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Abstract— We propose an original technique for the design channel properties and other code constructions can belfoun
of convolutional Tanner structures that are full diversity under jn [2] and references cited therein.
iterative decoding. The code design is based on the analysi$
the local trellis neighborhood and is suitable for transmision Il. GENERALIZED LOW DENSITY CODES WITH
over wireless non-ergodic channels. This new technique ebigs CONVOLUTIONAL CONSTITUENTS

us to split the giant convolutional checknode into multiplesmaller A Gall T tructi b d uti |
checknodes which is a means to mimic the standard analysis of allager-lanner construction based on convolutiona

LDPC codes under iterative message passing decoding. codes has been proposed in [1]. The construction yields a
family of asymptotically good codes, i.@lgmin(C) > 0N
Index Terms: convolutional codes, iterative decoding, fadwhere § > 0. Those codes are also suitable for iterative
ing channels, erasure channels, generalized low densitysco decoding. Briefly, a generalized low density (GLD) code as
in [1] interleaves all code symbols whereas only informatio
symbols are interleaved in a parallel turbo code. The mathe-
Let C(N,K) be a linear binary code of lengttand matical definition of the convolutional GLD-Tanner strueu
dimension K whose codewords are transmitted over a noffiellows.
ergodic memoryless channel. The channelhastates, where Let C1(N, K;) be a linear binary code of lengtiv and
the number of states satisfié&s < n. < N. A channel dimensionK; built from a recursive systematic convolutional
state may correspond to a fading coefficient, e.g., blockafa code (RSC) properly terminated at both trellis sides. The
channels with single and multiple antennas. The state &an alecursive nature is not essential, we only chose RSC codes
be defined by a cross-over probability of a binary symmetrlaecause they have a flexible canonical structure for coding
channel (BSC), or an erasure event as for non-ergodic BE@esr = k/n, betweeni and 1. The convolutional GLD
(block-erasure channel). Let= (c;,co,...,cn) € C denote code is defined by
a codeword. The symbea}; is assumed to undergo a channel .
stateh;, wherei = )1 ...N. The stateh; is selecgt]ed from a ¢=Cinm(C) (2)
finite setX defined by wherer is a random permutation of siz¥. If border effects
are neglected, the rat® = K/N of C built from a rater
N={ay,as...,an} (1) convolutional code is? = 2r — 1. More precisely, let = k/n

The non-ergodic channel has limited diversity becajiéeis be the original coding rate of the infite-length convolutbn

taken very small when compared to the code length. Tﬁgde' Assume that the RSC -code m‘is stateg, Le., the
pnstraint length i+ 1. In practice, the intersection between

problem of code multiplexing, also referred to as chann% . . S
interleaving, is to seledt, among thev; in order to minimize ! andz(C4) does not include the two trellis terminations. It
J is easy to show that the overall rate is

the word error probability after decoding at the receivelesi
In this paper, we restrict our study to the worst case= 2 R=(@r—1)x(1- 2£) < (2r—1) 3)
states, i.e., a channel with minimal diversity order. H&lé t N~

bits in the codeword: undergo a fadingy; and the other whereT = [7] is the number of transitions required in the
half undergo a fadingy.. It is assumed that the two fadingtrellis termination phase.

instances are independent from one codeword to another and

are not known by the encoder. Only the state position s the sequel, without loss of generality and for simplicity
controlled by the encoder, i.e., it knowsdf is transmitted on reasons, we restrict our study to a r%te:onvolutional code
state 1 or state 2. The generalization to channels with marbtained by puncturing the 4-state ra%tecode with generators
degrees of freedom should be straightforward. Our objectiyy(z) = 1 + = + 22 and g;(z) = 1 + 22, i.e., the famous
is to build a rate-1/2 full-diversity Tanner code based ofi,5) code in octal notation. The overall rate 18 = 0.495
convolutional constituents [1]. More details on the nogeslic for N = 800 and R = 0.4995 for N = 8000 bits.

|. INTRODUCTION



I1l. CODE DESIGN FOR BLOCKFADING CHANNELS BASED following proposition.
ON THE LOCAL TRELLIS STRUCTURE Proposition 1: The two binary elements of a transition label

