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Abstract. We present a novel approach for the sound orchestration of
services. It is based on Orcharts and Typecharts: a service orchestra-
tion language and an associated behavioural typing language. Sessions
play a pivotal role in this approach. Orcharts (orchestration charts) de-
fine session based services and Typecharts provide for session types with
complex interaction patterns that generalise the request/response inter-
action paradigm. We provide an algorithm for deciding behavioural well
typedeness. We claim that well typed service configurations have the
soudness property, i.e., any session that can be initiated in a well typed
configuration has its requestor and provider behave in mutual confor-
mance and potentially reach service completion.

1 Introduction

Behavioural type systems have been defined in recent years with the aim to be
able to check the compatibility of communicating components, not only regard-
ing data exchanged, but also regarding the matching of their respective behaviour
[14,8,13]. Recently, the focus moved from components to service-oriented archi-
tectures, and several calculi for service orchestration have been defined. Of them,
Orc [7] uses few simple orchestration mechanisms but shows a very interesting
expressive power. In this language, an invoked service provides a simple reply
which can be piped to trigger other invocations. Thus, interface compatibility
looses its interest because invocations which are not replied or replies which are
not listened at are simply lost, with no possible identification of error states.

Although Orc is able to encode most common workflow patterns [5], the sim-
plicity of the language is felt unsatisfactory for dealing with complex services in
which different invocations of a service can trigger complex interaction patterns
among several services. Often an interaction pattern constitute a session which
clearly identifies which are the message exchanges belonging to the session. Ses-
sion types, that is, behavioural types associated to sessions, have been studied
for protocols [6] and software components [15]. Service orchestration calculi in-
cluding the notion of session have also been defined [3,9].

A different approach can be chosen for relating messages of a complex interac-
tion pattern: message exchanges that are logically related among them are iden-
tified as sharing the same correlation data [10], as it occurs, for example, when a
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unique id related to a client is passed in any message referring to that client. In
both session-based and correlation based approaches, defining behavioural types
has often proved difficult: while sessions make simpler, with respect to correla-
tion approaches, to identify the interaction patterns that are to be typed, session
based calculi with higher order session communication, defined in a π-calculus
style, make typing non-trivial and not able to support automatic verification [4].

The aim of this paper is to investigate how we can maintain simple session
typing, and therefore automatic verification, by defining an ad hoc session based
service language which allows for an easy verification of the compatibility of in-
teractions between services. The designed language, orcharts, expressing graph-
ically data and control flows, allows for an easy traceabilty of sessions. This
allows a finite-state behaviour type to be associated to a session, so that stan-
dard verification tools can be used to check compatibility between the client
and the service. Indeed, our approach has been aimed at a language power-
ful enough to express common orchestration examples, but also simple enough
to meet the typability requirement. The typing algorithm is briefly presented
and the properties that can be verified over well typed services are
discussed.

2 Informal Introduction to Typecharts and Orcharts

2.1 Sessions

A service oriented architecture is constituted by a collection of interacting ser-
vices or sites (actually, in the following, we tend to use the word site to indicate
a named entity that provides a service, and the word service when we refer to its
behavioural aspects). Each site provides a service which may use services pro-
vided by other sites. Interactions between services occur by message exchange
and in the context of shared sessions. Before invoking a service, the requestor
creates a (unique) session name and attaches it to the name of the invoked service
(example - the creation of a new session s bound to service ServiceFoo is written
s@ServiceFoo). The session name is then used by the requestor in all subsequent
interactions with the server pertaining to the same session (at a given point in
time, a requestor may have many ongoing sessions with the same service). For
instance, s.m() denotes the sending of message m() in the context of session s and
hence s.m() is sent to ServiceFoo since s is bound to ServiceFoo. On the server
side, at the reception of a first invocation message pertaining to a new session, a
new session is started and a dialogue is initiated with the requestor in the con-
text of this session. This dialogue takes place in both directions and on two new
FIFO queues allocated for this purpose. In the present version of our approach
we consider that different sessions that are being concurrently executed on the
same server do not share information on that server. Sessions that are created
on the server side (in order to provide services to requestors) are referred to as
root sessions (root sessions are denoted by ρ).
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2.2 Defining Services

The template for service definition is given in figure 1, where one can distinguish
four main parts: Service name, Provides, Requires, and the defining Orchart. In
figure 2 we present two definitions of services, namely, QuickNews and Collect-
News, which revisit examples of News Services presented in [7]. Both services
require the services of two News Agencies, CNN and BBC, and provide each
a specific type of news service. The QuickNews service provides only one news
item based on the first reply from the news agencies. The CollectNews service
provides the news items collected from the two news agencies. The constructs
used in QuickNews and CollectNews are commented in more detail section 2.4.
Note that both required services, CNN and BBC, have the same required type-
chart, namely, NewsAgency-T. As can be seen in figure 3(a), NewsAgency-T is a
typechart with a single request/response interaction scheme.

