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Abstract

This paper investigates the use of a popular regularizationmodel, the Total Variation minimization (TV), to filter SAR
images and reduce speckle noise. This model is extensively used for its property of preserving edges. Due to the many
local minima, TV minimization is difficult to achieve for non-convex likelihood terms such as that of SAR amplitude.
Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Exact minimization,
although theoretically possible, can not be implemented due to memory constraints on large images required by remote
sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization is also
heavy. In this paper, we propose a new fast approximate discrete algorithm. The filtering is applied in the framework of
building delineation for 3D reconstruction. Results on real images are presented.

1 Introduction

There are nowadays many SAR satellite sensors (EnviSat,
Radarsat, Terra-SAR, ...) providing a huge amount of SAR
images. The popularity of such sensors is linked to their
all weather and all-time capabilities. However, SAR im-
ages are difficult to interpret, mainly because of the speckle
phenomenon.

Speckle is due to the interferences of waves reflected by
many elementary reflectors inside a resolution cell. Al-
though speckle has been extensively studied and is well
modeled in some particular cases [7] [9] [10], speckle re-
duction remains one of the major issues in SAR image pro-
cessing. Many filters have been proposed in the last twenty
years.

Our objective in this paper is to study the interest of Marko-
vian modeling for SAR scene reflectivity restoration. In-
deed, Markov Random Field (MRF) modelization provides
a convenient way to express both data fidelity constraints
and desirable properties of the filtered image. In this con-
text, total variation minimization has been extensively used
to constrain the oscillations in the regularized image while
preserving its edges.

We first describe the chosen model (likelihood term and
regularization term), and then study the optimization of
such a functional. We first recall previous methods before
describing a new algorithm which provides afast approxi-
matesolution. The filtering process is then applied on real
images for the delineation of buildings and their 3D recon-
struction.

2 Markovian modeling

2.1 Principle

Let us denote byv an image defined on a finite discrete
lattice S and taking its values in a discrete integer set
L = {0, . . . , L}. We denote byvs the value of the im-
agev at the sites ∈ S. We note bys ∼ t the neighbor-
ing relationship between sitess andt, by (s, t) the related
clique of order two and byNs the local neighborhood of
site s. Given an observed imagev, a Bayesian analysis
using the Maximum A Posteriori (MAP) criterion consists
of finding a restored imageu which will represent in the
following the “real” scene reflectivity. We will denote by
vs the observed amplitude in the SAR image andus is the
square root of the scene reflectivity (to be homogeneous
with amplitude).

We will use a restrictive modeling of the scene reflectivity.
It is supposed to follow the cartoon model, which means
homogeneous areas separated by well defined boundaries.
The proposed approach uses a MAP criterion and supposes
that the global fieldu is markovian. Our aim is to introduce
contextual relationship allowing a regularized solutionu.
The MAP problem is thus an energy minimization prob-
lem with :

E(u|v) = E(v|u)+E(u) =
∑

s

U(vs|us)+β
∑

(s,t)

ψ(us, ut)

whereU(vs|us) = − log(P (vs|us)) andψ is some regu-
larization function.



2.2 Likelihood term

The likelihood termsP (vs|us) have been chosen as Nak-
agami distributions [7] for aM -look image:

P (vs|us) =
2MM

Γ(M)u2M
s

v(2M−1)
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s
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leading to the following energetic term :

U(vs|us) = M [
v2

s

u2
s

+ 2 logus]

This energy is not convex inus due to the heavy tailed dis-
tribution of speckle images.

2.3 Regularization term

As said in the introduction, the TV regularization prior is
well adapted when dealing with strong discontinuities. Be-
sides this prior has good properties for minimization since
it is a convex function. The energetic term corresponding
to the discretization of TV can be written as follows:

E(u) = β
∑

(s,t)

wst|us − ut|

with wst = 1 for the 4-nearest neighbors andwst = 1/
√

2
for the 4 diagonal ones. We will not explicitly write the
weightswst in the following equations.
β is the so-called hyperparameter used to tune the relative
importance of prior knowledge with respect to likelihood.

2.4 Energy minimization

For the regularization of amplitude images we have the fol-
lowing energy to minimize:

E(u|v) =
∑

s

M [
v2

s

u2
s

+ 2 logus] + β
∑

(s,t)

|us − ut| (1)

Since the likelihood term is not convex, the global energy
is in general not convex. The optimization of such an en-
ergy is discussed in the following section.

3 Optimization

3.1 Previous works

For many years, optimization of MRF energies has been
done using simulated annealing [6] or ICM [1]. Both have
important drawbacks: the first one is very slow, whereas
the second one is very sensitive to initialization and con-
verges far from the global minimum in pratice. More re-
cently, efficient discrete optimization schemes have been
proposed based on graph-cut search, i.e. the computation
of a s-t minimum cut or, by duality, a maximum flow in a
graph.

