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Abstract. The Ada programming language has been designed from the
ground up for safety-critical real-time systems. This trend has continued
with the Ada 2005 language definition which has incorporated the Raven-
scar Profile for high-integrity systems into the language standard. Here
we describe the operational semantics for Ada Ravenscar code generated
automatically from an architecture description of the system given in the
Architecture Analysis and Design Language.

1 Introduction

The Ada Ravenscar Profile [2] is a restriction of the rich tasking subset of the
Ada language and associated runtime that aims to make the language more
amenable to the development of safety-critical real-time systems. The Architec-
ture Analysis and Design Language (AADL) [13] is an architecture description
language targeted specifically to the real-time and avionics domain. The code
generation rules given with the AADL standard are incomplete and rely on the
existance of an “AADL executive”, in effect, an operating system that provides
all the services needed by an AADL application.

Since such an operating system does not exist, we used ORK [6], a Ravenscar-
compliant executive. We developed code generation rules for AADL to Ada that
faithfully preserve semantics when run on the ORK platform. We also developed
a code generator as an Eclipse plugin (ARC http://aadl.enst.fr/arc/) that
transforms AADL models to Ada source. The code generation rules and toolset
were introduced in [9]. In this paper, we present a static semantics for the Raven-
scar code that we generate, which is a subset of Ada Ravenscar. We also present
a structured operational semantics that represents the dynamic evolution of the
generated system. The Ravenscar Profile restrictions on Ada eliminate certain
features from the language and associated runtime:

– All tasks must be either periodic or sporadic (for schedulability analysis)
– Tasks may only communicate among themselves through protected objects
– No dynamic creation or destruction of tasks or protected objects
– Rendezvous are prohibited (no entries on Ada tasks)
– Protected objects may have at most one entry
– A protected object entry’s queue is of size 1
– All delays must be absolute (no delay <time expression> allowed)
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– Scheduling is priority based, priority assignment is RMA [15] or RTA [3]
– The priority ceiling protocol [16] is used for access to protected objects

ARC relies upon the OSATE AADL toolkit [14] to parse AADL models. The
OSATE toolkit uses the Eclipse Modeling Framework [1] to represent the ab-
stract syntax of the parsed model. Instead of directly generating Ada code from
the AADL model, we chose to implement an intermediate meta-model to rep-
resent the Ravenscar system. The front-end transforms the AADL model to
an instance of this meta-model. The code generator traverses this intermedi-
ate model—which we call the Ravenscar Meta-model (RMM)—to generate Ada
code. Two advantages of this approach are a reduction in complexity (RMM is
simpler than the AADL meta-model), and ease of writing code generators for
other languages. Because all AADL models cannot be transformed to Ravenscar-
compliant code, we verify the AADL model against a set of Object Constraint
Language rules before a model transformation from AADL to an instance of
the RMM is carried out. The paper is structured as follows. Sec. 2 presents the
static semantics. Sec. 3 presents the dynamic semantics of the generated Raven-
scar code using a structured operational semantic approach [12]. Sec. 4 relates
our contribution to past and ongoing research and concludes.

2 Static Semantics

The static semantics provided in this section are a formalization of the structure
of the RMM using set theory, and mirrors the static structure of code generated
by ARC. This static semantics will be used in the ensuing section on dynamic
semantics, specifically to manipulate the entities in the operational semantic
transitions.

2.1 Ravenscar Computational Units

A Ravenscar system is given by five finite and pairwise disjoint sets, endowed
with five functions and related by four relations. The five sets are:

Periodic tasks Tp={P1 . . . Pn}
Sporadic tasks Ts={S1 . . . Sm}

Interrupts U={U1 . . . Uk}
Synchronisers D={D1 . . . Dl}

Exchangers E={E1 . . . Er}

– Sporadic tasks are dispatched upon the reception of an event. A minimum
time—characteristic to each task—between successive dispatches is enforced

– Periodic tasks are dispatched at regular time intervals called their period
– Interrupts can be raised at any time except if a previous occurence is already

being executed. Thus, at any time, there can be at most k = |U| interrupts
present in the system
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– Exchangers are protected objects with an internal data buffer and Get and
Set procedures. They are used for simple data exchange among tasks