. . L . must be forced to 00 in order to reduce the state ambiguity
As stated in sectiorl, our objective is to build a full- from 100% to 50%. lllustration is given in Fig
diversity convolutional GLD-Tanner code. For the sake ? o 9 '

of brevity and simplicity, we do not discuss why an ML
design approach via the analysis of error events in the two
convolutional constituents fails to attain the objectiRespite

our belief that iterative decoding of GLD codes is close
to ML decoding in terms of error rate performance (only
0.2dB separate iterative and ML decoders for parallel turbo
codes as shown in [3]), the diversity order analysis of low
weight error events is useless because the GLD code is?*
asymptotically good. The study of iterative decoding on a
Tanner graph with two giant convolutional checknodes is
intractable. Thus, we propose a new approach based on the
local trellis neighborhood. The full-diversity constrigst is 1
described for the block-erasure channel. It is straightéod

to prove that the same structure is full-diversity in preseof
Rayleigh-distributed block-fading by considering the tjzdr
codewords around the rootbit in the local neighborhood. )
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Fig. 2. Forward state probabilities whén = 0 andbs = 0. The surviving
1 transitions are marked with dashed red lines. The configurdt; b2 = 00
eliminates half the ambiguity on trellis transitions.

Once the number of surviving states is reduced by forcing
. . the two labeling bits to a zero value, we would like to keep
surviving transition . . . / 11 . .
-------------- the ambiguity at 50%, i.eq:1(m’) € {3,3,0,0}. This is
possible if the two departing states belong to the samefrflytte
(see Fig.2). The trellis section of a 4-state convolutional code
has 2 butterflies. The transition matrix for the (7,5) code is
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where a matrix entry at rowand columny representsD‘l“Dg2
on the transition from staten = i to statem’ = j. The
Fig. 1. Forward state probabilities when is erased ands = 0. The butterflies can be found in the transition matrix by searghin
surviving transitions are marked with dashed red lines. Ehafiguration rectangular submatrices with four non-zero entries in the
b1b2 = X0 brings no improvement for reducing the ambiguity. corners. In this case, the first butterfly starts at states 0,1
and ends at states 0,2. The second butterfly starts at states
The standard notation of the Forward-Backward algorith3 and ends at states 1,3. The general structure of thistrell
(BCJR) is used as in [4]. It is always assumed that the ati-zefexcluding binary labels and not taking into account theéesta
codeword has been transmitted by the encoder. The symboinxiexation) does not depend on the choice of the generator
represents a punctured bit. Consider the trellis sectiawsh polynomial (see [5]). A2”-state convolutional code has—!
in Fig. 1. Assume that the forward state probabilities are allutterflies in a full trellis section that can be determinsshi
equal, i.e., ambiguity is maximal witl;(m) = % for all its transition matrix. As depicted in Fi§, a butterfly maintains
statesm. This maximal ambiguity is equivalent to forgettingthe ambiguity at 50% after erasing both bitsandb,.
all the past in the code trellis. The state label is denoiég. Proposition 2: Assume that the two binary elements of a
If b, is erased and, forced to O as in Figl, then the new transition label are erased. The state ambiguity is maiathi
forward state probabilities are;;(m’) = i, vm/. Hence a at 50% if the surviving states belong to the same butterfly.
label configured as X0 does not reduce the ambiguity. Simil@therwise, the ambiguity increases to 100%. lllustratien i
arguments hold for 0X and XX. Now, we can announce thgiven in Fig.3.
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Fig. 3. Forward state probabilities when bdth and b2 are erased. The surviving transitions are marked with dhsee lines. Figure (a) shows how the
ambiguity spreads from 50% to 100%. Figure (b) shows theeHiyttstructure that inhibits ambiguity increase.