Service
Provides
Requires

Required Services and their 
Typecharts

Name of provided service

Typechart of provided service

...

Orchart of provided service

...

...

Fig. 1. Template of a site service definition

getNews(date : date-t)

b.getPiece(date)    , c.getPiece(date)

b.newsPiece( p : newP-t )   | c.newsPiece( p : newsP-t )

News(p)

b, c, 

b@BBC, c@CNN, 

Service QuickNews
Provides QuickNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

Service CollectNews
Provides CollectNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

getNews(date : date-t)

b.getPiece(date)    , c.getPiece(date)

b.newsPiece(p1: newsP-t)    &   c.newsPiece(p2: newsP-t)

News(p1, p2)

b, c, 

b@BBC, c@CNN, 

Fig. 2. The two versions of News service, with comments
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2.3 Typecharts

Typecharts are a special kind of deterministic finite labelled transition systems
where labels represent messages with parameter types. Parameter types can be
data types (characterised by the -t suffix), or names of typecharts (characterised
by the -T suffix). The transition system of a typechart has an initial state and
one or more final states. States of a typechart are also partitioned in two sub-
sets: sending states and receiving states (initial and final states can only be
receiving states). Note that the typechart declared for a required service (e.g.
CNN:NewsAgency-T) can be different from the one declared as provided in the
service definition of this required service. For instance, 3(b) represents a possi-
ble provided typechart for the CNN and BBC services. This typechart allows
for repeatable request/response interactions with the requestor. QuickNews and
CollectNews do not exploit the possibility of reissuing a request in the same
session but still can soundly interact with the CNN and BBC services. The re-
lations between provided and required typecharts will be discussed in section
4.1. Note: we adopt a convention for typechart represntation which is to always
adopt server’s view. Hence, e.g, a sending state of a typechart has to be matched
by a sending state in the server and a receiving state in the invoker.

getPiece(date-t)

newsPiece(newsP-t)

a) Typechart NewsAgency-T

getPiece(date-t) newsPiece(newsP-t)

b) Typechart NewsAgencyBis-T

Marks state as initial Receiving state Sending state Final state

Fig. 3. Two typecharts of News Agency services

2.4 Orcharts

An Orchart is a finite directed acyclic graph where nodes can be of three types:
input nodes, output nodes and instantiation nodes, and where edges can be of
two types: data carrying edges and control edges.

Output Nodes. Figure 4 describes the input and output nodes. An output
node may contain one or more message emissions. Messages may carry values
that can be either simple data values or service names. Each message emission
refers also to its emission context, i.e., a session name. Informally, one may think
of output nodes as immediately executable: when the node receives control each
of its messages is inserted in the FIFO queue corresponding to its named session.

Input Nodes. have an Internal Structure: They Are Subduivided in capsules
(symbol | is used as a capsule separator). A capsule represents a possible branch-
ing from the output node. A capsule may contain one or more message receptions.
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s.m1(x )   , r.m2(y)s.m1(x : x-t)   &   r.m2(y : y-t)        s.m(z : z-t)               

capsules 

Capsule containing 
one reception: message
m in context of session s 

Capsule containing two receptions:
message m1 in context of session s and 

message m2 in context  of session r. 
Capsule is firable when both messages 

are received

Edges continuing 
flows from left capsule

Edges continuing 
flows from right capsule

Edge passing 
control to the node

Edges continuing 
flow from output node

Output node with two 
emissions: messqge m1 in context 

of session s and message m2 in context of 
session r. When output node receives 

control, it can immediately fire and thus 
both messages are sent

Edge passing 
control to node

a) Structure of an Input Node b) Stucture of an Output Node

Fig. 4. Structure of Input and Output Nodes

In capsules with multiple receptions, all messages should pertain to different
sessions. This constraint can be syntactically enforced. Capsules with multiple
receptions are in fact a shorthand that can be rewritten in single message cap-
sules. For lack of space, the details of this rewriting will not be addressed in this
paper and in the sequel we conisder capsules to contain a single message. As an
informal interpretation one may think of an input node to behave like a guarded
command. When an input node receives control, its capsules can consume mes-
sages that are awaiting in the FIFO queues. When one message in a capsule is
consumed this capsule is fired and the flow continues on all edges having their
sources at this capsule. When a capsule is fired, all other capsules of the same
input node (and their continuation flows) are discarded.

Data and Control Flow Edges. Nodes of an orchart can be joined with either
control edges (represented by dotted arrows) or data flow edges (represented by
solid line edges). Data flow edges in fact convey both control and data flow. Data
flow edges are the means for binding variables with values: a use occurence of
a variable can be bound with a binding occurence of this variable only if there
is a directed path made of data flow edges starting at the binding occurence
and ending at the use occurence. Moreover, variables are write-once, hence, in
the semantics, we will use the replacement of variables by their values. Flow
edges (control or data) can carry labels. These labels indicate the set of sessions
that are continued on the flow and/or the set of sessions created on the flow.
Examples of labelled flow edges are provided in the following sections.