Two exact algorithms could be applied to solve exactly the
problem. The first one has been proposed in [8] and is able
to exactly optimize any likelihood term combined with a
convex regularization term. Nevertheless, the constructed
graph is quite huge since the number of nodes is the num-
ber of pixels multiplied by the number of grey-levels. This
memory size is prohibitive for any application to remote
sensing images. Another exact solution is provided in [5].
The algorithm works for levelable energies, which means
that the energy can be written as a sum on the level sets of
u. Though the graph construction leads to a reduced size
graph for convex likelihood and prior energies, the graph is
of comparable size as that of [8] in the general case. Since
the convexity of the posterior energy is not guaranteed in
our model (due to the non-convex log-likelihood of the am-
plitude), a fast algorithm based on a scaling search can not
be applied [5].
Concerning approximate optimization,α-expansion algo-
rithm proposed in [3] can be applied. Starting from a cur-
rent solution, this algorithm proposes to each pixel eitherto
keep its current gray-level, or to take a valueα as new gray-
level. The energy associated to this class of changes is min-
imized using a graph-cut. The succession ofα-expansions
over all possible values inL until convergence leads to a
solution which is shown to be close to the global mini-
mum. The set of all possible values can be large, therefore
leading to heavy computational burden. We suggest in the
next section a faster algorithm which is more suitable when
large images or joint regularization are considered.

3.2 Proposed algorithm

Graph-cut approach provides a way to explore a combina-
torial set of changes involving simultaneously all pixels.
Following [3], we denote such changeslarge moves. In-
stead of allowing a pixel to either keep its previous value
or change it to a given one (α-expansion), we suggest that
a pixel could either remain unchanged or its value be in-
creased (or decreased) by a fixed step. Such an approach
has first been described independently in [2, 4, 11] and ap-
plied recently with unitary steps in [2]. We however use
these large moves in a case of non-convex data term. The
trial steps are chosen to perform a scaling sampling of the
set of possible pixel values.
We describe in the following subsections the set of large
moves considered, the associated graph construction, and
the approximate optimization scheme.

3.2.1 Local minimization

First, let us introduce the set of images that lie within a
single move in our algorithm. Then,Sd(u

(n)) = {u / ∀s ∈
S, ∃ks ∈ {0, 1}, us = u

(n)
s + ksd} is the set of images

whose pixel valueus is either unchanged or increased by
stepd. We define the “best” move has the one that mini-



mizes the restriction of the energy to the setSd(u
(n)):

u(n+1) = arg min
u(n+1)∈Sd(u(n))

E(u(n+1)|v).

The restriction of the energy toSd(u
(n)) corresponds to an

energy involving only the binary variables(ks)s∈S . Ac-
cording to [12], an energy of binary variables arising from
a first-order Markov model can be minimized by comput-
ing a minimum cut on a related graph provided it satisfies
the following submodular property:

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1).

To compute the “best” move using a s-t minimum-cut al-
gorithm, the following must therefore hold:

ψ(us, ut+d)+ψ(us+d, ut) ≥ ψ(us, ut)+ψ(us+d, ut+d).
(2)

Note that in most cases, the prior modelψ depends only
on the differenceus − ut. This is the case in the model
described in previous section. For such prior models, con-
dition (2) becomes:

ψ(us − ut − d) + ψ(us − ut + d) ≥ 2ψ(us − ut)

which is the definition of the convexity ofψ.
In conclusion, thelocal problem of finding the vectorial
field u(n+1) located within a single move (i.e.u(n+1) ∈
Sd(u

(n))) that minimizes the posterior energyE(u(n+1)|v)
can beexactlysolved by computing a minimum cut on a
graph (described in next paragraph) provided that the reg-
ularization potential is convex and depends only on the dif-
ferenceus − ut.
The model we described in previous section consists of the
sum of a non-convex likelihood term and a convex prior
term. The above property therefore holds for this model
and we give in the next paragraphs an algorithm for ap-
proximate global minimization based on exact local mini-
mizations performed using graph-cuts.

3.2.2 Graph construction

We build a graphG(V , E), following the method of [12],
to minimize the restriction of the energy to allowed moves
of stepd. The graphG(V , E) is directed, with nonnegative
edge weights and two terminal vertices: the sourceS and
the sinkP . The graph structure and the edge weights are
chosen such that any cut1 has a cost (i.e. sum of the cut
edges capacities) corresponding to the energy to minimize.
We create a vertice for each sites, all connected respec-
tively to the source and the sink through two edges with
capacitycs,1 (resp. cs,0). Finally, each clique(s, t) gives
rise to an edge with capacitycs,t.
The capacities are set according to the additive method de-
scribed in [12]. The first term in equation (1) is represented
by the weights:

{

cs,1 = max(0, U(vs|u(n)
s + d))− U(vs|u(n)

s ))

cs,0 = max(0, U(vs|u(n)
s )− U(vs|u(n)

s + d))).