– Synchronisers are protected objects with an internal queue of events that
expose a Send Event procedure for depositing events. A Get Event entry is
exposed upon which the associated sporadic task waits for dispatch

We define four derived sets, namely, Tasks (T ), Activities (A), Protected
objects (PO), and Computational units (C); as follows:

T = Tp ∪ Ts

A = Tp ∪ Ts ∪ U
PO = E ∪ D

C = A ∪ PO

2.2 Functions on Computational Units

Five functions on computation units are defined with the following signatures:

priority : C → ANYPRIORITY (1)
holdingtime : T → TIME (2)

prog : C → PROGS (3)

TIME is a discrete time domain. holdingtime is defined as the period for a
periodic and minimum inter-dispatch time for a sporadic task. ANYPRIORITY is a
bounded subset of the set N of natural numbers and gives valid priorities. PROGS

is the subset of Ada 95 that the code of computational units conforms to. The
code of a computational unit γ is given by prog(γ).

2.3 Conformant PROGS Programs

We focus on an abstraction of programs that represents execution steps relevant
to our semantics, which gives legal instructions and their sequencing:

– comp: A sequential execution step
– Set(E): A Set call to exchanger E
– Get(E): A Get call to exchanger E
– Send Event(D): A Send Event call to synchroniser D
– Get Event(D): A Get Event call to synchroniser D
– delay until: request to be suspended until a future instant
– ret: return statement

The legal execution sequences of these steps depend on the type of the compu-
tational unit. They are defined using BNF grammars. The code of each compu-
tational unit must respect its prescribed grammar (BP is for periodic tasks, BS
for sporadic, BU for interrupts, BE for exchangers, BD for synchronizers):
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BP := comp; BP | Set(E); BP | Get(E); BP | Send Event(D); BP | delay until
BS := Get Event(D); BP
BU := Send Event(D) | Set(E)
BE := [Set − > CC , Get − > CC ]
BD := [Send Event − > CC, Get Event − > CC ]
CC := comp ;CC | ret

2.4 Topological Relations on Computational Units

By an analysis of the set of programs prog, we can construct the communication
topology between the various computational units. Four topological relations,
sets, gets, sends event, and gets event are induced by prog:

sets :
Set

⊂ A × E (4)

gets :
Get

⊂ T × E (5)

sends event :
Send Event

⊂ A × D (6)

gets event :
Get Event

⊂ Ts × D (7)

they are defined according to the following conditions:

Set(E) occurs-in prog(α) ⇔ α
Set

E (8)

Get(E) occurs-in prog(T ) ⇔ T
Get

E (9)

Send Event(D) occurs-in prog(α) ⇔ α
Send Event

D (10)

Get Event(D) occurs-in prog(S) ⇔ S
Get Event

D (11)

We also need three derived relations, namely: dispatches ( DIS ), writes to
( W TO ) and accesses ( ACC ). dispatches is the inverse of gets event, writes to is
the union of gets and sends event , and accesses is the union of the four primitive
relations. Formally:

D
DIS

S � S
Get Event

D (12)

α
WTO

π � (π ∈ E ∧ α
Set

π) ∨ (π ∈ D ∧ α
Send Event

π) (13)

α
ACC

π � (π ∈ E ∧ α
Set

π) ∨ (π ∈ E ∧ α
Get

π) (14)

∨ (α ∈ A ∧ π ∈ D ∧ α
Send Event

π)

∨ (α ∈ Ts ∧ π ∈ D ∧ α
Get Event

π)
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The topological relations must satisfy the following constraints:

∀ D, ∃ S unique satisfying: D
DIS

S (15)

∀ S, ∃ D unique satisfying: S
Get Event

D (16)

∀ U, ∃ π unique satisfying: U
WTO

π (17)

U
WTO

π and U ′
WTO

π ⇒ U = U ′ (18)

At most one task is dispatched by a synchronizer (15). For every sporadic task,
there exists one and only one synchronizer that dispatches it (16). Each interrupt
writes on one and only one protected object (17). At most one interrupt may
write to a protected object (18). Constraints (15) and (16) imply that relations
DIS and Get Event are bijective and mutually inverse functions. From (17) and
(18) it follows that relation W T O , when restricted to U , is an injective function
with co-domain in PO.

