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ABSTRACT

We propose new algorithms for estimating autoregressive (AR), mov-
ing average (MA), and ARMA models in the spectral domain. These
algorithms are derived from a maximum likelihood approach, where
spectral weights are introduced in order to selectively enhance the
accuracy on a predefined set of frequencies, while ignoring the other
ones. This is of particular interest for modeling the spectral enve-
lope of harmonic signals, whose spectrum only contains a discrete
set of relevant coefficients. In the context of speech processing, our
simulation results show that the proposed method provides a more
accurate ARMA modeling of nasal vowels than the Durbin method.

Index Terms— Autoregressive moving average processes, Spec-
tral domain analysis, Maximum likelihood estimation.

1. INTRODUCTION

Parametric spectrum modeling is a prominent tool in time series
analysis [1]. The popular autoregressive moving average models are
particularly useful for predicting the future values of a time series
from its past samples. This is why the estimation task is naturally
performed in the time domain. However, performing this task in the
spectral domain may be relevant to process signals whose spectrum
only partly satisfies the parametric model. For instance, a given re-
gion of the spectrum can be corrupted by an extraneous signal. In
the case of harmonic spectra, the parametric model is appropriate
for representing the envelope of the observed spectrum, which only
contains a discrete set of relevant coefficients. The problem of par-
tial spectrum modeling was first addressed by A. El-Jaroudi and J.
Makhoul [2], who introduced the Discrete All-Pole (DAP) method
for estimating AR models. The DAP method included a frequency-
dependent weighting of the whole frequency range, so that the spec-
tral accuracy could be enhanced in certain frequency regions com-
pared to others. A similar approach was later presented in [3]. In [4],
the True Envelope Linear Prediction Coding (TELPC) method was
proposed for estimating the envelope of harmonic speech signals. Fi-
nally, the problem of ARMA modeling in a frequency subband was
addressed in [5]. In this paper, we generalize the DAP approach to
the estimation of MA and ARMA models. Our estimator involves
the iterative maximization of a weighted maximum likelihood func-
tion, which is performed by using a new algorithm, whose conver-
gence is proved in the case of AR modeling.

The research leading to this paper was supported by the French GIP
ANR under contract ANR-06-JCJC-0027-01, Décompositions en Éléments
Sonores et Applications Musicales - DESAM, and by the Groupe des Écoles
des Télécommunications (GET), under contract TAM-TAM. We also ac-
knowledge Gaël Richard, Professor at ENST, who kindly lent his voice for
the signal analyzed in section 4, and Jean-Louis Durrieu, Ph.D. student at
ENST, for its feedback about this work.

2. PRINCIPLE

Given an observed power spectrum Y (ν), where the normalized fre-
quency ν belongs to a subset of [0,1), we propose a Weighted Max-
imum Likelihood (WML) approach for estimating a general ARMA
model (which includes AR and MA models). The Power Spectral
Density (PSD) of an ARMA process of order (P,Q) is of the form

S(ν) = σ2

∣∣∣∑Q
q=0 bqe−i2πνq

∣∣∣2

∣∣∣∑P
p=0 ape−i2πν p

∣∣∣2 = σ2 B(ν)

A(ν)
, (1)

where σ > 0, a0 = 1, and b0 = 1. As usually assumed in the lit-
erature, we suppose that ∀ν , Y (ν) follows an exponential distribu-
tion of parameter S(ν): its probability density function pν satisfies

log(pν (Y (ν))) = log
(

1
S(ν)

)
−

Y (ν)
S(ν)

. Assuming that the values Y (ν)

for all frequencies are independent, we define the weighted log-
likelihood function of the whole observed spectrum as a function
of σ2 and of the vectors a = [a0, . . . ,aP]T and b = [b0, . . . ,bQ]T :

L(σ2,a,b) =
∫ 1

0

(
1+ log

(
Y (ν)

S(ν)

)
−

Y (ν)

S(ν)

)
dμ(ν), (2)

where we added the constant
∫ 1

0 (1 + log(Y (ν)))dμ(ν), so that this
expression is similar to that of the Itakura-Saito distance [2]. Spec-
tral weights are introduced via measure μ , which can be any posi-
tive measure such that

∫ 1
0 dμ(ν) = 1 (for instance, μ can typically

be a discrete measure whose support uniformly samples the interval
[0,1)). Substituting equation (1) into equation (2), and maximizing
the log-likelihood with respect to parameter σ , yields the estimate

(σ�)2 =
∫ 1

0

Y (ν)A(ν)

B(ν)
dμ(ν). (3)

Then substituting equations (1) and (3) into equation (2) yields

L(a,b) =
∫ 1

0
log

(
Y (ν)A(ν)

B(ν)

)
dμ(ν)−log

(∫ 1

0

Y (ν)A(ν)

B(ν)
dμ(ν)

)
.