2.5 Revisiting the QuickNews and CollectNews Examples

In figure 5 we describe the different constructs of the orcharts used in service
definitions of QuickNews and CollectNews introduced in section 2.2. For better
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getNews(date)

b.getPiece(date), c.getPiece(date)

b.newsItem(p)  |  c.newsItem(p)

News(p)

b, c, 

b@BBC, c@CNN, 

Service QuickNews
Provides QuickNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

Service CollectNews
Provides CollectNews-T
Requires CNN:NewsAgency-T

BBC:NewsAgency-T

getNews(date)

b.getPiece(date), c.getPiece(date)

b.newsItem(p1)  & c.newsItem(p2)

News(p1, p2)

b, c, 

b@BBC, c@CNN, 

Input node with one capsule  containing one Input message

Message getNews initiates a 
root session

Continuation flow: 
sessions b and c 

are created for this flow; 
the root session,  is continued 

on this flow

Input node with one 
capsule containing the 
conjunction of two input 

messages  

Output node with two 
output messages, one 

sent is to BBC (in context of 
session b) and one to CNN 

(in context of session c)

Input node with 
two capsules containing  one 

input message each. Capusles 
are exclusive: only the first 

incoming message is 
consumed  

Two exclusive flows – they are 
exclusive because they are attached 

to two different capsules of the 
same input node. 

Flow continuing the capsule.
Session is continued. Sessions 

b and c are not continued
Output node continuing one of the two

exclusive flows. Hence, the argument of the output 
message will be bound through one of these two flows.

Fig. 5. The two versions of News service with comments

readability, we chose not to represent the types of the used data. The comments
in the picture follow the flow of the behaviour of the orcharts, explaining the
meaning of the various types of nodes and of the flow of session names and vari-
ables along the edges. Before being used for an interaction, session names must
be bound to a service name. Variables are given a value in an input message
(occuring in a capsule), which value is then used in ouput nodes. See for in-
stance how variable date acquires a value in the getNews message which is used
downstream in the getPiece output message.

2.6 Definition and Instantiation of Named Orcharts

In order to provide for recursion, orcharts use the classical approach of naming and
instantiating behaviours. In figure 6 we give the definition of a GetBestPrice service
which illustrates the use of a named orchart instantiation. Briefly, the GetBest-
Price service returns, for a given product item requested by the user, the name of
the shop that sells this item at the best price. The GetBestPrice service requires
the services of ShopsFinder which provides all shops selling a given item; and of
MinEval which provides the minimum of a set of values. The behaviour of this ser-
vice is as follows. A (root) service session is started with the input of getBestPrice
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message, then a session named sf (with ShopsFinder) is created then used to invoke
ShopsFinder. Then a session m bound to MinEval is created and the HARVEST or-
chart is instantiated with session parameters sf, m and ρ and value item. HARVEST
collects shops proposals coming from ShopsFinder and, for each response, invokes
the shop to get the price of the item and then sends the price to MinEval. When
HARVEST terminates, i.e., when its orchart reaches the exit node (exit nodes are
described in the sequel), a flow is continued in which MinEval is invoked to get
the shop having the best price. Finally, this information is returned to the user. It
is worth noting in this example how orcharts are named and instantiated. Named
Orcharts are defined within dotted rounded boxes and instantiated using solid line
rounded boxes. The name of the orchart is placed inside the box and is followed by
the session parameters (in square brackets) and value parameters (in parenthesis).
The definition of a named orchart starts with an initial input node and may have
exit nodes (zero or more) represented with small circles placed at the boundary of
the definition box (on the dotted line). At exit nodes, the sessions that are contin-
ued are given in square brackets whereas the values that are returned are given in
parenthesis (the HARVEST example only shows continued sessions). A syntactical
constraint is enforced that the sessions continued at an exit node must be a subset
of the session parameters. For instance, HARVEST has session parameters [sf, m,
ρ] but only [m, ρ] are continued from the exit node. In order to simplify the pre-
sentation, but without a loss of generality, we consider in the present paper that
named orcharts may have at most one exit node. To this exit node correspond
an exit point in the instantiation diagram of the named orchart (exit points are
also represented with a small circle). The dynamic semantics of instantiation is
defined through unfolding. When control reaches an instantiation, the instantia-
tion node is replaced by the definition of the named orchart. In this replacement,

Service GetBestPrice   
Provides   GetBestPrice-T
Requires ShopsFinder : ShopsFinder-T, MinEval : MyMinEval-T

sf.oneShop(sh:Shop-T)    |   sf.end()

s.getPrice(item)

HARVEST
[sf, m, ](item)

s.thePrice(x)

m.sample(sh,x)

sf, m, 

s@sh, m, 

s, m, 

m, 
m, 

m, 

HARVEST
[sf, m, ](item)

[m, 

[m, 

getBestPrice(item)

sf.getShops(item)

HARVEST
[sf, m, ](item)

m.getMin()

m.theMin(theShop:Shop-T, theMin)  | m.noSamples()

noShopsFound()theBestPrice(theShop, theMin)

m@MinEval, sf, 

sf@ShopsFinder, 

m, 
[m, 

Fig. 6. The Get Best Price Service Definition
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the edges in the definition orchart whose targets are at the exit node have their
target redirected to the successor node of the exit point in the instantiation.