Priority Ceiling Protocol. All priorities must comply with PCP. Function
priority must satisfy the following property ( ACC from equation 14):

For any activity α and any protected object π :
(α

ACC
π) ⇒ priority(π) ≥ priority(α) (19)

3 Dynamic Semantics

The dynamic semantics of the system will be described using a form of structured
operational semantics [12] which describes the evolution of the system over time.

3.1 Execution Context

Execution context c =

⎧
⎨

⎩

σ, σs Scheduler
ι Idle task
a An active execution context

The above equation states that three entities may possess processing resources,
the scheduler (σ and σs), the system idle task (ι), or an activity (a). The sched-
uler can be in one of two states: σ when the scheduler has seized control, σs

when the scheduler is ready to grant control. Thus, σ and σs represent two steps
in the excuction of the scheduler functions, allowing the assignment of different
execution times to both in order to accurately model context switches. An active
context, a, may have one of the following forms:

Sporadic tasks: S, S Set E, S Send Event D, S Get E, S Get Event D

Periodic tasks: P , P Set E, P Send Event D, P Get E

Interrupts: U , U Set E, U Send Event D
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The priority function is extended to active contexts and in conformance with
the priority ceiling protocol, as follows (where the form α x π corresponds to
the context of a protected object π executing a call x issued by activity α):

priority(α
x

π) = priority(π) (20)

We use a record notation—as defined in [4]—to maintain the state information
of computational units. The fields corresponding to each computational unit are
given in Table 1. We will use the dot notation to extract fields from records.
T ·Beh is the value of field Beh in the record T . The update of a field in a record
is performed as in the following example where D′ is the record obtained by
updating in record D the field Bar with true and field Queue with ε:

D′ = 〈D ← Bar = true ← Queue = ε〉

Table 1. Fields present in state records of Ravenscar Computational Units

Description of field Name Type D E Ts Tp U
Current program state Beh PROGS

√ √ √ √ √

Next dispatching time Nd TIME

√ √

Elapsed time Et TIME

√ √ √

Processing time Pt TIME

√ √ √

Queue on entry Queue Ts ∪ {ε} √

Barrier state Bar BOOL

√

Event count Ec N
√

3.2 Ready Queue

A ready queue, R, is made of a (possibly empty) sequence of active execution
contexts. We use ◦ as a sequence operator, hence, if a is an execution context
and R a ready queue then (a ◦ R) is a ready queue whose head is a and whose
tail is R. The empty ready queue will be denoted by ε. Ready queues satisfy the
priority-ordered property, which is inductively defined as follows:

(i) ε is priority-ordered
(ii) a◦R is priority-ordered iff: − R is priority-ordered and

− ∀a′ ∈ R : priority(a′) ≤ priority(a)

The satisfaction by a queue R of the priority-ordered property implies that R is
an ordered list of queues having the form: R = rp1 ◦ . . . ◦rpn where for each rpn :

∀i, j : i < j ⇒ pi > pj and (21)
∀i, ∀a ∈ rpi : priority(a) = pi (22)

All active contexts in the same subqueue have the same priority (22), and
subqueues are ordered according to their priorities (21). We define priority head
insertion and priority tail insertion for ready queues as both methods are used:
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Let pk = priority(a)
Priority Head Insertion a�R =

rp1 ◦ . . . ◦ a ◦ rpk
◦ . . . ◦ rpn when R = rp1 ◦ . . . ◦ rpk

◦ . . . ◦ rpn

rp1 ◦ . . . ◦ rpi ◦ a ◦ rpj . . . rpn when R = rp1 ◦ . . . ◦rpi ◦rpj ◦ . . . ◦rpn ∧ pi < pk < pj

(23)
Priority Tail Insertion R�a =

rp1 ◦ . . . ◦rpk
◦a◦ . . . ◦ rpn when R = rp1 ◦ . . . ◦ rpk

◦ . . . ◦ rpn

rp1 ◦ . . . ◦ rpi ◦ a ◦ rpj . . . rpn when R = rp1 ◦ . . . ◦rpi ◦rpj ◦ . . . ◦rpn ∧ pi < pk < pj

(24)

A task taken from the blocked set to the ready queue is inserted at the tail of
the ready queue for its priority, whereas one that is preempted during execution
by the scheduler is inserted at the head of the ready queue for its priority.