(4)
The concavity of function log shows that L is non-positive, and at-

tains the value 0 if and only if Y (ν)A(ν)
B(ν)

is constant in the support
of measure μ . Thus maximizing the log-likelihood is equivalent

to maximizing the flatness of the ratio Y (ν)A(ν)
B(ν)

. Since L is un-
changed by inverting and conjugating any roots of the polynomials
A(z) = ∑P

p=0 apzp and B(z) = ∑
Q
q=0 bqzq, we can look for vectors a

and b which belong to the set S of vectors of first coefficient 1, and
such that the polynomial roots are strictly outside the unit circle1.

1For simplicity, the notation S does not account for the vector dimension,
which can be P or Q when appropriate. When viewed as the coefficients of
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3. MAXIMIZATION OF THE LOG-LIKELIHOOD

3.1. Autoregressive models

In this section, we investigate the case of AR models, for which
function L can be straightforwardly optimized2. For all vectors a ∈
S , we parameterize the continuous spectrum in the form

A(ν) =

∣∣∣∣∣
P

∑
p=0

ape−i2πν p

∣∣∣∣∣
2

= aT T (ν)a, (5)

where ∀ν ∈ [0,1), T (ν) is the Toeplitz matrix whose coefficient of
index (p,q) is cos(2πν(p−q)).

Proposition 3.1 (Characterization of the WML AR estimator). If
the C 1 function L admits a critical point a� in S , then this point is
the global maximum of L, characterized by the equation

R(a�,μ) = R(a�,μYA�) (6)

which involves the (P+1)× (P+1) Toeplitz matrices

R(a,μ) =
∫ 1

0

T (ν)

A(ν)
dμ(ν) (7)

R(a,μYA) =

∫ 1
0 Y (ν) T (ν) dμ(ν)∫ 1
0 Y (ν)A(ν) dμ(ν)

. (8)

The proof of proposition 3.1 can be found in Appendix A, and
relies on the gradient of L: 1

2 ∇L(a) = (R(a,μ)−R(a,μYA))a. In
proposition 3.1, notation R(a,μYA) is to be understood as follows:
for any measure μ on the interval [0,1), and any positive function W

of period 1, we define the measure dμW (ν) =
W (ν)∫ 1

0 W (ξ ) dμ(ξ )
dμ(ν).

In the case W = YA, the notation R(a,μYA) is compatible with R(a,μ).
Similar notations will be used throughout the paper.

In practice, L always admits a global maximum a� in S , except
in the singular case where the polynomial A�(z) has at least one root
on the unit circle (see [2] for more details). Below, we propose an
iterative algorithm which solves equation (6) in S . Since ∇L(a�) =
0, it can be noted that a� is a fixed point in S of the function

φ(a) = R(a,μYA)−1R(a,μ)a. (9)

Then a first order expansion yields

L(φ(a))−L(a) = (φ(a)−a)T ∇L(a)+o(‖φ(a)−a‖)
= 1

2 ∇L(a)T R(a,μYA)−1∇L(a)+o(‖φ(a)−a‖)
≥ 0 in a neighborhood of a�.

(10)
This suggests an ascent method for maximizing function L, which
consists in recursively applying function φ to an initial point in S .
In practice however, the polynomial defined by vector φ(a) may have
some roots inside the unit circle. Thus φ(a) should be remapped
into S by replacing those roots by their inverse conjugate. This
remapping, which is denoted PS below, does not modify the value
of function L. Moreover, we show in Appendix B that forcing vector
a in S dramatically improves the convergence rate of the recursion.
Finally, our algorithm consists of the following steps:

Finite Impulse Response (FIR) filters, the vectors in S correspond to mini-
mum phase filters.

2Note that the proposed WML estimator is equivalent to the DAP method
in the case of AR modeling. However, our new algorithm for computing the
optimal solution has an enhanced convergence rate, as proved in Appendix B.

• Initialization : a = [1,0 . . .0]T

• Repeat until convergence: a← PS

(
R(a,μYA)−1R(a,μ)a

)
The convergence of this algorithm is analyzed in the following propo-
sition, which is proved in Appendix B.

