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Abstract—Two new architectures are proposed for designing in the packet-switching architectures described iis th
physical network nodes in packet-switched structure. They  article. In this scheme both the label and the payload a
allow transparent optical packet networking and arebased  modulated using the same format and bit-rate in order to
on the association of various subsystems, which hav simplify the emission hardware and software. This
previously been proposed, and demonstrated. These reduces not only the packet format complexity, but also
elements are mainly based on the application of ntinear  the label duration (leading to a greater effective dati).
behavior in semiconductor optical amplifiers. This coding is then associated with a slowed-down label
processing method, which, allows treatment of high bit-
rate labels and, in opposition to bit pattern matching
.~ INTRODUCTION methods (using XOR gates), do not require a local
Transparent optical networking and packet-switchinggeneration of the label bit-patterns for comparison.

represents two main ingredients required for the The two architectures proposed are an optoelectronic
optimization of the performance of optical network inpne, which uses moderate-speed photo-detectors and
terms of throughput and connectivity. ~ They couldglectronics, and an all-optical one, which requires a new
constitute a major breakthrough in the evolution ofsyb-system concept, i.e. an optical decoder, and a new
networks for application such as new interactive Internekelf-routing technique in order to eliminate the neechfor
massive parallel processing, massive data storagef&C optical address lookup table. These schemes are
former concept has greatly progressed in the past fejfystrated on figure 1 and 4. They both use a time-to-
years in the frame of circuit switching based on add-andyavelength converter in order to perform the series-to-

drop multiplexing and optical-cross connects. On theyarallel “slowing down” operation. This element is
other hand, packet-switching [1] is not yet a maturgjescribed in part I.

technology due to difficulty in performing optical logics o
h . ther common sub-systems to both schemes are the
and developing optical buffers. - Many proposals an%acket pulse extractor, which generates a single pulse

demonstration of all-optical logic element dedicated tq_ ;.. : . .
o o -~ ndicating to the other switch element the precise arrival
packet-switching applications have been presented in t fme of the label and the spatial switch, which we have

past years in order to progress toward this objective. depicted as a wavelength converter (and have not been
This presentation describes two new switching nodgpecifically studied).
architectures making use of such elements, which were

developed within our own laboratories. . OPTOELECTRONICPACKETSWITCHING
In packet-switching, the packets are steered towards SYSTEM

their destinations by interrogating their destination asre

encoded in their header (which will be called “label” in

this paper as a reference to the MPLS protocol). Th

packet label must be separated, recognized and possi

rewritten in every core router. This can be time coriag

Figure 1 illustrates the optoelectronic proposal for the
Backet-switching node architecture which includes three

in sub-systems: synchronization & buffering, label
extraction & processing, and packet forwarding. We can
given that core routers must forward millions of petek note that this scheme can be easily adapted to photonic

per second. As most of core routers in backbone or metl%Ot routing [2].
networks have only four to eight outgoing ports, it may be

possible to determine a packet's engress port byrigak N .
only a small subset of the label bits in the destinatiof™ Synchronization & buffering

address and thus the cost and complexity of individuarhe synchronization & buffering subsystem conserves the
components of the all optical label switching node can bpacket payload information in the optical domain during
reduced. the processing and packet routing operations performed on

The physical label coding scheme and the related labHl€ Packet label. Moreover, it is responsible for tgramd
recognition method constitute the main characteristics Synchronizing the different subsystems.
the switching architecture. The bit-serial approach is used
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Figure 1- Schematic diagram of the proposed opttreleic packet-switching system

In our design, a true clock-recovery is not an absolut&550.95 nm, 1550.15 nm and 1549.35 nm. The extinction
requirement. Only the beginning of each packet must betio is between 9 dB and 12.5 dB. A time-to-wavelength
known. Provided a marker pulse identifies the beginningonverter, with enhanced polarization insensitivity, has
of the packet, the other label treatment sub-systeambe also been demonstrated at 10 Gbit/s [7]. This setup is
triggered at the right moment. A packet pulse extractoeasily modified in order to cope with higher bit rates
sub-system including a packet clock-recovery circuit and
an optical AND-gate [4] has been previously proposed b ;s — First bit. ~1556.85 nm —
the authors and will be described during the presentation. R ;

o
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—Second bit, A=1556.05 nm —

A fiber delay line (FDL) is a simple solution for stati & qggs------- [ A bl Eu_ua
optical buffering through which the departing times of% | | | Y
packets are time-shifted. However, they can only provid £ jg!....... (N E— L Eoos
limited buffer capacity and coarse delay granularity due t 2 : : : o

the bulky size of FDL [5]. Slow-light techniques are alsa .

proposed for precise synchronizations [6]. 0 100_ 200 300 400 oo
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distinct wavelengths (serial-to-parallel conversion). The P 2 oq bl
parallelized bits are processed within a subsystem immord & o
to deliver the proper command signals to the optica . : - : 2 : : |
payload switch and to the label swapping subsystem. 0 100 200 300 400 0 100_ 200 300 400
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Dp3 By means of four photo-detectors, the parallelized bits
Laser 1 (2p1) Kopat are converted into electrical format. Next, they are

transformed into the LVDS (Low Voltage Differential
Signaling) format before processing. An 8-bit Analog
Devices AD9480 analog-to-digital converter (ADC)
optimized for a 250 MSPS conversion rate is used for
sampling, amplifying and buffering the electrical signal as
well as producing a varying detection threshold level.