3.3 Structure of the State of a Ravenscar System

The state of a Ravenscar system has a static part made up of the set of records
of all computational units, and a dynamic part which is given by the vector:

IL �
[
c, R, B, ns, t

]
(25)

– IL: list of interrupts present in the system, waiting to be handled. When the
list of interrupts is empty, the leading “IL � ” may be ommitted

– c: current execution context
– R: ready queue
– B: set of blocked tasks
– ns: time of the next system clock tick when control is passed to the scheduler
– t: current time, i.e.: the current age of the system

Each of the execution context types (scheduler, idle, or active) may perform
specific execution steps. These steps cause the state of the system to evolve over
time. The steps performed by the active context depend on the current state of
the code of its activity, given by the Beh field of the state record of the activity.
The steps performable by the scheduler are: (i) suspending activity a and taking
control (a as−−→ σ); (ii) suspending idle task and taking control ( (ι is−−→ σ);
(iii) self suspention to handle interrupts (σs

ss−−→ σ); (iv) handling an interrupt
(σ ih−−→ σ); (v) updating the ready queue (σ ud−−−→ σs); (vi) granting control to
activity a (σs

sa−−→ a); (vii) granting control to idle task (σs
si−−→ ι). The idle

task performs one type of steps which is idling: (σs
idling−−−−−→ ι).

3.4 Initial State of a Ravenscar System

The initial state of a Ravenscar system is given by:
[
σ, R0, B0, 0, 0

]
(26)
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where the initial ready queue, R0, is a priority-ordered list of all tasks: R0 =
T1◦ . . . ◦Tn, and B0 the initial set of blocked tasks is an empty set: B0 = {}.
Moreover, the initial state of each of the periodic tasks, the sporadic tasks, the
synchronisers and the exchangers, is given by their associated records:

P = 〈 Beh = prog(P ), Nd = 0, Et = 0, Pt = 0 〉
S = 〈 Beh = prog(S), Nd = 0, Et = 0, Pt = 0 〉
E = 〈 Beh = prog(E) 〉
D = 〈 Beh = prog(D), Queue = ε, Ec = 0, Bar = false 〉

3.5 State Transitions of a Ravenscar System

The execution of a Ravenscar system is given by the set of structured operational
semantics rules, having the structure of a fraction:

Antecedents

IL �
[
c, R, B, ns, t

] act−−−→ IL’ �
[
c′, R,′ B′, ns’, t

]
+̂ δ(act)

SHORT NAME

Antecedents (numerator) are conditions which need to hold for the Consequent
(denominator) part to be applied. Antecedents depend on the current state of
the system. Consequent part denotes the transition taken and the action—act—
performed. act represents the smallest possible uninterruptible instruction. It
is an indivisible unit; interrupts will either be fired before or after such an in-
struction. Complex instructions like delay until are considered a sequence of
simpler instructions with the final indivisible one actually having the intended
impact. IL and IL’ are optional, they represent the list of interrupts present
before and after the transition. δ(act) is the time consumed by the transition,
and +̂ δ(act) is the ageing operator. It is formally defined as follows:

[
c, R, B, ns, t

]
+̂ δ =

[
c +̂ δ, R +̂ δ, B, ns, t + δ

]

where:

c +̂ δ =

⎧
⎨

⎩

σ if c = σ
ι if c = ι
〈α ← Et = α · Et + δ ← Pt = α · Pt + δ〉 if c = α ∨ c = α x π

R +̂ δ = 〈a1 ← Et = a1.Et + δ〉◦ . . . ◦〈an ← Et = an.Et + δ〉 for R = a1◦ . . . ◦an

The above equations state that if the currently executing task is either the
scheduler or the idle task then the ageing operator has no effect on it. However, if
the excution context is an active one then the ageing operator adds the δ(action)
amount of time to both the elapsed time (Et) and processing time (Pt) fields of
the record of the activity. On the other hand, for all tasks in the ready queue R,
the ageing operator only adds the δ(action) amount of time to the elapsed time
field (they are not budgeted for this time). We now provide the transition rules,
starting with the system idle task and ending with rules for interrupt handling.
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Idling: Rule IDLE shows the idle task executing. The antecedent shows that
the system can only idle if it hasn’t reached the next scheduling instant ns. The
age of the system advances by an amount δ(idling).