2.7 Parallel Flows

The orchart defining HARVEST involves the use of parallel flows. For instance,
when message oneShop carrying a shop name sh is consumed, behaviour con-
tinues in two flows, the left flow is (re−)instantiation of HARVEST and the
right flow proceeds with invoking the shop sh and storing the obtained price
in MinEval. Note how sessions m and ρ are present in these two parallel flows
whereas session sf is only present in the left flow. Note the use, in the definition
of this named orchart, of flow control edges. The parallel flows feature allows for
the creation of an unbounded number of sessions. The fact that any definition of
a named orchart starts with an input node enforces that the creation of sessions
and flows is always guarded.

3 Formal Syntax and Semantics

In this section we give a formal definition of the Orchart language. To remain
within page limits, we simplify the syntax w.r.t. the one used in the examples, e.g.
by considering only one message emitted by an output node, and no conjunction
of messages inside a capsule. Indeed, both these constructs can be defined as
shorthands for orcharts employing the basic constructs considered in this section.

3.1 Syntax of Orchestration Charts (Orcharts)

The syntax of the language assumes the following:
r, r′, s, s′, . . . range over session names, ρ, σ, σ′ . . . over session values
w, w′ . . . over service names, a, a′ . . . over orchart names
m, m′ . . . over message names, G, G′ . . . over orcharts
n, n′ . . . over nodes, v, v′ . . . over values of any type
x, x′, y, y′, z, z′ . . . over (any type of) variables
An orchart can be defined as a sestuple (N, C, E, LN , LE , Exp) where:
– N is a set of nodes: N = IN � ON � InstN , where IN is the set of input

nodes, ON the set of output nodes, InstN the set of instantiation nodes;
– IN is defined as a partition of a set of capsules C: ∀n∈IN, n⊆C and ∀n, n′ ∈

IN, n �= n′ =⇒ n ∩ n′ = ∅.
– E is a set of edges connecting nodes: E ⊆ (C × N ∪ (ON ∪ InstN) × N),

that is, edges starting an input node are actually associated to a capsule.
Moreover, E is partitioned in DE, the set of data carrying edges, and CE,
the set of control carrying edges: E = DE � CE;

– LN is a labelling function that associates to each node a set of expressions,
whose number and syntax is depending on the type of node: LN : N → 2Exp;
in particular, this function is defined on input nodes by means of a function
LC that labels capsules: LC : C → Exp ;
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– LE is a labelling function that associates to each edge two sets of expressions,
namely the set of passed data (only for edges in DE) and the set of passed
sessions: LE : DE → 2Exp × 2Exp � CE → 2Exp;

– Exp is a domain of expression that are used to label nodes and edges: the
syntax of the expressions and their association to the various kinds of nodes
and edges is reported below.

Exp ::= CExp | OExp | SExp | DExp | SSExp CExp ::= s.m() | s.m(Xlist)
Xlist ::= x | Xlist,Xlist OExp ::= s.m() | s.m(DExp)
SExp ::= σ | s | SExp, SExp DExp ::= x | w | DExp,DExp
SSExp ::= σ | s | s@w | s@x | SSExp, SSExp

In this section, for brevity, we ignore the syntax of types of expressions. Indeed,
as shown in session 2, it is sufficient to consider typing expressions with the
standard notation x : T . Expressions are used to label edges and nodes:

– each capsule in an Input node is labelled with an expression in CExp;
– each Ouput node is labelled with an expression in OExp;
– each Control edge is labelled with an expression in SSExp;
– each Data edge is labelled with an expression in SSExp;
– each Instantiation node is labelled with an orchart name, followed by an

expression in SExp and an expression in DExp (respectively, actual session
and data parameters);

The following use the additional notations:
e, e′, . . . range over edges c, c′ . . . range over capsules

Given an orchart G = (N, C, E, LN , LE , Exp), with N = IN � ON � InstN ,
we also define:
Init(G) = {n ∈ N | � ∃e ∈ E, � ∃n′ ∈ N : e = (n′, n)}
Given n ∈ N : OutE(n) = {e ∈ E|∃n′ ∈ N : e = (n, n′)};
given c ∈ C : OutE(c) = {e ∈ E|∃n′ ∈ N : e = (c, n′)}
In particular, if n ∈ InstN, | OutE(n) |≤ 1 : this means that only one edge can
go from the exit point of an instantiation node.

