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Abstract — The mobile industry, and in particular the 3rd  
Generation Partnership Project (3GPP) Consortium, has 
selected the "Tiny" profile of the Scalable Vector Graphics 
(SVG) specification as a basis for the Rich Media format for 
mobile applications, leading the way to consumer electronics. 
Among the foreseen applications for SVG on constrained 
consumer electronics devices, maps, clip arts, animated 
cartoons and user interfaces are often cited. However, such 
devices are memory-constrained and have limited processing 
capabilities whereas vector graphics clip arts, animated 
cartoons or maps are described by large SVG documents. 
Such content may require heavy computations and important 
memory consumption, especially when applying models for 
animation and inheritance. In this paper, we present the 
design of a low-footprint and computationally efficient player 
for large and animated SVG documents. We describe the 
structures of the scene objects which enable low memory 
consumption and the compositing and rendering algorithms 
enabling fast playback. Finally, we evaluate the limitations of 
our proposal and compare our results with publically 
available desktop SVG players.1 
 

Index Terms — Design, Multimedia Scenes, Scalable Vector 
Graphics, Visualization.  

I. INTRODUCTION 
Advances in networking allow today the distribution of 

multimedia services to a wide range of devices, including 
constrained devices like PDAs or mobile phones. Such 
services are dynamic, interactive collections of multimedia 
data such as audio, video, graphics, and text. They range from 
movies enriched with vector graphic overlays and interactivity 
to complex multi-step services with fluid interaction and 
different media types and are often called rich-media services. 
Following these advances, many standardization activities 
have started to specify and/or recommend formats adequate 
for both these services and these new devices. Proprietary 
formats have also been developed or adapted for this purpose. 
The standard format which has been selected by the mobile 
industry, namely by the 3rd Generation Project Partnership 
(3GPP), is SVG.  

Scalable Vector Graphics (SVG)  [1] is a recommendation 
from the World Wide Web Consortium (W3C) that defines, in 
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its first version (1.0), an XML language to represent 
interactive and animated vector graphics. It builds on other 
W3C recommendations, like the Synchronized Media 
Integration Language (SMIL) [2] for the description of the 
timing and animation behavior or the Cascading Style Sheet 
(CSS) [3] specification for the styling feature. Version 1.2 of 
SVG is currently being specified. It includes SMIL media 
elements (i.e. audio, video and animation) as well as other 
improvements (e.g. text layout, navigation behavior) which 
make SVG a complete multimedia scene description language. 
Its “Tiny” profile defines the basis for the Dynamic and 
Interactive Multimedia Scenes (DIMS) [10] format mandated 
for the mobile phones in Europe. 

According to a recent press release, more than 375 millions 
mobile phones are equipped with an SVG player [9]. Among 
the foreseen applications for SVG on consumer electronics, 
maps, clip arts, animated cartoons, games and user interfaces 
are often cited. Despite the high amount of standardization 
activities in the area and the existence of commercial products 
[9][11], playback of large animated content on constrained 
end-user devices remains a challenge, especially in term of 
memory consumption and surprisingly little research work has 
been done in this area.   

This paper proposes an innovative design of an SVG player 
which allows reaching an interesting compromise between 
memory consumption and playback speed. This design is 
based on tailored scene structures and on accompanying 
optimized algorithms for compositing and rendering.  

The rest of this paper is organized as follows. Section 2 
describes the generic process of Multimedia Visualization. 
Section 3 gives some further considerations about the design 
of an efficient multimedia player, including SVG specifics. 
Section 4 details the proposed structures and algorithms. 
Section 5 presents the results achieved with this proposal. 
Finally, Section 6 concludes this paper and presents future 
work. 

II. MULTIMEDIA VISUALIZATION PROCESS 
The multimedia scenes visualization process can be viewed 

as a cyclic three-step process, as depicted in Figure 1 and 
described in the following. 
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Figure 1 – The visualization of an animated and interactive multimedia 
scene is a three-step cyclic process: Reading, Compositing, and 
Rendering. Reading happens first and may happen only once or several 
times as new data arrives. Compositing happens after Reading but it may 
happen more often than Reading if required by animations, user 
interactions or synchronization of media streams. Rendering happens 
last, each time after the Compositing step, to produce the visual and aural 
result. 

A. Reading 
The first step in the visualization process consists in reading 

scene description data, from a textual source (XML or not) or 
from a binary source, and in producing a memory 
representation of the scene objects suitable for the 
Compositing step. This memory representation is often 
referred to a scene graph or a scene tree. The source of data to 
build this scene tree may be a file or a stream. 