If the routing table is fixed, one can use a logic circuit
produce the required command signal. In dynamic
outing, an adaptive algorithm must be performed. The
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Figure 2- Schematic diagram of a 4-bit time-to-wength converter

A 4-bit time-to-wavelength converter based on the foug,
wave mixing (FWM) effect in a SOA has been
demonstrated in an earlier experiment at 10Gbit/s (Fig. nly cost effective and power efficient solution is using a

[7]. Fig. 3 represents the results when a data SeqUENEBGA The electronic command signal delivered by the

(probe) atA=1553.1 nm is launched together with 43pe| processing subsystem is used to control the spatial
auxiliary modulated beams (pumps) ®t1551.4 nm,



switch. Different electrical voltage levels can be assiy processed label subset. An arrayed waveguide grating
for different label bit combinations. A digital-to-analog (AWG) wavelength demultiplexer can be used in order to
converter can be used for providing the required veltag provide spatial switching of the packet at the outpuhef t
system. Wavelength-based optical switches can be
C. Packet forwarding designed in numerous ways. The most straightforward is
The packet label-swapping, together with the opticallo incorporate a tunable laser and a wavelength converter
switching, constitutes the forwarding operation. OpticaOptical wavelength converters that utilize nonlinearities
switching can be performed using different technologie$OAs offer some advantages in terms of integration
based on space, time, wavelength, or code diversity. Hereotential, power consumption, and optical power
the packet forwarding is based on wavelength switchingfficiency [8].
whereby the output wavelength is chosen based on the
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Figure 4- Schematic representation of an all-opiaaket switching system

optical wavelength selection system [10]. The switching
ll.  ALL-OPTICAL PACKET SWITCHING time, the required power of the set and reset pulses aised t
SYSTEM switch the device and the over-all system integration are

Fig. 4 is a schematic representation of the proposgif€ main parameters of the optical flip-flops [3]. Edig-

architecture. The synchronization & buffering subsystenilop has two output wavelengths namelyy andAorr In
is similar to that of part Il. The other subsysteme arthe present experiment, all thgr are identical (e.g\o).

described in the following sections. It will be filtered out by the multiplexer. Eight distinct
wavelengthsXy, - - - Ag) are chosen for 8 flip-flopKon.
A Label extraction & processing In the first step, all of the flip-flops are resetthg packet

Following the time-to-wavelength converter, thepPulse extraction signal. When the decoder output pulse
parallelized bits are amplified and sent toward an opticd?@sses through the routing matrix, it sets the associated
decoder module which produces an optical comman@ptical flip-flop. Finally, the selected wavelengiy() is
pulse corresponding to each label subset combination. |&unched into the proper input of the multiplexer so as to
decoder consists in combinational circuits that converXit through the pigtailed output. The set and reset pulse-
binary information from n-bit coded inputs to 2n uniqueWidths are important in this design, which depends on the
outputs. The demonstration of an all-optical 3x8 decodetll-optical flip-flop technology. When the label bits are
based on the Cross-polarization Modulation (XPoIM) inmodulated in RZ format, the set and reset pulse-widths
an SOA at 10 Gbit/s is presented in [9]. The measure®-g. ~10 ps for 40 Gbit/s rates) may be too small for
extinction ratio of the output signals is between 7.9 dglriving (switching) the flip-flops. Pulse width [11] and RZ
and 12 dB. The design requires only one active opticd? NRZ conversions [12] are some of the techniques
device per output. proposed for all-optical pulse broadening.

The decoder output bit error rate is16n "1’ and 10° Recently, new labeling methods have been proposed

on 0’ bits (PRBS #-1) leading to an effective bit-error- Whereby new label generation for label swapping at
rate of 2.2 x 18 which could be improved with a finer intermediate nodes is not required [13]. The packet end-

selection of the non linear devices. to-end label consists of multiple local labels. In each
intermediate node, a part of this label is stripped woff @
B. Packet forwarding switching decision is made. This procedure is repeated up

the end of the destination network node. The

The packet forwarding system includes the adapthéochitecture presented is based on this idea.

wavelength selection, the packet envelope detection, tf&
label stripping and the wavelength conversion. All-optical
flip-flops can be employed in order to provide an all-
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