better than that in 2.3.3.1 where the tree was
cut at a single level but less good than the result using weight values (2.3.3.2).

2.3.4.2 Data-based selection : We proceed in the same manner as in
2.3.4.1. The best settings are considered : bi-level of cut 40-120, and the best
pair of values (C,WER)= (13,21%,35.6%). The optimization of the system
consists in keeping only the Gaussians with the highest weight values. When
varying the number of selected Gaussians, we obtain the results of Figure 13.
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Fig. 13. Computing likelihood using the hightest-weight Gaussians

Here, (C,WER)= (35,6%, 12.20%) is the best tradeoff between C and WER.
As the width of the confidance interval is about 0.8%, other tradeoffs are also
satisfactory. It is for example the case of the pair of values (C,WER)= (35,8%,
11.5%) which corresponds to a decrease in the likelihood computation cost by
a factor of nine with a non significant loss of accuracy (+0.3%).

2.3.5 Synthesis

Method C (%) +WER(%)

one level 15.16 0.1

two levels 13.24 0.1

one level + weight 12.48 0.1

two levels + weight 12.20 0.1

a- Bi-level selection is better than one-level selection. So increasing the num-
ber of levels is advantageous.

14



b- The selection of Gaussians with high weight values improves the perfor-
mance.

c- The combination of (a) and (b) gives the best results.

3 Model based clustering and selection

To reduce the likelihood cost in HMM based ASRs two main approaches are ge-
nerally used : Gaussian selection and Sub-vector quantization. In both cases,
the classification ( Bocchieri (1993); Ortmanns et al. (1998); Gales et al.
(1999); Padmanablan et al. (1999)) is performed by clustering/merging Gaus-
sian distributions. So the contextual information is lost and some distributions
will be assigned to codewords of different context.
Hence we propose a context based classification method. The idea is to use
Gaussian distributions of context independent models as codewords. Then the
multi-level classification algorithm is applied as a further improvement of the
codebook. Indeed, this process provides a compact and more efficient code-
book.
Each obtained codebook is tested within the framworks of Gaussian selection
and sub-vector quantization experiments.

3.1 Contextual Gaussian selection

Initially, Bocchieri ( Bocchieri (1993)) proposed a Gaussian selection tech-
nique by vector quantization. He generates a vector quantized codebook and
attributes a shortlist to each codebook entry. During decoding, the frame is
assigned to the nearest codeword/shortlist. Gaussians belonging to this short-
list contribute to that frame likelihood computation. Later, many extensions
of this work have been proposed in the literature (Gales et al. (1999); Olsen
(2000); Leppänen et al. (2006)). They were focused on Gaussian assignments
to classes. Here we are rather interested in improving class building and more
precisely their centroids.

3.1.1 CD-CI mapping

Large vocabulary continuous speech recognition systems need a significant
number of Gaussians to model the different contexts. So Context dependent
(CD) models are often used and the corresponding systems are generally slow.
Small vocabulary systems make use of context independent models (CI) be-
cause the acoustic variability is limited. Hence, they have the advantage of
being fast.
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As both models CD and CI when trained on the same data should represent
the same context, we investigate the use of CI Gaussian distributions as co-
debook in a CD model based large vocabulary ASR system.

The proposed contextual Gaussian selection method consists in :

– Computing all the distances between the CI and the CD Gaussian distribu-
tions.

– Assigning each CD Gaussian distribution to the nearest CI.
– Mapping CD-CI distributions.

Hierarchical clustering of Gaussian distributions

Hence the codebook contains the CI Gaussian distributions. The set of CD
distributions assigned to the same codeword (CI Gaussian distribution) form
a shortlist.

3.1.2 Hierarchical mapping

The state based clustering algorithm (subsection 2.1) is applied to the CI dis-
tributions in order to reduce their length and improve their representation. Let
us keep in mind that the idea behind this procedure is to explore a large set of
distributions and to reduce it by merging the closest components. A mapping
table between the CD distributions and the new codebook (CI distributions
after the clustering process) is constructed.

3.1.3 Experimental setup

We create a large vocabulary speech recognition system based on Sphinx trai-
ning/test tools. The acoustic models are cross-word CD with 6108 tied states
and 32 Gaussians per state. The parameters of these models are estimated
on the Ester train database. Tests are conducted using an hour of Broadcast
News extracted from Ester test set. For this reference system all the Gaussian
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Fig. 14. Mapping between the new CI et CD distributions

distributions are used for the likelihood computation and so C=100%. The
WER is equal to 28.7%.

3.1.4 CI-based codebook

36 context independent models with 32 Gaussians per state and 3 states each
are developed. They have a total of 3456 Gaussian distributions (36*3*32).
After mapping the CD distributions to CI, we apply the classical Gaussian
selection procedure Bocchieri (1993). We also apply the classical Gaussian
selection method to a codebook obtaind by clustering for comparative raisons.
We report in the Figure15 WER and C corresponding to varying the number
of selected Gaussians.
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Fig. 15. WER vs C for classic and contextual Gaussian selection

We can see that contextual performs better than classic Gaussian selection.
The best tradeoff between WER and C corresponds to the pair of values
(29.3%,47.02%) and a loss of accuracy of 0.6% absolute.
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3.1.5 Hierarchical codebook

Hierarchical clustering is applied to CI models with 64 and 128 Gaussians per
state to be reduced to 32 Gaussians per state. Then classic Gaussian selection
is performed using the new codebook.
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Fig. 16. WER vs C for classic, contextual and hierarchical Gaussian selection

From the Figure 16, we notice that the curves of the models initially with 64
and 128 Gaussians per state are the lowest. Typically, with 47% of computed
likelihood the loss of accuracy is less than 0.3%.