To this weights are added the weights representing each
clique (second term of equation (1)):
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−ψ(u
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(n)
t ))

c′t,0 = β ·max(0, ψ(u
(n)
s + d, u

(n)
t )

−ψ(u
(n)
s + d, u

(n)
t + d))

cs,t = β · (ψ(u
(n)
s , u

(n)
t + d) + ψ(u

(n)
s + d, u

(n)
t )

−ψ(u
(n)
s , u

(n)
t )− ψ(u

(n)
s + d, u

(n)
t + d))

3.2.3 Approximate global minimization

When non-convex data terms such as Nakagami law de-
scribed are considered, the global minimization problem
can not be exactly solved without considering each possi-
ble configuration (i.e. building a huge graph). On the other
hand, when all terms are convex, it has been proven in [4]
that a succession of local minimizations leads to the global
minimum. An exploration based on different scalings of
the step is then suggested to speed up convergence.

We follow here an heuristic method that combines theex-
act determination of the best moves, with no guarantee on
how close to the global minimum we get. Next sections
will illustrate on some simulated and real data that the ob-
tained results are satisfying in practice with a speed ade-
quate for application use.

The joint-regularization algorithm is summarized
here:

1: for all s ∈ S do
2: u

(0)
s ← {L/2, . . . , L/2}

3: end for
4: n← 0
5: for i = 1 to precision do
6: di ← L/2i

7: for all di ∈ S(di) do
8: u(n+1) ← arg minu(n+1)∈Sd(u(n))E(u(n+1)|v)
9: n← n+ 1

10: end for
11: end for

Line 8 represents the exact binary energy minimization ob-
tained by computing a minimum cut on a graph build ac-
cording to previous section. Note that if we perform uni-
tary stepsdi ∈ S(1) until convergence at the termination
of our algorithm, exact minimization is then guaranteed for
convex energies [4].

1a cut is a partition of the vertices into two disjoint setsS andP such thatS ∈ S andP ∈ P



4 Results and application to building
delineation

4.1 Simulated images

Figure 1: Simulated SAR image with Nakagami distribu-
tions (cartoon image) and the filtered result with TV regu-
larization.

An example of result using a simulated image correspond-
ing perfectly to the chosen model (cartoon + Nakagami)
is presented figure 1. Speckle is strongly reduced while
edges are well preserved.

4.2 Real images and building delineation

Figure 2: Three extracts of original 1-look SAR image
c©ONERA, their associated filtered results (below), and
the automatic building delineation (bottom).

In this part, real SAR images of urban areas have been
filtered. Then automatic thresholding is applied to detect
potential buildings. The building footprints are then used
for 3D reconstruction using interferometric information or
lay-over/shadow analysis.

5 Conclusion

In this paper we have described a fast algorithm for SAR
amplitude filtering with TV regularization. This leads to
efficient speckle reduction while preserving edges and is
therefore of interest for building delineation.
Further work should include the joint regularization of in-
terferometric phase and amplitude images using a coupled
edge process. In this framework, the efficiency of the pro-
posed discrete approximate algorithm will be crucial.
Acknowledgement
This work was supported by the Centre National d’Études
Spatiales under the project R-S06/OT04-010.

References

[1] J. Besag. On the statistical analysis of dirty pictures.J. R.
Statist. Soc. B, 48(3):259–302, 1986.

[2] J. M. Bioucas-Dias and G. Valad ao. Phase unwrapping
via graph cuts. IEEE Transactions on Image Processing,
16(3):698–709, 2007.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(2):147–159,
2001.

[4] J. Darbon.Composants logiciels et algorithmes de minimi-
sation exacte d’énergies dédiées au traitement des images.
PhD thesis, Ecole Nationale Supérieure des Télécommuni-
cations (ENST E050), 2005.

[5] J. Darbon and M. Sigelle. Image restoration with dis-
crete constrained Total Variation part I: Fast and exact op-
timization. Journal of Mathematical Imaging and Vision,
26(3):261–276, December 2006.

[6] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Dis-
tribution, and the Bayesian Restoration of Images.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6):721–741, November 1984.

[7] J.W Goodman. Statistical properties of laser speckle pat-
terns. In Laser Speckle and Related Phenomena, vol-
ume 9, pages 9–75. J.C Dainty (Springer Verlag, Heidel-
berg, 1975), 1975.

[8] H. Ishikawa. Exact optimization for Markov random fields
with convex priors. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(10):1333–1336, October 2003.

[9] E. Jakeman. On the statistics of K-distributed noise.J. Phys.
A: Math. Gen., 13:31–48, 1980.

[10] J. K. Jao. Amplitude distribution of composite terrainradar
clutter and the K-distribution.IEEE Transactions on An-
tennas and Propagation, AP-32(10):1049–1062, October
1984.

[11] V. Kolmogorov. Primal-dual algorithm for convex markov
random fields. Technical report, Microsoft Research, 2005.

[12] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph-cuts ?IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 26(2), 2004.