A Named orchart DG is a quadruple: (a, FParms, FRParms, G) where a is a
name, FParms ⊆ 2SExp × 2DExp, FRParms ⊆ 2SExp × 2DExp are respectively
a set of formal parameters and a set of formal return parameters, G is an orchart
having a single initial node n (Init(G) = {n}), and a set of Nodes augmented
with an Exit Node r. That is, for such G : N = IN � ON � InstN � {r},
LN (r) = FRParms; OutE(r) = ∅ .

3.2 Static Constraints

Session names that label an edge departing from a node should be a subset of
the union of the session names that label its incoming edges.

A node can refer to a session (for input/ouput messages) only if it is in the
union of the session names that label its incoming edges.
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As usual, actual parameters of an instantiation node should correspond in
number, position and type to the formal parameters of the called definition. To
be more precise, session actual parameters should correspond to session formal
parameters, while data actual parameters should have the same type of the
corresponding actual parameter variables. The same should hold for the return
parameters. Session names used as actual parameters in an instantiation node
should be a subset of the union of the session names that label its incoming edges.
The union of the session names labelling the outcoming edges of an instantiation
node should be a subset of the session names used as actual return parameters.
The session names used as actual return parameters should be a subset of the
session names used as actual parameters (this enforces that sessions created
inside a named orchart are forgotten before reaching the exit node).

Any variable declaration in a capsule binds all use occurences of the same
variable that can be reached from the capsule using a path made of contiguous
data flow edges and not containing other binding occurence of the same variable
(i.e., the closest occurence is the binding occurence). In well defined orcharts
all use occurences must be bound. Furthermore, for a given use occurence of
a variable there may be more than one binding occurence. A static rule (not
detailed here) enforces that only one path from a binding to a bound occurence
can be executed, i.e., if a path leading to the use occurence is executed then all
the others have been discarded, and there is always one such path (there is no
execution that discards all the paths linking all binding occurences with a use
occurence). The same rules hold for binding sessions, with the particularity that
binding occurences are session creations (all other occurences are use occurences)
and the binding paths are made of any type of edges (control or data).

3.3 Informal Semantics of Orcharts and of Configurations of
Services

We recall that a service is constituted by:

– a service name, w,
– a provided typechart,
– a set of required service names with their typecharts,
– an orchart, Gw, with a single initial node, which is an input node. This

orchart can contain instantiation nodes that refer to named orcharts
– a set of definitions of named orcharts which are referred by the ”main”

orchart and which can refer each other, also in a recursive fashion.

Note: In the sequel, we consider that in definition orcharts, session name ρ is
explicitely added as a prefix to the appropriate input and output messages, i.e,
those with no session name prefix. Hence, occurence m(v) becomes ρ.m(v).

The dynamic semantics of orcharts is defined based on graph transformations
along with the execution of input and output interactions. Depending on the
type of the executed interaction, an orchart undergoes a series of transformation
steps. These are explicited hereafter.
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Message Output. This is the case where the orchart has one output node in
its set of initial nodes:
– the message contained in the output node is deposited in the appropriate

queue,
– the output node is removed, but its set of departing edges are kept (the edges

remain pending inward, i.e, with their sources unattached),
– for each session creation label (s@w) occurring on a pending edge:

• a unique session id, σ, is generated,
• an instance of the requested service (σ, Gw) is spawned and inserted at

the server site hence w(... | ...) becomes w(... | (σ, Gw) | ...) ,
• two empty FIFO queues (one for each direction) are added thus linking

the present orchart and the spawned service instance,
• all use occurences of s in the orchart that are bound to (s@w) are sub-

stituted with the created session id σ.
– when all the session creation labels of pending edges have been treated, all

pending edges are removed,
– all instantiations that appear as initial nodes in the resulting orchart are

replaced by their corresponding definition,
– the orchart is ready for considering another execution step.

Message Input. This is the case where the orchart has no output nodes and at
least one input node in its set of initial nodes (all output nodes must be executed
before considering the execution of input nodes). If the input node has one of
its capsules containing a reception that matches the frontmost message of the
corresponding queue:
– the message is removed from the queue,
– the variables declared in the reception are replaced with the corresponding

values in the received message,
– the substitution of the variables by their values is carried over all the bound

occurences in the orchart,
– the edges originating in the capsules other than the one that received the

message are discarded,
– the parts of the graph that are no more reachable from the initial nodes are

removed,
– the input node is removed, but its set of departing edges are kept (the edges

remain pending inward, i.e, with their sources unattached),
– session creations that label pending edges are treated in a way similar to the

message output case,
– when all the session creation labels of pending edges have been treated, all

pending edges are removed,
– all instantiations that appear as initial nodes in the resulting orchart are

replaced by their corresponding definitions,
– the orchart is ready for considering another execution step.