On the one hand, if the source of data is a file, depending 
on the reading algorithm, on the file size, on the location of 
the file (local or remote) and on the throughput of the disk or 
network, the entire scene may be read in one time. In this case, 
the scene objects transmitted to the Compositing step 
represents all the information required during the lifetime of 
the scene. 

On the other hand, if the source of data is a stream or if it is 
a file read progressively, the Reading step may be called 
several times to update the set of scene objects shared with the 
Compositing step. These updates may be addition or deletion 
of scene objects, or modification of the properties of a scene 
object. These modifications may result from the reception of 
new additional untimed data or of timed scene modifications 
like MPEG-4 LASeR [5] updates or events as specified in 
“Remote Events for XML” (REX) [12], or from the use of 
programmatic interfaces such as the XMLHttpRequest object 
[13]. 

In this paper, we will not assume one or the other means for 
processing the data. In particular, in the design of the player, 
we will not make assumptions on the data not changing after 
the first Reading step. In other words, we will not use methods 
such as analyzing the whole scene to determine some 
properties of the scene and make specific optimizations. 
Additionally, this paper will not focus on improving the 
Reading speed as lots of research has been done on this topic 
already, either by working on the design of precompiled XML 
parser [6] or by defining binary formats faster to parse  [5][17]. 
The focus of this paper with respect to the Reading step will 
rather be on the design of the scene objects, produced while 
reading, to reach the optimum memory consumption within 
the constraints of the Compositing step. 

B. Compositing 
The Compositing step is an additional step compared to the 

two-steps traditional audio/video visualization process which 
usually consists in decoding and synchronously rendering. 
This Compositing step is required for several reasons in the 
generic multimedia visualization process. A first reason is 
animations. Indeed, multimedia scenes may be animated and 
animations need to be timely updated, to reach the desired 
visualization frame rate and the desired smoothness of 
presentation, even if no new data is received from the Reading 
step. A second reason is interactions. True multimedia content 
includes interactions. For example, the user may navigate in 
the scene or may trigger complex behaviors. These 
interactions result in modifications which need to be applied 
to the scene objects before rendering and independently from 
the Reading step. 

The Compositing step therefore consists, at each 
visualization cycle, in traversing the scene objects to update 
animations and apply the modifications resulting from user 
interactions. The result of this traversal is a set of ready-to-be-
rendered scene objects, also called Display List or Graphics 
List. 
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Figure 2 – The Compositing step produces a Display List based on the 
visible graphics element present in the Scene Tree. 
 

It is important to note that the scene structures shared 
between the Compositing and Rendering steps are not 
necessarily the same as the objects shared between the 
Reading and the Compositing steps. In particular, the scene 
objects required for compositing need to provide mechanisms 
for animations and for user interactions (e.g. read/write access 
for scripting), whereas the scene objects required for 
rendering need to be adequate for video and audio rendering 
hardware/software interfaces such as OpenGL or OpenVG 
[14]. These compositing and rendering requirements may be 
conflicting, in which case different representations are used. 
For example, the rendering of a Bézier curve may imply 
producing a list of line segments while performing animation 
of this curve may require accessing the curve control points. 
Additionally, because the animations and interactions may 
mute or make invisible some scene objects, not all objects 
manipulated by the Compositing step are forwarded to the 
Rendering step, as depicted in Figure 2. 
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We can see from this description that the performance of 
the Compositing step may be impacted by the structure of the 
scene (i.e. how many objects need to be traversed to compose 
the scene) and by the structure of each object (i.e. how easy it 
is to access the object properties). In this paper, we propose a 
design for scene objects together with compositing algorithms 
compatible with the theoretical SVG compositing model. 

C. Rendering 
The last step in the visualization cycle is the Rendering 

step. It consists in producing, from the scene structures as 
forwarded by the Compositing step, the visual and aural result 
for the end-user. In this paper, we will concentrate only on the 
visual part of the rendering and omit the audio part. 

To achieve efficient rendering, many existing algorithms 
use indirect rendering where only the parts of the screen that 
have changed are refreshed from one frame to another. There 
are several reasons why a part of the screen may change: 
either the geometry of an object has changed (e.g. if the length 
of a rectangle is animated), or its position has changed, or 
finally, its appearance (fill or stroke). Additionally, if an 
object has changed, it may be necessary to redraw (parts of) 
other objects due to transparency or anti-aliasing. We consider 
that an efficient rendering algorithm should minimize the 
computations required for detecting changes. Though the 
rendering of the object can be language independent, the 
change detection is specific. In this paper, we will present an 
algorithm to detect changes, optimized for SVG content. 