t < ns
[
ι, R, B, ns, t

] idling−−−−−→
[
ι, R, B, ns, t

]
+̂ δ(idling)

IDLE

Pure Computation Steps: The CMPT and CMPO transitions represent se-
quential computations that have no side-effects on tasking or inter-task commu-
nication. CMPT denotes a task carrying out a sequential computation, CMPO
denotes a protected object carrying out a sequential computation. The behavior
(Beh) must in both cases have comp instruction at the head, the current time
must be less than the next dispatching time for the scheduler.

T · Beh = comp; C ∧ t < ns
[
T, R, B, ns, t

] comp−−−−→
[
T ′, R, B, ns, t

]
+̂ δ(comp)

T ′ = 〈T ← Beh = C〉

CMPT

π · Beh = comp; C ∧ t < ns
[
α x π, R, B, ns, t

] comp−−−−→
[
α x π′, R, B, ns, t

]
+̂ δ(comp)

π′ = 〈π ← Beh = C〉

CMPO

Protected Objects: The rule NBCL represents an activity (task or interrupt)
calling a procedure of a protected object. The antecedent states that the current
behaviour of the activity is a call to a procedure, and that the current time is
less than the next scheduler launching time. The consequent is that the code of
the protected object is being executed in the context of the activity α (α′

x π).

α · Beh = x(π); C ∧
x ∈ {Get, Set, Send Event} ∧ t < ns

[
α, R, B, ns, t

] x−−→
[
α′

x π, R, B, ns, t
]

+̂ δ(x)

α′ = 〈α ← Beh = C〉
π′ = 〈π ← Beh = prog(π).x〉

NBCL

The transitions RET1 through RET4 depict how calls from protected ob-
jects return. RET1 represents the return from a protected object procedure.
The consequent shows that the execution time is budgeted to the task’s pro-
cessing time Pt. The calling activity is placed at the head of the ready queue
and the scheduler takes control to evaluate barriers. RET2 shows a synchronizer
returning from a Send Event procedure when the entry queue is empty. Transi-
tion RET3 shows a synchronizer returning from a Send Event procedure when
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the entry queue is not empty. The blocked Get Event entry is immediately exe-
cuted in the context of the task waiting on it. RET4 gives the situation where a
synchronizer returns from Get Event entry call. The task in whose context the
execution was taking place is preempted and is placed at the head of its ready
queue, and the scheduler takes over.

E · Beh = ret ∧ x ∈ {Get, Set} ∧ t < ns
[
α x E, R, B, ns, t

] ret−−−→
[
σ, α′

�R, B, ns, t
]

+̂ δ(ret)

α′ = 〈α ← Pt = α · Pt + δ(ret)〉

RET1

D · Beh = ret ∧ D · Queue = ε ∧ t < ns
[
α Send Event D, R, B, ns, t

] ret−−−→
[
σ, α′

�R, B, ns, t
]

+̂ δ(ret)

D′ = 〈D ← Bar = true ← Ec = D · Ec + 1〉
α′ = 〈α ← Pt = α′ · Pt + δ(ret)〉

RET2

D · Beh = ret ∧ D · Queue = S ∧ t < ns
[
α Send Event D, R, B, ns, t

] ret
−−−→

[
S′

Get Event D′, α′
�R, B′, ns, t

]
b+ δ(ret)

B′ = B \ {S}
S′ = 〈S ← Nd = t + holdingtime(S)〉
D′ = 〈D ← Bar = true ← Ec = D · Ec + 1〉
α′ = 〈α ← Pt = α · Pt + δ(ret)〉

RET3

D · Beh = ret; C ∧ t < ns
[
S Get Event D, R, B, ns, t

] ret−−−→
[
σ, S′

�R, B, ns, t
]

+̂ δ(ret)

D′ = 〈D ← Bar = (D · Ec > 1) ← Ec = D · Ec − 1 ← Queue = ε〉
S′ = 〈S ← Pt = S · Pt + δ(ret)〉

RET4

Rules OBCL and CBCL represent a sporadic task issuing a Get Event call.
Rule OBCL represents when the barrier is open and the call is immediately
executed. Rule CBCL represents when the barrier is closed, the call remains
blocked on the entry until a Set Event is issued by another task or interrupt.