In the sequel, we proceed with the formalisation of the above steps. We need to
revisit the syntax of orcharts in order to include those elements that apppear
during execution steps. Thus an execution orchart is an extension of orcharts
that includes the possibility for nodes to have inward pending edges. The set of
such edges for a node n is named InE(n).
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3.4 Structure of Running Configurations of Services

We first define the structure of a running configuration of services then we pro-
vide the rules that govern its global behaviour based on the behaviour of its
service instances. A running configuration involves a set Σ of active session ids
ranged over by σ. Σ is endowed with two functions Req and Serv. Req(σ) al-
lows to retrieve the session id of the service instance that created σ and Serv(σ)
yields the name of the service that is responding to the request issued in the
context of σ. Hence, if (σ′, G) executes session creation s@w with session id be-
ing σ assigned to s, we will have Req(σ) = σ′ and Serv(σ) = w. Furthermore,
the execution of s@w creates also service instance (σ, Gw) which is dedicated
to the execution of service requests from (σ′, G) in the context of σ. A running
configuration is given by:

Conf = QRS | QSR | w1(S1) | · · · | wn(Sn) where :

– Si is a (possibly empty) set of instances of service wi. An element of Si is a
pair (σ, G) where G is the current execution orchart of the service instance
that is serving session σ,

– QRS and QRS are a pair of functions on session ids. QRS(σ) is the Queue
from Req(σ) to its provider and QSR(σ) is the dual queue.

The operational semantics of a running configuration of services is given by
reduction rules (section 3.5) that define possible execution steps. Configurations
can evolve either by an output move by a service instance which puts a message
in the proper queue (rules OUT-S and OUT-R define such a move for the two
cases, server to requestor and requestor to server, respectively); or an input
move of a service instance which removes a message from a queue (rules IN-S
and IN-R define such a move for the two cases, requestor to server and server to
requestor, respectively); or a creation of a new session by a requestor instance,
which adds a new (server) service instance to the configuration, and adds a pair
of empty queues to the set of queues, both bound to the requestor and server
service instances (this move is mirrored in rule CREATE). As can be seen from
the rules, there are many sources of non determinism in the execution of an
orchart that the user should be aware of: (i) in case of two parallel flows starting
each with the reception of the same message, (ii) in case of the same message
present in two different capsules of the same input node, (iii) in case where two
FIFO queues have their head messages ready to be received in different capsules
of the same node. Initially, a configuration which is made of an empty set of
queues and of no service instances cannot proceed. In fact, we need to designate
a ”main” client (not considered here for lack of space) in order to trigger the
behaviour and to animate the configuration.

3.5 Operational Semantics Rules

The operational semantics of a running configuration of services is given by re-
duction rules that define possible execution steps:
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OUT-S

nocreate(S1, . . . , Sn), (σ, G) ∈ Si, n ∈ OutN(G) ∩ Init(G)
LN (n) = ρ.m(v), G′ = rmnode(n, G)

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
QRS | Q′

SR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ, G)�(σ, G′), Q′

SR = QSR\(σ, QSR(σ))�(σ, add(m(v), QSR(σ))

OUT-R

nocreate(S1, . . . , Sn), (σ′, G) ∈ Si, n ∈ OutN(G) ∩ Init(G)
LN (n) = σ.m(v), G′ = rmnode(n, G)

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
Q′

RS | QSR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i =Si\(σ′, G)�(σ′, G′), Q′

RS = QRS\(σ, QRS(σ))�(σ, add(m(v), QRS (σ))

IN-S

onlyin(S1, . . . , Sn), (σ, G) ∈ Si, n ∈ IN ∩ Init(G), c ∈ n
LC(c) = ρ.m(x), m(v) = head(QRS(σ)), G′ = rmcaps(n, c, G)[x/v]

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
Q′

RS | QSR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ, G) � (σ, G′), Q′

RS = QRS \(σ, QRS(σ)) � (σ, tail(QRS(σ))

IN-R

onlyin(S1, . . . , Sn), (σ′, G) ∈ Si, n ∈ IN ∩ Init(G), c ∈ n
LC(c) = σ.m(x), m(v) = head(QSR(σ)), G′ = rmcaps(n, c, G)[x/v]

QRS | QSR | w1(S1) | . . . wi(Si) | . . . wn(Sn) →
QRS | Q′

SR | w1(S1) | . . . wi(S′
i) | . . . wn(Sn)

where: S′
i = Si\(σ′, G) � (σ′, G′), Q′

SR = QSR\(σ, QSR(σ)) � (σ, tail(QSR(σ))

CREATE

(σ, G) ∈ Si, n ∈ Init(G), s@wj ∈ InE(n)
G′ = rmlabel(s@wj, n, G)[s/σ′], σ′ fresh

QRS | QSR | w1(S1) | · · · | wi(Si) | · · · | wj(Sj) | · · · | wn(Sn) →
Q′

RS | Q′
SR | w1(S1) | · · · | wi(S′

i) · · · | wj(S′
j) | · · · | wn : Sn

where: S′
j = Sj �(σ′, Gwj ), S′

i = Si\(σ, G)�(σ, G′), Q′
SR = QSR �(σ′, ∅), Q′

RS =
QRS � (σ′, ∅)