III. DESIGN CONSIDERATIONS 
In the previous section, we have explained the generic 

process of multimedia visualization, highlighting where our 
contribution will reside. In this section, we present some 
design consideration that must be taken into account to reach 
our goal of designing a player that is computationally efficient 
and that consumes the minimum amount of memory. We start 
by presenting first some general considerations and then we 
give some SVG specific ones. 

A. General Considerations 
As we have seen, the role of the Reading step is to produce 

a memory representation of the scene that is efficient for the 
Compositing step. To design a memory efficient scene 
representation, it is important to understand the following 
three generic aspects about multimedia scenes. 

Multimedia scenes are made of a collection of primitives. 
These primitives may be graphical primitives (rectangle, 
curves, text …), media primitives (images, audio, and video), 
structuring primitives (groups), and primitives for animation 
or interactivity. Their complexity may range from a simple 
audio/video scene to highly sophisticated maps, cliparts, 
animated cartoons or user interfaces. In this paper, we will 
focus our effort on the most frequent and largest scenes, i.e. 
those using many graphical objects and animations.  

In the design of a memory-efficient representation of scene 
objects, we must also take into account the easiness for 

accessing the data during the Compositing step.  For example, 
one could decide to store the objects in a compressed form, 
the memory consumption would be minimal but each read 
access during the Compositing step would require decoding 
the data, and possibly encoding it when the object is modified 
by scripting or animation. Such a design would therefore be 
unacceptable, especially for heavily animated content, like 
cartoons or games, where a high frame rate is desirable. 

Finally, the design of the memory representation of scene 
objects for compositing may be different from the one used 
for creating the scene in an authoring tool, or from the one 
used to transmit the scene. However, it should not be too far 
from the one defined by the specification that describes the 
language. Indeed, rich media services more and more rely on 
scripting to modify the scene, such as in Ajax applications 
[15]. The problem is that scripts use specific programming 
interfaces which should not be hindered by the design choice. 

B. SVG Specific Considerations 
There are three aspects of the SVG language which have 

important consequences on the design of a player that we 
would like to highlight here: SVG scripting, SVG and CSS 
inheritance; and SMIL animation and CSS inheritance. 

First, as we have explained, the design of SVG scene 
objects shall be compatible with and efficient for scripts. With 
SVG scenes, a content creator may use either Document 
Object Model (DOM) [4] interfaces or MicroDOM [1] 
interfaces to modify a scene by scripts. MicroDOM interfaces 
have been designed for mobile devices relying on typed data 
instead of strings, simplifying navigation in the tree, etc. Our 
algorithms and structures should therefore rather be 
compatible with Micro-DOM than with DOM interfaces. 

Secondly, like most scene description formats, SVG content 
uses a tree structure. Nodes in this scene tree are grouped 
according to their spatial properties. However, one important 
aspect of the SVG language, which impacts compositing and 
rendering, is its integration with web technologies like the 
Cascading Style Sheet (CSS) specification. Specifically, SVG 
reuses, from that specification, the concept of property 
inheritance. According to this concept, some SVG attributes, 
called presentation attributes, which actually correspond to 
CSS properties, may be specified on grouping nodes. In this 
case, their values (possibly after some intermediate 
computation) are forwarded to the children of the grouping 
node. Consequently, a child node may inherit the properties of 
its parent node in the scene tree. This behavior also exists in 
HTML or XHTML and allows applying a common style to a 
whole scene subtree. This impacts greatly the design of the 
scene elements and the memory requirements. On this aspect, 
we found, in research papers, the work of Cogliati and 
Vuorimaa in [7] which deals with the design of an optimized 
Cascading Style Sheet engine with memory constraints. This 
work focuses on the integration of a CSS engine in generic 
XML browser but does not address the efficient design of the 
scene objects, and especially not for SVG elements.  
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Finally, the last specific aspect of SVG compared to other 
scene description languages lies in its animation model. The 
SVG animation model follows the model defined by the 
Synchronized Multimedia Integration Language (SMIL), 
which defines the notion of base and animated value. 
Therefore, theoretically, scene objects should maintain two 
values per animatable attributes. Additionally, according to 
the SMIL so-called “Sandwich model”, when CSS is used in 
conjunction with the animation model, three values per 
animated attributes should be accessible (see Figure 3). In this 
paper, we propose a design which allows for a memory 
efficient representation of this model. 