S ·Beh = Get Event(D); C ∧ D ·Bar = True ∧ t < ns
[
S, R, B, ns, t

] Get Event
−−−−−−−−→

[
S′

Get Event D′, R, B, ns, t
]

b+ δ(Get Event)

S′ = 〈S ← Beh = C ← Nd = t + holdingtime(S)〉
D′ = 〈D ← Beh = prog(D) · Get Event〉

OBCL
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S ·Beh = Get Event(D); C ∧ D ·Bar = False ∧ t < ns
[
S, R, B, ns, t

] Get Event−−−−−−−−→
[
S′, R, B, ns, t

]
+̂ δ(Get Event)

S′ = 〈S ← Beh = C ← Bar = true〉
D′ = 〈D ← Queue = S〉

CBCL

Scheduler. The scheduler also takes control at certain points called scheduling
points. Some of these have already been explained (the RETi transitions). Others
occur when the active context executes a delay until instruction, and when
the scheduler is scheduled to execute, represented by the ns variable in the
system configuration and calculated just before the scheduler cedes control. NS-
IDLE and NS-ACT represent the scheduler preempting the idle task and an
activity (respectively) as its launch time arrives. SDELAY and PDELAY show
a sporadic task and a periodic task (respectively) execute a delay until. ns
is the minimum of Nd fields of all tasks in the blocked set where Nd represents
the next dispatching time for the task: ns = minTi∈B(Ti · Nd). SCUD is the
evolution of the scheduler as it evaluates and updates the ready queue and
blocked tasks. SCAC shows the scheduler calculating its next dispatching time
and then granting control to the highest priority ready task. SCID is the action
carried out by the scheduler when the ready queue is empty.

ns ≤ t
[
ι, R, B, ns, t

] is−−→
[
σ, R, B, ns, t

]
+̂ δ(is)

NS-IDLE

ns ≤ t
[
a, R, B, ns, t

] as−−→
[
σ, a◦R, B, ns, t

]
+̂ δ(as)

NS-ACT

T ·Beh = delay;C ∧ t < ns
[
T, R, B, ns, t

] delay−−−−→
[
σ, R, B′, ns, t

]
+̂ δ(delay)

T ′ = 〈T ← Beh = prog(T ) ← Pt = T · Pt + δ(delay)〉
B′ = B ∪ {T ′}

SDELAY

T ·Beh = delay ; C, t < ns
[
T, R, B, ns, t

] delay−−−−→
[
σ, R, B′, ns, t

]
+̂ δ(delay)

T ′ = 〈T ← Beh = prog(T ) ← Pt = T · Pt + δ(delay)
← Nd = T · Nd + Holdingtime(T )〉

B′ = B ∪ {T ′}

PDELAY
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−
[
σ, R, B, ns, t

] ud−−−→
[
σs, R

′, B′, ns, t
]

+̂ δ(ud)

B′ = B \ ready(B, t)
R′ = R � ready(B, t)
ready(B, t) = {T ∈ B | T ·Nd ≥ t}

SCUD

−
[
σs, a◦R, B, ns, t

] sa−−→
[
a, R, B, ns’, t

]
+̂ δ(sa)

ns’ = MinT∈B(T ·Nd)

SCAC

−
[
σs, ε, B, ns, t

] si−−→
[
ι, ε, B, ns’, t

]
+̂ δ(si)

ns’ = MinT∈B(T ·Nd)

SCID

Interrupt Handling. Rule NEWI models the arrival of a new interrupt. I-AS
and I-US depict the scheduler preempting an activity and an idle task (respec-
tively) in presence of interrupts in order to handle them. In case of arrival of
interrupt during interrupt handling by the scheduler, the scheduler is restarted
(transition I-SS ). I-IH depicts the scheduler selecting the highest priority inter-
rupt and inserting it at the tail of its priority list in the ready queue (all interrupt
priorities are greater than all task priorities so an interrupt will preempt a task).