Full-diversity Gallager-Tanner Construction (Root GLD
Code) Permutation Embedded in the Root GLD Code

Now, a full-diversity Gallager-Tanner construction can b&he class of information bits sent en (resp.a.) is denoted
derived from propositions 1 & 2. The convolutional GLD1; (resp.2i). Similarly, the class of parity bits transmitted on
C code is built from ) where the constituent’; follows ¢« is denoted p and the other denoted 2p. The permutation
the multiplexing pattern11|X1]|X2[22|X2|X1 with period 7 of the GLD codeC built from the multiplexing pattern

6 transitions as illustrated in Figl. A window including 7 11]|X1|X2|22|X2|X1 shown in Fig.4 must interleave the
trellis sections is considered. A symbol 1 in the multipiexi binary elements within the same class without mixing the fou
pattern represents a binary element sent on the first changlakses. Such a GLD code is similar to multi-edge type LDPC
state. A symbol 2 represents transmission on the secamstles [6] and its density evolution should follow the same
channel state. The symbol X corresponds to a punctured biiles. It is calledroot GLD code in reference to root LDPC

A forward BCJR procedure is applied on the first 3 sectiongodes proposed in [2]. The information bits of clas$ésnd

A backward BCJR procedure is applied on last 3 sections. #a are referred to asootbits because they are the root of a
Fig. 4, channel state 1 is assumed to correspond to a perfeatcknode that guarantees a full-diversity outgoing ngEssa
knowledge of the encoded biti{ = +00), channel state 2 The permutationr of size N is built as follows:

is supposed to be an erasuke, (= 0). After executing the
forward and backward procedures, two transitions survive i
the middle section. The binary diglt is identical on both
labels, its valueb, = 0 is solved. Hence, the multiplexing
pattern 11|X1|X2(22|X2|X1 yields a rate3 convolutional
constituent capable of solving one erased bit (the secand bi
in 11 and one erased bit in 22. The first bitin C; will be
placed in the second label position #{C7). We conclude
that the GLD code is capable of solving 4 erased bits in the
multiplexing pattern11|X1|X2[22|X2|X1, those placed on
11 and 22. Those bits have a diversity order equal to 2 and
will be considered to be the information bits 6f. Parity
bits placed on the second position in X1 and X2 will have a
diversity order limited to 1 (no diversity). *

« A random permutatiorr; of size N/4 is applied on class
1i, my : 14 — 1i. The permutationr; is the direct sum
of 7,1 andm; 5 each of sizeN/8. The first permutation
w11 interleaves information bits from even positions to
odd positions. The second permutation, interleaves
information bits from odd positions to even positions.

o Similarly, a randomly selected permutation of size
N/4 is applied on clasgi, mo : 2i — 2i.

o Arandom permutatioms of size N/4 is applied on class
1p, m3 : 1p — 1p.

« A random permutatiorr, of size N/4 is applied on class

2p, w4 1 2p — 2p.

The overall permutationr of the root GLD code is the

direct sum ofry, m, 73, andmy.
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The proof of proposition 3 on the block-erasure channel is
a direct result of the Gallager-Tanner construction déscti
above. We omit the proof in the presence of Rayleigh-
distributed block-fading. It is based on showing that thg-lo
ratio message of a rootbit includes(a distribution of order 4.

This can be done by a direct application of the BCJR algorithm
on the local neighborhood (the window with 7 trellis sec&pn
or by the full enumeration of all partial codewords via the
product of 7 transition matrices. Monte Carlo simulatiorttod
code from proposition 3 and the comparison with information
theoretical limits are given in the next section.

IV. EXPERIMENTAL RESULTS

We performed Monte Carlo simulations of Generalized
low-density codes based on the punctured (7,5) convolation
rate-1/2 constituent. Results of word error rate versuealig
to-noise ratio per bit are depicted in Fi§. GLD codes
with a random permutation are not full diversity, i.e., the
word error rate varies a®.,, « 1/(Ey/Ny) (diversity order
1). Root GLD codes from proposition 3 are full diversity,
P., o 1/(E,/No)? (diversity order 2). We also plotted
the outage probability limit computed by evaluating the
probability that the instantaneous mutual informationessl
than 0.5 bits per channel use. Root GLD codes based on the
(7,5) constituent achieve a near-outage performance. &srsh
in [2] for LDPC codes, the coding gain can be improved
by introducing some irregularity in the convolutional GLD
code structure in order to minimize the outage area near the
ergodic line.
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Fig. 4. lllustrating how the multiplexing patterhl|X1|X2|22|X2| X1 is capable of solving one erased bit on a block-erasure @hamith two states.
lllustration is given for the (7,5) rate-1/2 convolutionadde.
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Fig. 5. Computer simulations of convolutional GLD codes ffamgth N = 800 and N = 8000 bits.
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