IV. PROPOSED DESIGN AND ALGORITHMS 

A. Scene Objects Structures 
Our first design choice is to store attribute values as typed 

data as opposed to strings. This choice has two impacts. First, 
the Reading step is slowed down because attribute value 
parsing is required but, the Compositing step is fasten because 
accessing typed data is obviously faster. Since compositing 
happens more often than reading, on the overall, we believe 
this choice to be positive. This impacts as well the scripting 
performance when string values are used, which affects only 
DOM scripts, since MicroDOM scripts uses typed accesses. 
This choice is therefore consistent with our objectives to 
enable efficient playback on constrained devices and to stay 
close to the MicroDOM design. 

The second choice concerns the structure of the scene 
objects. Two approaches were possible. The first one consists 
in creating a node structure different for each type of node and 
with all the possible attributes for this type statically allocated. 
This has the advantage of a fast allocation process and a fast 
access to the attributes values. The second one consists in 
allocating a generic structure for all types of nodes and in 
which the attributes are allocated only when there are 
specified in the input source. When experimenting with SVG, 
it appears rather rapidly that the first approach is not very 
optimal. Indeed, in SVG, due to inheritance, many attributes 
can be potentially specified on many elements. For example, 
the SVG “rect” element can have up to 67 attributes. Hence, 
using the first type of structure would consume an 
unnecessary amount of memory. We therefore went for the 
second option as described in the code below. 

struct SVGAttribute { 
   int attribute_identifier; 
   void *value; 
}; 
 
struct SVGElement { 
   int type; 
   ListOf(SVGAttribute) attributes; 
   ListOf(SVGElement) children; 
}; 
This second option also offers the advantage of being 

compatible with DOM/MicroDOM APIs which require the 

possibility to delete an attribute or to tell if the attribute was 
specified or not in the source of data. The drawback of this 
method is that, if no care is taken, it requires iteration of the 
list of attributes each time the access to an attribute is needed. 
This is the case for example when accessing the width, then 
the height, then the top-left position then the color of a 
rectangle. To avoid these successive iterations, we designed 
an additional data structure which allows accessing any 
attribute with a single iteration of the list of attributes. Such 
structure, described in a simplified form in the code below, is 
created only when needed, filled with the list of specified 
attributes, and discarded when no longer needed. This 
structure currently contains pointers for the approximately 200 
possible attributes in SVG Tiny 1.2, as illustrated below. 

struct SVGAllAttributes { 
  SVG_ID *id; 
  … 
  SVG_Paint *fill; 
  … 
  SVG_Coordinate *x, *y; 
  SVG_Length *width, *height; 
  … 
  SVG_Transform *transform; 
  … 
}; 

B. Compositing Algorithm 
In the previous section we have presented the basic 

structures of the SVG scene tree that we will use. We now 
present the associated compositing algorithm. 

The Compositing step requires that, at each visualization 
cycle, the scene tree is traversed to determine the visual 
parameters of each visible object. This means that some user 
events need to be processed, timing dependencies resolved, 
animations applied and the spatial positioning of each visual 
element computed. In order to present a fluid visualization of 
the scene, the Compositing step must be short and therefore 
each of these sub-steps must be optimized.  

The requirements of our algorithm are three-folds: to 
perform at most one traversal of the scene tree during one 
visualization cycle; to limit the number of nodes being 
traversed at each cycle; and, to limit the number of operations 
performed for each node.  

Our approach considers that compositing an SVG scene can 
be divided in three separate processes: 

• Handling of the temporal primitives, including media 
primitives (video), 

• Handling of the event related primitives, and in 
particular, of script elements, 

• And finally, handling of the graphics and layout 
primitives. 

This division of the general compositing algorithm has the 
following advantage. If, after processing the first two steps, 
we detect that the graphical objects do not need to be 
processed (because no change has happened since the 
previous cycle), the compositing stops without traversing the 
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major part of the scene tree. This allows for reducing the 
compositing time of large scenes which contain only few 
animations or few interaction primitives. 

 
1) Handling of timed elements 

 

 
Figure 3 – In the SMIL Animation Sandwich model, the result of the 
animation of a node may depend on an animation at the parent level in 
the scene tree. 

Due to the inheritance and animation sandwich model, it is 
not obvious that the proposed division of the compositing 
process can be made while keeping the result conformant with 
the SVG specification. In particular, the computation of the 
presentation value of an animation may depend on the actual 
position of the animation element in the scene tree. For 
instance, if an animation element, animating a presentation 
attribute, adds its interpolation value to the inherited value of 
this property, then the resulting presentation value will also 
depend on the presentation value at a parent level in the scene 
tree. This behavior is illustrated in Figure 3. 