U /∈ ({c} ∪ R ∪ IL)
IL �

[
c, R, B, ns, t

]
−−→ IL◦U �

[
c, R, B, ns, t

] NEWI

IL �= φ

IL �
[
a, R, B, ns, t

] as−−→ IL �
[
σ, a�R, B, ns, t

]
+̂ δ(as)

I-AS

IL �= φ

IL �
[
ι, R, B, ns, t

] is−−→ IL �
[
σ, R, B, ns, t

]
+̂ δ(is)

I-IS

IL �= φ

IL �
[
σs, R, B, ns, t

] ss−−→ IL �
[
σ, R, B, ns, t

]
+̂ δ(ss)

I-SS

−
U ◦IL �

[
σ, R, B, ns, t

] ih−−→ IL �
[
σ, R�U, B, ns, t

]
+̂ δ(ih)

I-IH
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3.6 Discussion

One of the outcomes of providing a formal semantics (of a model, language or
algorithm) is that it allows to disambiguate the informal description in the nat-
ural language. One can thus formally reason about properties of the system thus
described. As an example, in our semantics, we made a choice in the way the
inter-dispatch time is computed. If we had strictly obeyed the Ravenscar code
patterns, we would have used a modified syntax for sporadic tasks in PROGS

whereby we would have made explicit the capture of the current clock from the
system. We would have also had to decompose rules RET3 and CBCL, intro-
ducing an additional step reflecting the capture of the current clock. A small
discrepancy would then arise due to the non-atomic nature of the sporadic task
release and computation of the next dispatch time, i.e., a higher priority task may
preempt the sporadic task between these two actions. In case of a preemption
by a higher priority task between the release of the task and the computation of
the next release, a longer than stipulated inter-dispatch time may be enforced.
This does not impact schedulability but can result in the sporadic tasks respond-
ing more sluggishly. This problem can be solved by assigning synchronizers the
maximum priority in the system (Max Interrupt Priority), and returning the
instance of time when the entry is executed. The maximum priority ensures that
a task cannot be preempted while it is in the entry, thus ensuring the atomicity of
the two actions. In our semantics, we chose a solution whereby the computation
of the next release of sporadic tasks is performed as a side effect of the sporadic
task entering the synchroniser. One may think of the scheduler performing this
computation. Indeed, although the scheduler is not explicitely stated in rules
rules RET3 and CBCL, nevertheless, it is the scheduler which is responsible for
granting control of the sporadic task when it enters the synchroniser. Thus, the
scheduler performs the computation in an atomic fashion.

4 Conclusions

Previously, work has been undertaken ([8], [10], [17] and [7]) to formalize the
semantics of real-time kernels and Ravenscar-like executives. In [7], the author
defines an extension of CCS aimed at studying muti-tasking systems. Similarly
to our approach, the general behaviour of systems made of concurrent tasks can
be modeled. However, in our work, we represent the kernel functions explicitly,
allowing us to account for system overhead. The work that is the closest to ours
is perhaps [8] where the authors use the RTL and PVS formalisms to develop a
Ravenscar-like kernel. A major difference with our contribution is that [8] aims
at prescribing the development of the kernel functions whereas our contribution
does provide an operational semantics which captures the global behaviour of
Ravenscar systems (composed from the kernel and the running application).
Another main difference with existing work is that our paper is the first direct
approach at providing semantics using the structured operational semantics and
not requiring any other notational support. In [11], the authors present a timed
automata-based approach to the verification of Ravenscar systems.
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The structured operational semantic formalization of RMM is pivotal to our
tool chain as it provides to developers a direct and unambiguous description
of the running behaviour of their hard real-time applications. Our semantics
helped also to explicitly define the kernel functions and scheduler overheads due
to context switches and interrupt handling. While the AADL is an architecture
description language with open and loose semantics, our AADL to RMM trans-
formation tool determines a rigourous semantic definition for a subset of AADL
(the subset that is translatable into RMM). It must be kept in mind that the
semantics given here are for executable systems generated from AADL models
that are to run on a Ravenscar executive.

As stated in the introduction, with the RMM semantics we have a complete
and unambiguous description of the interaction of functional code with the gen-
erated framework. This is possible due to the abstraction of functional code into
the set of PROGS legal programs for all units. The work achieved can be use-
fully extended according to the approach of “semantic anchoring”, whereby our
operational semantics could be transposed using Abstract State Machines as a
supporting anchoring language [5].
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