The above rules are based on the use of some auxiliary functions, that allow
to work on the queues associated to sessions and on the execution graph itself,
or to give a priority to the application of the above rules. We present them here
informally for sake of brevity:
– add(m, queue), tail(queue), head(queue) - usual functions over a FIFO queue;
– rmnode(n, G) - removes the node n from G, with the following steps:

• cancel n from G, but retaining its outcoming edges from it
• if any retained edge hits an instantiation node, substitute it with its

definition
• if any retained edge is not labelled with a session creation (s@w), it is

cancelled
– rmcaps(n, c, G) - (here c is a capsule of n) removes the node n from G, with

the following steps:
• Given that OutE(n) = OutE(c) ∪ Excluded, if Excluded �= ∅: cancel

from G all the edges in Excluded, then cancel all the nodes which are
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no more reachable from nodes in Init(G), together with their outcoming
edges.

• apply rmnode(n, G)
– rmlabel(s@w, n, G) - removes label s@w from the edge pointing at n in G,

then proceeds with removing all edges in G having no session creation labels.
– nocreate(S1, . . . , Sn) is a predicate defined as: ∀i, σ, G : (σ, G) ∈ Si, n ∈

Init(G) : InE(n) = ∅
– onlyin(S1, . . . , Sn) is a predicatedefinedas:nocreate(S1, . . . , Sn) and∀i, σ, G :

(σ, G) ∈ Si, n ∈ Init(G) : n ∈ IN .

4 Type Verification and Properties

4.1 Behavioural Types

A typechart is a quintuple (S, s0, SF , Act, →) where:

– S is a finite set of states, defined as RS � SS, that is, a state is either a
receiving state or a sending state.

– s0 ∈ RS is the initial state
– SF ⊆ RS is the set of final states
– Act is a set of actions, which are in the form ?m(Type) (input message) or

!m(Type) (output message), where m is a message name and Type is either
a basic type or a reference to another typechart. Since in general messages
can carry more data values, we assume for simplicity that structured types
are included in basic types to cover such cases.

– →: S ×Act×S is the labelled transition relation, such that: s
?m(T )−−−−→ s′ =⇒

s ∈ RS, s
!m(T )−−−−→ s′ =⇒ s ∈ SS.

A session has two ends: the end of the client and the end of the service. Session
types differ for a session if seen from the two ends, in the fact that what is an
input on one side is an output on the other side. This is called type duality in
[15]. The type T as seen from the other end of the session is written Dual(T ). In
particular, subtyping of [15] can be expressed in a way resembling the classical
simulation relation typical of a process algebraic framework, by distinguishing
sending and receiving states (we abstract here from the exchanged messages, to
which a classical notion of subtyping could be applied as well):

T1is a subtype of T2 (T1 �T2) iff

{
T2

?m→ T ′
2 implies ∃T ′

1 : T1
?m→ T ′

1 and T ′
1 � T ′

2

T1
!m→ T ′

1 implies ∃T ′
2 : T2

!m→ T ′
2 and T ′

1 � T ′
2

which is read: T1 is a subtype of T2 if in any receiving state, T1 is able to receive
all the messages that T2 is able to receive, and in any sending state T2 is able
to send all the messages that T1 is able to send. Consequently, substitutability
and compatibility are defined, as in [15]:
– a session type T can safely substitute T ′ if T � T ′;
– a session type T is compatible with T ′ if T � Dual(T ′).
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That is, two type sessions are said compatible if any sending of one is matched
by a reception of the other one: hence, a session having at its two ends com-
patible types does not internally deadlock. The typecharts NewsAgency-T and
NewsAgencyBis-T shown in section 2.3 are defined so that NewsAgencyBis-T can
safely substitute NewsAgency-T.

4.2 A Well Typedness Algorithm

Herefater we present a well typedness algorithm, i.e., which verifies that an
orchart defining a site conforms to its provided and required typecharts. For the
sake of brevity, we limit its description to a brief sketch, sufficient in our opinion
to show that well-typedness of orcharts can be computed.

First, the provided and required typecharts need to be transformed. The pro-
vided typechart is transformed into its dual. Then its sending transitions are
prefixed with τ , i.e., every transition T

!m→ T ′ becomes T
τ→ • !m→ T ′ where • is a

new state with only one sending transition !m→. On the other hand, the typecharts
of the required services only undergo the τ prefixing transformation. The intro-
duction of τ transitions is meant to mimic the fact that the decision of sending
a message is taken autonomously by the sender.

The algorithm proceeds by discharging proof obligations. Discharging a proof
obligation either fails, in which case the whole algorithm immediately terminates
concluding a typing error, or produces a set of new proof obligations to be dis-
charged. When no more proof obligations are left to be discharged, the algorithm
terminates, establishing conformance. A trivial proof obligation, (e.g. the one in
which an empty orchart is compared against a terminal state of a typechart) is
immediately discharged producing no new proof obligations.