3.2 Contextual sub-vector quantization

Recently, sub-vector quantization based methods were proposed as an alterna-
tive to the Gaussian selection approach. They have been successfully applied
to reduce the acoustic model complexity without a significant loss of accuracy.
Several methods of codebook construction have been investigated. They are ge-
nerally based on clustering techniques. For example Mak ( Mak et al. (2001))
performs per stream Gaussian clustering by means of Battacharya distance.
A speech group at Carnegie Mellon University employs k-means algorithm to
cluster sub-vectors (means and variance) into a preset number of codebooks
( Ravishankar et al. (1997)), ..
As the contextual information is lost by clustering, we are interested (in this
subsection) in contextual sub-vector quantization. Then, we investigate the
improvement of the codebook by hierarchical clustering.
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3.2.1 Stream-based mapping

The contextual sub-vector quantization method is performed in three steps :

(1) the mean and variance vectors of each context independant (CI) distri-
bution are divided into streams i.e. subsets of dimensions.

(2) the context dependent distributions (mean and variance vectors) are di-
vided into the same dimension subsets.

(3) for each stream, the symmetric Kullback-Leibler distances between the
CD and CI distributions are computed. Each CD distribution is assigned
to the closest CI distribution.

By the end of this process, we obtain a per stream mapping table between the
CD and CI distributions.

Fig. 17. Per stream mapping between CI and CD distributions

3.2.2 Experimental setup

In all of the experiments, the performance of the proposed methods are compa-
red to those of the initial system which are (WER, C) = (28.7%, 100%) and to
those of an existing sub-vector quantization method (described in Ravishan-
kar et al. (1997) and 3.2). Let us keep in mind that the existing sub-vector
quantization (SVQ) method is based on a simultaneous mean and variance
vectors clustering to construct the codebook. The K-means algorithm is em-
ployed to perform the clustering process by stream.

The parameter vectors are composed of (12mfcc + energy) and their first and
second derivatives. Three subdivisions of the parameters vector are tested :

– Only one stream of dimension 39 is considered.
– Three streams : (12mfcc+energy) + ∆(12mfcc+energy)+ ∆ ∆(12mfcc+energy).
– Four streams : (energy,∆energy,∆ ∆energy) + (12 mfcc) + (12 ∆(mfcc)) +

(12 ∆ ∆ (mfcc)).
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3.2.3 Contextual Sub-Vector Quantization

For the contextual sub-vector quantization (CSVQ), 36 CI models with 32
Gaussians per state (a total of 108 states) are used for the codebook. The
mapping is performed by state (CSVQ-s), by phone (CSVQ-p) or using all the
CI distributions (CSVQ-a).

– CSVQ-s : the Gaussian distributions of each CI state constitute a codebook
for the corresponding triphone states.

– CSVQ-p : the Gaussian distributions of each CI phone constitute a codebook
for the corresponding triphones.

– CSVQ-a : all the CI distributions constitute a codebook for all the triphone
states.

During the decoding process, the likelihood is computed with the CI distribu-
tions and the corresponding CD distribution weights.

Figure 18 reports the WER according to the computation fraction C for the
methods SV Q, CSV Q− s, CSV Q− p and CSV Q− a and for the three sizes
of stream.
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Fig. 18. The performance of the SVQ and CSVQ methods.

Several remarks can be made :
– Multi-stream based methods give better results than those with only one

stream which is logical (there is less quantification distortion).

– The increase in WER generated by the SV Q, CSV Q − s and CSV Q − p

methods exceeds 1%. From our point of view, this is due to the loss of
information about context in the SV Q method. For the CSV Q − s and
CSV Q − p approaches we can say that the distributions of the CI states
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and phones are unable to represent all the corresponding CD distributions.

– The best results are obtained by means of the CSVQ-a method. We point
out that this method makes use of a codebook formed by all of the CI
distributions. The optimal configuration corresponds to the pair of values
(WER, C) = (29.0%, 13.69%), i.e. the likelihood computation fraction is
reduced to 13.69% with a small increase of the WER (+0.3% absolute).

3.2.4 Multi-level Contextual Sub-Vector Quantization

To improve the results of the CSV Q− a method, we applied the hierarchical
clustering algorithm to the CI distributions. The initial codebook is formed by
3456 (ie. 32*108) CI distributions. One level of tree is considered : 5 Gaussians
per state. This level corresponds to the final codebook containing 540 distri-
butions. To compare the results of these experiments to the previous ones,
we use the same stream definitions. We also apply the SVQ method with the
same codebook length.

11 12 13 14 15 16 17 18 19 20 21
28.7

28.8

28.9

29

29.1

29.2

29.3

29.4

29.5

29.6

29.7

1

3

4

1

3

4

C

W
E

R

 

 

codebook 540
codebook 3456

Fig. 19. The SVQ and CSVQ-multi-level results for one stream

From Figure 19, we can notice that :

– The CSVQ-multi-level method outperforms SVQ.

– Using only one stream is of little interest (the WER increase exceeds 0.9%
absolute).

– The CSVQ-multi-level method produces an interesting point (WER,C)=(28.8%,17.89%)
which compares well with the initial system. In addition, the WER is in-
side the confidence interval and thus we can conclude that about 17% of
densities are computed with no loss of accuracy.
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4 Conclusion

This paper presents several algorithms to reduce the computation cost in
low-resource and large application mobile devices. The proposed Gaussian
selection and sub-vector quantization techniques aim to decrease the cost of
likelihood computation both in the state level model in the model one.
Evaluation has been performed within the framework of a large vocabulary
continuous speech recognition task. The likelihood computation cost is reduced
to 17% with no loss of accuracy. As a perspective, we propose to combine this
technique with a Gaussian selection method.
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