Proposition 3.2 (Convergence of the algorithm for AR estimation).
1. A global maximum a� of function L in S is a locally stable

equilibrium point of the discrete dynamical system formed by
the recursion a← PS (φ(a)).

2. If μ is the Lebesgue measure, the recursion converges in one
iteration only.

In practice, we observed that this algorithm globally converges
to the global maximum (whatever the initial point is). Moreover, if μ
is a measure close enough to the Lebesgue measure3, the algorithm
converges in a few iterations, as shown in Appendix B.

3.2. Moving average models

Proposition 3.3 (Characterization of the WML MA estimator). If L
admits a critical point b� in S , then this point satisfies the equation

R(b�,μ) = R(b�,μY/B�) (11)

which involves the (Q+1)× (Q+1) Toeplitz matrices

R(b,μ) =
∫ 1

0

T (ν)

B(ν)
dμ(ν) (12)

R(b,μY/B) =

∫ 1
0

Y (ν) T (ν)
B(ν)2 dμ(ν)

∫ 1
0

Y (ν)
B(ν)

dμ(ν)
. (13)

Proposition 3.3 can be proved in the same way as proposition 3.1.
Note however that this proposition does not guarantee that the so-
lutions of equation (11) are global maxima. In order to maximize
function L, we propose the following iterative algorithm:

• Initialization : b = [1,0 . . .0]T

• Repeat until convergence: b← PS

(
R(b,μ)−1R(b,μY/B)b

)

As in section 3.1, it can be verified that this recursion constitutes
an ascent method for maximizing function L. In practice, we ob-
served that this algorithm globally converges to the global maximum
of function L; however our proof of convergence, which could not
be included in this paper, relies on additional assumptions regarding
the observed spectrum. Again, if μ is a measure close enough to the
Lebesgue measure, the convergence rate is enhanced.

3.3. Autoregressive moving average models

We propose the following iterative algorithm for maximizing func-
tion L, which consists in interlacing the two updates introduced above:

• Initialization : a = b = [1,0 . . .0]T

• Repeat until convergence:

3For instance, we say that a discrete measure, which uniformly samples
the interval [0,1) with constant weights, is "close to" the Lebesgue measure,
in the sense that the integral of any continuous function with respect to this
discrete measure approximates the integral of the same function with respect
to the Lebesgue measure, when the number of samples is high enough.
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– Repeat: a← PS

(
R(a,μYA/B)−1R(a,μ)a

)

– Repeat: b← PS

(
R(b,μ)−1R(b,μYA/B)b

)

where R(a,μ) and R(b,μ) are defined in equations (7) and (12), and

R(a,μYA/B)) =

∫ 1
0

Y (ν) T (ν)
B(ν)

dμ(ν)
∫ 1

0
Y (ν)A(ν)

B(ν)
dμ(ν)

R(b,μYA/B) =

∫ 1
0

Y (ν)A(ν) T (ν)
B(ν)2 dμ(ν)

∫ 1
0

Y (ν)A(ν)
B(ν)

dμ(ν)
.

The convergence was not proved, but observed in practical cases4.

4. SIMULATION RESULTS

We address the problem of estimating the spectral envelope of a
voiced speech signal. In speech processing, AR modeling is a promi-
nent tool, since it constitutes a simplified model of the speech pro-
duction system. However, it is not well adapted to fit the spectra of
nasal sounds, which contain zeros due to the coupling between the
vocal and nasal cavities. Below we focus on a French nasal vowel,
which is denoted /Ẽ/ in the International Phonetic Alphabet. This
vowel was pronounced at a fundamental frequency F0 = 120 Hz, and
recorded at a sampling frequency of 8000 Hz. The spectrum of this
original sound was then obtained by successively extracting a signal
of length 60 ms, applying a Hann window, and computing a Digital
Fourier Transform (DFT), zero-padded to N = 1024 samples. Then
an ARMA model was estimated by applying the proposed WML
method with weights equal to 1 for the DFT samples corresponding
to multiples of F0, and 0 elsewhere5. A good fit was obtained with
P = 8 and Q = 7. Finally, the vowel was resynthesized at F0 = 100
Hz and 300 Hz respectively, by filtering a train of periodic pulses,
and the spectra of those two synthetic signals were computed in the
same way as that of the original one. The first experiment illustrated
in Figure 1-a shows the inadequacy of AR models for modeling nasal
vowels. The spectrum of the synthetic signal at F0 = 100 Hz, repre-
sented by the solid gray line, is modeled by an AR model of order
P = 15, represented by the solid black line6. The AR model was
estimated with the DAP method [2]. The formants are well repre-
sented by this AR model; however the model does not fit the zeros
present at 1250, 2250, and 3900 Hz. The second experiment illus-
trated in Figure 1-b confirms that conversely, an ARMA model of
orders P = 8 and Q = 7 can efficiently represent the spectral enve-
lope. The dashed black line represents the result obtained with the
classical Durbin method [6], and the solid black line represents the
result obtained with the WML method. Both methods provide an ac-
curate estimate of the original ARMA model. In the last experiment
illustrated in Figure 1-c, both methods are applied to the synthetic
signal at F0 = 300 Hz, with P = 8 and Q = 7. The WML method
still correctly estimates the positions of the zeros, even though one
of them falls between two harmonics, whereas Durbin’s method only
provides a smooth approximation of the spectral envelope.