The initial proof obligation is (Gserv, s0 : Tprov) where Gserv is the orchart
of the service and Tprov the provided typechart (in this algorithm, we chose
to rename ρ by s0, which simplifies the presentation). From this initial proof
obligation we proceed with symbolic co-execution steps, where the orchart and
the associated typecharts are executed in a synchronised fashion. The format
of a running proof obligation is given by (G, s0 : T0, s1 : T1, . . . , sn : Tn) where
G is the current state of the orchart, T0 its current provided typechart and
s1 : T1, . . . , sn : Tn the set of active sessions and their associated typecharts. To
discharge a proof obligation (G, s0 :T0, s1 :T1, . . . , sn :Tn), which we assume for
the moment having no instantiation nodes, we perform the following steps:

– If some typechart has a τ transition:
• For each typechart Ti with a τ transition Ti

τ→ T ′ : create a new proof
obligation obtained by replacing Ti with T ′;

• Discharge proof obligation (G, s0 :T0, s1 :T1, . . . , sn :Tn);
– If no typechart has a τ transition and G’s initial nodes are only input:

• If G has no initial input capsule si.m that matches a transition Ti
!m→T ′

of its corresponding typechart Ti then the proof fails;
• For each initial capsule si.m matching one transition Ti

!m→ T ′ of its as-
sociated typechart Ti: a new proof obligation is produced, applying the
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execution step involving the capsule si.m, so obtaining an execution or-
chart G′, and advancing to T ′ the typechart of si. In this step the set of
active sessions is obtained by collecting the labels of the edges outcoming
from the capsule. This may involve the creation of new active sessions
produced from the labels having the s@serv format;

• When all initial capsules with matching typecharts are treated the cur-
rent proof obligation is discharged;

– If no typechart has a τ transition and G has initial output nodes:
• for each output node emitting si.m(), if Ti

?si.m−−−→ T ′, a new proof obliga-
tion is produced applying the execution step on that node, so obtaining
an execution Orchart G′, and advancing Ti to T ′ ;

• if for some output node there is no matching typechart, the proof fails;
– If no typechart has a τ transition and G is empty: if T0 is a terminal state

then the proof is discharged, otherwise the proof fails

Since an orchart is acyclic, the algorithm is guaranteed to terminate, since its
number of steps depends on static metrics (number of nodes and capsules, of
sessions, of alternative sendings in typecharts).

On top of this basic algorithm, orchart instantiation is addressed as follows.
If an instantiation of a named orchart is encountered for the first time, it is
replaced by its definition and the algorithm continues with the creation of a
proof obligation for the definition of this named orchart (parametrized with the
states of the active sessions). The created proof obligation is discharged when
the algorithm has explored, in the current orchart, the part that comes from
the definition orchart. Another condition has also to be checked which ensures
that in case of parallel flows, if a session is present in the instantiated part and
also in another parallel flow, the behaviour of its associated typechart is uniform
(i.e., roughly, the state of the typechart does not change) along all parallel flows
where the session is present.

4.3 Properties of Well Typed Configurations of Services

A configuration of services is well typed iff (i) each service is well typed (its
defining orchart conforms to its required and provided types as given in the
algorithm of section 4.2), and (ii) if a service in this configution requires a type
T1 and the partner service provides a type T2, then (T2 � T1). If we assume
that defining orcharts have a stubborn terminal output node (a node with no
outgoing edges and which is always reachable - this can be statically checked),
if we assume also that there is no invocation cycles (a typical cycle is when
service w1 invokes w2 and vice versa - this also can be statically checked) then
we claim that well typed configurations have the soundness property: any service
invocation potentially reaches a termination state. More precisely, let us consider
a sound configuration Conf = ( w0(G0), w1(), . . . , wn() ) where w0 is a client
(with behaviour given by orchart G0) ready to invoke service w1 with some
session σ, then for any run Conf

∗→ Conf ′, there exists a configuration, Conf ′′,
reachable from Conf ′ and such that Conf ′′ = ( w0(G′

0), w1(σ, G′), . . . , wn(. . .) )
and where G′

0 and G′ are empty.
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5 Future Work and Conclusions

We have presented an approach for verifying service composition based on be-
havioural typing, in which sessions play a pivotal role. In this work we sought
for a language powerful enough to express common service orchestration exam-
ples, but which is also simple enough to associate finite state behavioural types
to sessions. The first results about typing are encouraging: we can cite the fact
that the language, admitting parallel flows and recursion, allows infinite state
behaviours to be defined while also being typable, that is, to which finite state
session types can be associated. It is worth noting that the properties that are
claimed for in well typed orchart configurations are similar to those obtained for
object configurations in [12] with, however, two major improvements: (i) orcharts
are more expressive as they provide for parallel flows; and (ii) orcharts are less
constraining as they do not impose that services are always ready for all input
messages that are expected for by their current behavioural types. The precise
tradeoff between expressive power of orcharts and their finite typability has still
to be assessed. Moreover, several improvements to the language are planned,
for example in the treatment of abandoned sessions, with the introduction of
explicit and implicit abort of sessions.
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