To optimize the animation process, we first note that 
performing animations involves first determining if the 
animation is active, then computing the parameters of the 
animation (begin, end, duration, fraction of the animation 
duration, interpolation coefficient), and finally computing the 
interpolation value and modifying the scene. Additionally, we 
also note that the SVG specification defines only one time line 
per document and that there is no relationship between the 
CSS inheritance mechanism and the SMIL timing model. 
Consequently, the first two tasks (determining the activation, 
and computing the animation parameters) can be performed 
outside of the main tree traversal, independently from the tree 
traversal.  

Based on this separation, our algorithm uses a flat list (as 
opposed to a tree representation) of the timed elements, stored 
at the compositor level. This list is traversed more easily, 
before and independently of the main tree traversal to notify 
the new scene time to the timed elements and to resolve 
timing dependencies among them. Additionally, in our 
algorithm, we also note that for timed media elements (i.e. 
video), the final processing of the element, that is to say the 

synchronization of the output of the media decoders with the 
scene, which does not interfere with CSS, can also be applied 
before the processing of the scene tree. 

 
2) Handling of user events 

Concerning user events, according to the interactivity 
model as defined by the DOM Events Processing Model [4] 
and as reused in SVG, several types of elements need to be 
processed: listener elements, which specify that the capture for 
specific user events is required; observer elements on which 
the event is actually observed; target elements on which the 
event is targeted; and handler or script elements which react to 
the actual occurrence of the event after propagation of the 
event in the scene tree.  

Our approach is here similar to the one applied for 
animation. We want to be able to handle events-related 
elements independently from the graphics scene tree. To that 
purpose, we can note that the processing of listener elements 
does not depend on the positioning of the element in the scene 
tree. However, because of the bubbling and capture phase of 
the DOM event processing model, the handling of the events 
by scripts or handlers elements requires the propagation of the 
event in the tree from the observer to the target. But we can 
also note that this propagation can be made without any 
relationships to the CSS inheritance model. Consequently, our 
design uses a list of listener elements, stored in the target 
element, which is traversed independently from the main tree 
traversal. A consequence of this algorithm is that in order to 
perform the bubbling or capture phase, each node in the scene 
tree must also contain a link to its parent node. 

 
3) Handling of graphics and layout elements 

At this stage, we have described that the scene tree 
composition comprises a first step for notifying the time to the 
timed elements and a second step for handling user events. 
We describe here the algorithm for the last step which is the 
traversal of a scene tree in which only the graphical and layout 
elements remain to be processed.  

A particular difficulty that needs to be solved in this last part 
is the one of the theoretical animation sandwich model which 
requires the use of a base value, of a computed value and of a 
presentation value. Indeed, keeping these three values for each 
attribute of each element would consume an unnecessary high 
amount of memory. To solve this problem, we note that the base 
value needs to be kept only for the attributes which are actually 
animated, and if we also note that only the attributes which 
correspond to CSS properties need to maintain the notion of 
computed value; then we can derive the following proposal.  

We propose, in each node, to store a list of animations 
which apply to this node. In this list, animations are grouped 
according to the attribute they target. Consequently, we store 
the base value of an animated attribute in the animation group 
itself. Hence, our algorithm does not duplicate the memory 
consumption for all attributes, but only for animated 
attributes, with only one copy of the base value regardless of 
the number of animations. 
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With respect to the CSS computed value, our algorithm 
leverages the recursive characteristic of the scene tree 
traversal to store temporarily the computed value of each CSS 
property. More precisely, we define a property context. This 
context is a collection of pointers to the property value that 
applies when the context is used. It is initialized at the 
document level with pointers to the so-called initial values for 
all possible property. It is then forwarded down the tree during 
the traversal and modified locally according to the CSS 
inheritance mechanism: either the property is inherited and the 
context is not modified, or the property is specified (with a 
value different from inherit) and the context is updated to 
point to the specified attribute. Additionally, the property 
context is backed up before applying inheritance and restored 
before returning to the parent level in the scene tree. Hence, 
with our algorithm, the compositing of an element at a depth p 
in a scene tree made of N elements will consume at most p+1 
property contexts as opposed to N+1 in a theoretical 
implementation. The memory consumption is linear with the 
maximum depth of the tree and is not affected by the number 
of elements, which is an important advantage for scenes like 
maps or cliparts. For this description to be complete, we need 
to indicate that the inheritance and animation processes must 
actually be mixed. Indeed, when animating, there are cases 
where interpolation will require using the value of a property 
of the parent element and producing the result for the current 
element which will then be used for inheritance to child 
elements. 