4Note that within one iteration of this algorithm, we perform several up-
dates of a and b, because we observed that if only one update was performed
for each vector, the algorithm could alternate between two sub-optimal solu-
tions. Computing a few updates within each iteration fixed the problem.

5Note that if F0 is greater than the spectral width of the Hann window, the
values of the smoothed periodogram at multiples of F0 can still be considered
independent, as assumed in section 2.

6We chose P = 15, so that the total number of parameters used for mod-
eling the observed spectrum is the same as that of the original ARMA model.
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Fig. 1. Estimation of the spectral envelope of a nasal vowel

5. CONCLUSIONS

We proposed new algorithms for estimating AR, MA, and ARMA
models in the spectral domain, when only a subset of the original
spectrum is observed. This technique is derived from a Weighted
Maximum Likelihood (WML) approach, and can be seen as a gen-
eralization of the DAP method, which was initially designed for AR
models only [2]. In the simple case of AR modeling, we proved that
the proposed algorithm converges to the optimal solution, and that
the convergence rate is enhanced by remapping the poles at each it-
eration. In the case of MA modeling, the proposed algorithm still
converges to the optimal solution, although the proof could not be
included in the paper. The case of ARMA models seems more com-
plex, and we noted that the practical convergence requires a more
careful implementation. In all cases, the convergence toward the
optimal solution requires that the number of distinct parameters re-
mains lower than the number of non-zero spectral weights. Finally,
the algorithm for estimating ARMA models was successfully ap-
plied in the context of speech analysis. Our results first confirmed
that ARMA models are more appropriate for representing nasal vow-
els than AR models, and the WML method proved to provide a much
more accurate estimation of the envelope of high-pitched harmonic
spectra than the classical Durbin method.

APPENDIX

A. CHARACTERIZATION OF THE AR ESTIMATOR

Proof of proposition 3.1. Any critical point a� of the C 1 function L
is such that the gradient ∇L(a�) is zero. By substituting equation (5)
into equation (4) where B(ν)≡ 1, and by differentiating the resulting
expression, we obtain 1

2 ∇L(a) = (R(a,μ)−R(a,μYA))a, where ma-
trices R(a,μ) and R(a,μYA) were defined in equations (7) and (8).
Note that R(a,μ)−R(a,μYA) is a symmetric Toeplitz matrix. Let
{rk(a)}k∈{−P...P} be the series formed by the coefficients in the first
column and the first row of this matrix; this series is symmetric.
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Since 1
2 ∇L(a�) = 0, matrix R(a�,μ)−R(a�,μYA) is singular. How-

ever classical results regarding singular Toeplitz matrices [7] show
that the series {rk(a

�)}k∈{−P...P} is a linear combination of complex
exponentials (possibly modulated by polynomials), whose poles are
the roots of the polynomial A�(z). If a� ∈ S , all these roots are
strictly outside the unit circle, and the symmetry of this series yields
only one solution: rk(a

�) = 0 ∀k ∈ {−P . . .P}, which proves equa-
tion (6). Now let show that any solution of equation (6) is a global
maximum of function L. For any vector a, substituting equations (6)
to (8) in to equation (4) yields

L(a)−L(a�) =
∫ 1

0 log
(

A(ν)
A�(ν)

)
dμ(ν)− log

(∫ 1
0

A(ν)
A�(ν)

dμ(ν)
)

≤ 0 because of the concavity of function log .

B. CONVERGENCE ANALYSIS FOR THE AR MODEL

Proof of assertion 1. in Prop. 3.2. Any equilibrium point of the dy-
namical system a←PS (φ(a)) in S is the global maximum of func-
tion L. Now let prove that this equilibrium point is locally stable.
According to the general theory of discrete dynamical systems, the
local stability of an equilibrium point a� of a recursion of the form
a← f (a) is guaranteed if the Jacobian of f at point a� has a spectral
radius strictly smaller than one. Here, we will prove that the Jaco-
bian Jφ (a�) of function φ has all its eigenvalues of magnitude strictly
lower than 1, except that associated to the eigenvector a�, which is
equal to 1. This shows that the direction of the dynamical system lo-
cally converges to the direction of a�. Since in the neighborhood of
a� ∈S , the remapping PS consists in normalizing a vector so that
its first coefficient becomes 1, we will then conclude that the dynam-
ical system locally converges to a�. First, differentiating equation (9)
shows that the Jacobian of φ satisfies

Jφ (a) = R(a,μYA)−1
(

R(a,μ)−P(a,μ)+2u(a,μ)u(a,μYA)T
)
(14)

where

u(a,ν) =
T (ν)a
A(ν)

(15)

P(a,μ) = 2
∫ 1

0
u(a,ν)u(a,ν)T dμ(ν) (16)

u(a,μ) = R(a,μ)a =
∫ 1

0
u(a,ν)dμ(ν) (17)

u(a,μYA) = R(a,μYA)a. (18)

Then noting that T (ν) can be written in the form T (ν)= ℜ
(
e(ν)e(ν)H

)
where e(ν) = [1,ei2πν , . . . ,ei2πνP]T , it can be verified that

P(a,μ) = R(a,μ)+H(a,μ), (19)

where the Toeplitz matrix R(a,μ) was defined in equation (7), and
H(a,μ) is a Hankel matrix:

R(a,μ) = ℜ

(∫ 1

0

e(ν)e(ν)H

|aT e(ν)|2
dμ(ν)

)
(20)

H(a,μ) = ℜ

(∫ 1

0

e(ν)e(ν)T

(aT e(ν))2 dμ(ν)

)
. (21)

Then substituting equation (19) into equation (14), we obtain

Jφ (a) =−R(a,μYA)−1H(a,μ)+2φ(a)u(a,μYA)T .

Applying this equality to the equilibrium point a� yields

Jφ (a�) = a�u(a�,μ)T − ε(a�), (22)

where

ε(a�) = R(a�,μ)−1
(

H(a�,μ)−u(a�,μ)u(a�,μ)T
)

. (23)

Then it can be verified that ε(a�)a� = 0, and u(a�,μ)T ε(a�) = 0T .
Thus zero is an eigenvalue of ε(a�), associated to the right and left
eigenvectors a� and u(a�,μ), which additionally satisfy u(a�,μ)T a� =
1. In other respects, noting that matrix R(a�,μ)±H(a�,μ) is posi-
tive semi-definite, it can be proved that all the other eigenvalues of
ε(a�) have a magnitude strictly lower than 1. This finally proves the
local stability of the dynamical system.

Proof of assertion 2. in Prop. 3.2. If μ(ν) is the Lebesgue measure,
• Substituting equation (20) into equation (17) yields

u(a,μ) = ℜ

{∫ 1

0

e(ν)

aT e(ν)
dν

}
= ℜ

{
1

2iπ

∫
Γ

e(z)
aT e(z)

1
z

dz

}

where Γ is the unit circle and z = e2iπν . The k-th coefficient of
u(a,μ) is uk(a) = ℜ

{ 1
2iπ

∫
Γ fk(z)dz

}
, where fk(z) = zk−1

P
∑

p=0
apzp

.

If a∈S and k > 0, the holomorphic function fk has no singu-
larity inside Γ, thus uk(a) = 0. If a ∈S , f0 has one singular-
ity inside Γ (z = 0), thus the residue theorem yields u0(a) = 1.

• Equation (21) shows that H(a,μ) can be written in the form

H(a,μ) = ℜ

(
1

2iπ

∫
Γ

e(z)e(z)T

(aT e(z))2

1
z

dz

)
.

Similar considerations yield H(a,μ) = u(a,μ)u(a,μ)T .
Consequently, matrix ε(a�) defined in equation (23) is zero.

Thus the algorithm converges in one iteration only, which was ex-
pected, since u(a,μ) does not depend on a ∈S .

If μ is a measure close to the Lebesgue measure, the spectral
radius of ε(a�) remains much lower than 1. Thus the discrete dy-
namical system locally converges to a� at a high convergence rate.
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