The complete algorithm is illustrated in the code below. 
 

CompositingStep() { 
 Until a stable state is reached, do { 
Traverse the list of timed elements; 
Evaluate the time attributes;  
Determine the animation parameters;  
Trigger the begin/end/repeat events; 
 } 
 For each user event, pick the target { 
  For each listener element, do {  
   If the event matches {  
    Activate the corresponding handler; 
    Apply propagation; 
   } 
  } 
 } 
 For each media element {  
  Synchronize the output of the decoders. 
 } 
 TraverseElement(root, Initial Context). 
} 
 
TraverseElement(SVGElement E,  
                PropertyContext C) { 
 Backup the Property Context; 
 
 For each animation A targeting E { 

if first animation and first cycle,  

  Save the base value;   
if key values use inherit,  
  Apply inheritance using C; 
if animation is terminated,  
  Restore the base value; 
otherwise { 
  Compute the interpolation value; 
  Overwrite the presentation value; 

  } 
 } 
 For each property P,  

If E.P != inherit, modify C to point  
                               to E.P; 

 
 If visible node,  
  Add an object to the display list. 

 
 For each child node E',  
   TraverseElement(E', C); 

 
 Restore the Property Context C; 
} 

C. Rendering  Algorithm 
The rendering algorithm we propose works on a display list 

of SVG graphical elements produced by the Composition step. 
As introduced in the previous sections, efficient rendering 
algorithms rely on detecting changes between cycles. We 
present in this section our method for efficiently detecting 
changes in SVG scenes. 

 
Animation target

Property not inherited

Animation scope

 
Figure 4 – The scope of the animation of a property in a scene tree is 
impacted by inheritance and attributes explicitly specified. 
 

There are two sources of changes in SVG scenes: animations 
or scripts. In our implementation, we also consider LASeR 
updates as a potential source of updates. In all cases, detecting 
and propagating changes in an SVG scene is difficult. This 
difficulty is a consequence of the use of inheritance. Indeed, as 
we have seen, an animation may modify a property of a 
grouping element. However, the result of this animation may 
not apply to the whole sub-tree if some parts of the sub-tree do 
not inherit this property. This is illustrated in Figure 4. 
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Additionally, another challenge when detecting changes is 
to ensure that this detection is also valid for use elements, 
which are, as specified in SVG, live clones of the referencing 
element. This live cloning implies in particular that change 
detection shall be made on the use element and not on the 
referenced element. 

Our algorithm first detects when animations are active, and 
when they produce a different result compared to the previous 
frame. This detection is not made by comparing the actual 
result of this animation because this would need actually 
doing the interpolations and comparing the previous and 
current value. This would imply unnecessary computations 
and memory usage, e.g. on complex values like paths. Instead, 
we detect changes in the result of accumulated animations 
based on comparisons between previous and current 
animation parameters (interpolation coefficients). Our 
algorithm also includes the handling of cumulative and 
additive animations. 

Once we have determined that a combination of animations 
targeting a same attribute has produced a different result 
compared to the previous frame, we mark the node as dirty. A 
node can be dirty in different manners. Several features may 
have changed: its geometry, its stroke width, its line style … 
We would therefore need a marker for each feature. In order 
to keep a compact representation of the markers, using a 32 
bits word, we chose to group some features together. This may 
cause some inefficient redrawing operations in some complex 
cases but we deem them infrequent enough. The list of 
markers (less than 32) that we use is given in Table I. 

 
TABLE I 

LIST OF SVG SCENE DETECTION CHANGE MARKERS 
 
COLOR_DIRTY DISPLAYALIGN_DIRTY 

FILL_DIRTY FILLOPACITY_DIRTY 

FILLRULE_DIRTY FONTFAMILY_DIRTY 

FONTSIZE_DIRTY FONTSTYLE_DIRTY 

FONTVARIANT_DIRTY FONTWEIGHT_DIRTY 

LINEINCREMENT_DIRTY OPACITY_DIRTY 

SOLID_DIRTY STOP_DIRTY 

STROKE_DIRTY STROKEDASHARRAY_DIRTY 

STROKEDASHOFFSET_DIRTY STROKELINECAP_DIRTY 

STROKELINEJOIN_DIRTY STROKEMITERLIMIT_DIRTY 

STROKEOPACITY_DIRTY STROKEWIDTH_DIRTY 

TEXTPOSITION_DIRTY VECTOREFFECT_DIRTY 

XLINK_HREF_DIRTY  

 
As we explained, the difficulty of the detection change is 

due to the use of inheritance together with animations. To 
solve this problem, we propose to add a novel step to our 
implementation. We add to the joint inheritance-animation 
process, described in previous section, a marker inheritance 
step. In other words, when an animation modifies a property at 
some level in the scene tree, the target element is marked as 
dirty for this property and this marker is forwarded to the 
children node together with the property context. If a child 

node does not inherit a property, it forces the marker as non-
dirty for this property. But if it inherits the property, it will be 
marked. 

V. RESULTS 
In previous sections we exposed a set of structures and 

algorithms for the playback of SVG content. In this section, 
we first describe the experimental setup that we used to 
evaluate the performances, then we present the test sequences 
and we finally give measurements and comparison of the 
memory consumption and computational efficiency of our 
method with traditional players. 

A. Experimental Setup 
We have implemented the proposed structures and 

algorithms using the C language in the Osmo4 player of the 
GPAC Framework [8]. For the Reading step, we implemented 
a SAX parser which is capable of reading SVG Tiny 1.2 
documents and which produces scene trees as described in 
previous sections. We have also implemented the binary 
decoding of MPEG-4 LASeR streams which also produces the 
same scene tree. The player, including the proposed algorithm, 
has been ported on different operating systems for desktop 
(Windows, Linux) and mobile platforms including Windows 
Mobile 5.  

B. Test Content 
In order to evaluate our methods, we needed to evaluate 

two criteria: memory consumption and computation 
efficiency. Therefore, we used two kinds of test content: 
complex and large static vector graphics like maps or clip arts 
and highly animated graphics. For clip arts or maps, we 
mostly used SVG maps publically available from Wikipedia. 
Figure 5 (a) shows an example of such type of content. For 
animated content, we used content from the SVG Tiny 
Competition as shown in Figure 5 (b), some of the SVG 
conformance tests and some cartoons translated from the 
Adobe Flash format. 

 
Figure 5 – Example of a) static SVG content (Map_of_Iceland.svg, 
source: Wikipedia) and b) animated SVG content (surprise.svg, source: 
http://www.tinyline.com) 
 

Table II and Table III indicate the statistics of the sequences 
that were used. 
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TABLE II 

STATISTICS OF THE SVG STATIC SEQUENCES 

Sequence name 
File 
Size 
(kB) 

Number 
of 

elements 

Number of 
attributes 

Number 
of points

2007-02-
20_time_zones_white
_bck.svg 

2 397 4 707 13437 77 765

Africa_map_political-
fr.svg 610 509 4518 23 458

America-blank-map-
01.svg 650 889 2660 27 604

Centrales_Nucleaires_
fr.svg 1 805 1 202 5649 61 109

cowboy.svg 437 2 735 2737 25 264
EspecesMammiferes
Menacees_fr.svg 437 663 2623 41 760

GareNord1.001.svg 1 647 13 262 50890 158 085
gearflowers.svg 522 1 237 8782 9 374
Islam_by_country_01.
svg 2 745 793 1362 133 103

Map_France_1477-
fr.svg 1 251 1 435 15415 56 496

Map_of_Iceland.svg 830 4 398 11185 51 872
Map_of_the_Ancient_
Rome_at_Caesar_time
-fr.svg 

1 231 406 4344 56 567

Mapa_Cor-de-
Rosa.svg 2 830 3 476 21998 123 302

Mapa_municipal_del_
domini_català.svg 3 459 2 632 25711 128864

Northern_Cities_Vow
el_Shift.svg 298 246 1141 14 080

Paris_RER.svg 690 1 489 10211 31 516
plan.svg 38 395   
Pohjoisnapa.svg 1 437 2 804 6499 83 378
Quechuan_langs_map
.svg 2 865 3 525 22676 123 762

svg-cards-2.0.svg 910 1 750 5740 78 390
tiger.svg 95 482 622 6 089
World_map_blank.sv
g 579 1 151 3697 41 083

Worldmap_wdb_com
bined.svg 855 9 30 47 237

 
TABLE III 

STATISTICS OF THE SVG ANIMATED SEQUENCES 

Sequence File size Number of 
elements 

Number of 
animations 

animate-elem-30-t.svg 21 860 74 17 
animate-elem-37-t.svg 4 680 52 7 
animate-elem-38-t.svg 7 126 9 42 
animate-elem-80-t.svg 12 366 40 139 
animate-elem-81-t.svg 6 322 8 68 
animate-elem-82-t.svg 11 154 32 114 
animate-elem-83-t.svg 8 710 19 90 
bass2.svg 21 155 57 112 
happybirthdayp.svg 32 241 63 110 
retro4.svg 13 374 28 65 
surprisep.svg 132 934 142 571 
map.svg 21 860 74 17 
cuisine.svg 21 898 82 5 
 

C. Results 
The first set of results concerns the memory consumption. 

Because it is difficult to efficiently measure memory usage of 
real-time applications on mobile devices and because few 
mobile players are freely available, we compare here the 
memory consumption of our player only with existing desktop 

players. These players are Adobe SVG Viewer 6.0, Firefox 
2.0.0.8, Opera 9.25, Safari 3.0.3, and Renesis 0.7. We provide 
here the operating systems measurement. Even though it is not 
very precise, we will see that the results are already 
interesting. Additionally, since most players provide other 
functionalities than SVG visualization (i.e. browser features), 
in order to have a fair comparison, we give the difference 
between the memory usage when no content is loaded and 
when the content is loaded and displayed. In order to emulate 
the results on mobile devices, we modified the test sequences 
to set a width and height of the content to a small size 
(176x144).  
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Figure 6 – Memory consumption for the sequences of Table II. 

 
Figure 6 shows the minimum, average and maximum 

memory consumption for all tests and for two resolutions. It 
shows that our method for visualizing SVG content is efficient 
in terms of memory consumption. It performs better in both 
cases (small or big rendering size) than many existing desktop 
applications (Firefox, Safari, Internet Explorer with ASV6), 
with the additional advantage of being able to run on mobile 
devices. Only Opera and Renesis achieve comparable results. 
Opera performs better when the rendering size is small but 
consumes a higher amount of memory than GPAC when the 
rendering size is big, which could be a problem for Set Top 
Box implementations. Renesis also shows good results (for 
both rendering sizes). It is better than GPAC when the 
consumption is at its maximum but not on average nor on 
minimum.  

Second, in order to give figures about the computational 
efficiency of our algorithms, we evaluated the average frame 
rate which can be achieved on different platforms. The test 
platforms are: average desktop PC (1.2 GHz Core Solo, 2 GB 
RAM), PDA Dell Axim X51v (624 MHz, 64 MB RAM), 
Smartphone SPV C 500 (200 MHz, 24 MB RAM).  

These results are given in Table IV. The frame rate is an 
average of the frame rate computed every 30 frames. 
Additionally, we were not able to measure this number for 
other players either because they don’t support animation 
(Firefox, Renesis) or for the others, because frame rate 
information is not provided.  
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For interested readers, all test sequences, detailed results and 
software implementation are available for download at 
http://www.enst.fr/~concolat/ToCE_data.zip.  

 
TABLE IV 

AVERAGE FRAME RATE ACHIEVABLE WITH THE GPAC PLAYER ON THE 
SVG ANIMATED SEQUENCES FROM TABLE III 

Average Frame Rate Sequence 
PC PDA Phone 

animate-elem-30-t.svg 270 45 25 
animate-elem-37-t.svg 90 100 50 
animate-elem-38-t.svg 70 60 30 
animate-elem-80-t.svg 260 70 26 
animate-elem-81-t.svg 220 150 80 
animate-elem-82-t.svg 200 85 19 
animate-elem-83-t.svg 110 30 15 
bass2.svg 200 70 29 
happybirthdayp.svg 170 33 16 
retro4.svg 270 105 45 
surprisep.svg 110 75 30 
map.svg 120 35 20 
cuisine.svg 330 45 25 

 
We can see from this table that our proposed algorithms can 

achieve very good frame rates, even for complex animations. 
High frame rate (>100) can be reached on average desktop PC 
and reasonable frame rates (>25) can be reached on limited 
devices like our SPV mobile phone.  

VI. CONCLUSION 
We have described in this paper the general principles 

behind the visualization of multimedia scenes. We have then 
highlighted the problematic of the SVG visualization. Since 
this format is part of the selected formats for mobile devices, 
we have designed scene structures and according compositing 
and rendering algorithms which achieve interesting results 
both in terms of memory usage and animation frame rate, 
while remaining fully compliant with the standard. We believe 
these results are the consequence of innovative algorithms, in 
particular the SVG scene tree change-detection algorithm.  

However, the proposed algorithms have some drawbacks. 
We can mention some problems with the order of definition 
and usage of inherited gradients and the fact that accessing the 
computed value requires a dedicated sub-tree traversal. These 
are items we will try to improve in future work. 
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