

Design of an Efficient Scalable Vector Graphics Player
for Constrained Devices

Cyril Concolato, J. Le Feuvre and J.-C. Moissinac

Abstract — The mobile industry, and in particular the 3rd
Generation Partnership Project (3GPP) Consortium, has
selected the "Tiny" profile of the Scalable Vector Graphics
(SVG) specification as a basis for the Rich Media format for
mobile applications, leading the way to consumer electronics.
Among the foreseen applications for SVG on constrained
consumer electronics devices, maps, clip arts, animated
cartoons and user interfaces are often cited. However, such
devices are memory-constrained and have limited processing
capabilities whereas vector graphics clip arts, animated
cartoons or maps are described by large SVG documents.
Such content may require heavy computations and important
memory consumption, especially when applying models for
animation and inheritance. In this paper, we present the
design of a low-footprint and computationally efficient player
for large and animated SVG documents. We describe the
structures of the scene objects which enable low memory
consumption and the compositing and rendering algorithms
enabling fast playback. Finally, we evaluate the limitations of
our proposal and compare our results with publically
available desktop SVG players.1

Index Terms — Design, Multimedia Scenes, Scalable Vector
Graphics, Visualization.

I. INTRODUCTION
Advances in networking allow today the distribution of

multimedia services to a wide range of devices, including
constrained devices like PDAs or mobile phones. Such
services are dynamic, interactive collections of multimedia
data such as audio, video, graphics, and text. They range from
movies enriched with vector graphic overlays and interactivity
to complex multi-step services with fluid interaction and
different media types and are often called rich-media services.
Following these advances, many standardization activities
have started to specify and/or recommend formats adequate
for both these services and these new devices. Proprietary
formats have also been developed or adapted for this purpose.
The standard format which has been selected by the mobile
industry, namely by the 3rd Generation Project Partnership
(3GPP), is SVG.

Scalable Vector Graphics (SVG) [1] is a recommendation
from the World Wide Web Consortium (W3C) that defines, in

1 Manuscript received April 15, 2008. This work was supported by the

European Commission under the INTERMEDIA Network of Excellence.
C. Concolato, J. Le Feuvre and J.-C. Moissinac are with TELECOM

ParisTech, Paris, France. (e-mail: concolato@enst.fr, lefeuvre@enst.fr and
moissinac@enst.fr).

its first version (1.0), an XML language to represent
interactive and animated vector graphics. It builds on other
W3C recommendations, like the Synchronized Media
Integration Language (SMIL) [2] for the description of the
timing and animation behavior or the Cascading Style Sheet
(CSS) [3] specification for the styling feature. Version 1.2 of
SVG is currently being specified. It includes SMIL media
elements (i.e. audio, video and animation) as well as other
improvements (e.g. text layout, navigation behavior) which
make SVG a complete multimedia scene description language.
Its “Tiny” profile defines the basis for the Dynamic and
Interactive Multimedia Scenes (DIMS) [10] format mandated
for the mobile phones in Europe.

According to a recent press release, more than 375 millions
mobile phones are equipped with an SVG player [9]. Among
the foreseen applications for SVG on consumer electronics,
maps, clip arts, animated cartoons, games and user interfaces
are often cited. Despite the high amount of standardization
activities in the area and the existence of commercial products
[9][11], playback of large animated content on constrained
end-user devices remains a challenge, especially in term of
memory consumption and surprisingly little research work has
been done in this area.

This paper proposes an innovative design of an SVG player
which allows reaching an interesting compromise between
memory consumption and playback speed. This design is
based on tailored scene structures and on accompanying
optimized algorithms for compositing and rendering.

The rest of this paper is organized as follows. Section 2
describes the generic process of Multimedia Visualization.
Section 3 gives some further considerations about the design
of an efficient multimedia player, including SVG specifics.
Section 4 details the proposed structures and algorithms.
Section 5 presents the results achieved with this proposal.
Finally, Section 6 concludes this paper and presents future
work.

II. MULTIMEDIA VISUALIZATION PROCESS
The multimedia scenes visualization process can be viewed

as a cyclic three-step process, as depicted in Figure 1 and
described in the following.

Contributed Paper
Manuscript received April 15, 2008 0098 3063/08/$20.00 © 2008 IEEE

C. Concolato et al.: Design of an Efficient Scalable Vector Graphics Player for Constrained Devices 895

Reading Compositing Rendering

Scene Tree Display List

Figure 1 – The visualization of an animated and interactive multimedia
scene is a three-step cyclic process: Reading, Compositing, and
Rendering. Reading happens first and may happen only once or several
times as new data arrives. Compositing happens after Reading but it may
happen more often than Reading if required by animations, user
interactions or synchronization of media streams. Rendering happens
last, each time after the Compositing step, to produce the visual and aural
result.

A. Reading
The first step in the visualization process consists in reading

scene description data, from a textual source (XML or not) or
from a binary source, and in producing a memory
representation of the scene objects suitable for the
Compositing step. This memory representation is often
referred to a scene graph or a scene tree. The source of data to
build this scene tree may be a file or a stream.

On the one hand, if the source of data is a file, depending
on the reading algorithm, on the file size, on the location of
the file (local or remote) and on the throughput of the disk or
network, the entire scene may be read in one time. In this case,
the scene objects transmitted to the Compositing step
represents all the information required during the lifetime of
the scene.

On the other hand, if the source of data is a stream or if it is
a file read progressively, the Reading step may be called
several times to update the set of scene objects shared with the
Compositing step. These updates may be addition or deletion
of scene objects, or modification of the properties of a scene
object. These modifications may result from the reception of
new additional untimed data or of timed scene modifications
like MPEG-4 LASeR [5] updates or events as specified in
“Remote Events for XML” (REX) [12], or from the use of
programmatic interfaces such as the XMLHttpRequest object
[13].

In this paper, we will not assume one or the other means for
processing the data. In particular, in the design of the player,
we will not make assumptions on the data not changing after
the first Reading step. In other words, we will not use methods
such as analyzing the whole scene to determine some
properties of the scene and make specific optimizations.
Additionally, this paper will not focus on improving the
Reading speed as lots of research has been done on this topic
already, either by working on the design of precompiled XML
parser [6] or by defining binary formats faster to parse [5][17].
The focus of this paper with respect to the Reading step will
rather be on the design of the scene objects, produced while
reading, to reach the optimum memory consumption within
the constraints of the Compositing step.

B. Compositing
The Compositing step is an additional step compared to the

two-steps traditional audio/video visualization process which
usually consists in decoding and synchronously rendering.
This Compositing step is required for several reasons in the
generic multimedia visualization process. A first reason is
animations. Indeed, multimedia scenes may be animated and
animations need to be timely updated, to reach the desired
visualization frame rate and the desired smoothness of
presentation, even if no new data is received from the Reading
step. A second reason is interactions. True multimedia content
includes interactions. For example, the user may navigate in
the scene or may trigger complex behaviors. These
interactions result in modifications which need to be applied
to the scene objects before rendering and independently from
the Reading step.

The Compositing step therefore consists, at each
visualization cycle, in traversing the scene objects to update
animations and apply the modifications resulting from user
interactions. The result of this traversal is a set of ready-to-be-
rendered scene objects, also called Display List or Graphics
List.

2 3 4

1

1

3

4

2

Non-graphics elements Visible graphics elements

Scene Tree Display List

Hidden graphics elements
Figure 2 – The Compositing step produces a Display List based on the
visible graphics element present in the Scene Tree.

It is important to note that the scene structures shared
between the Compositing and Rendering steps are not
necessarily the same as the objects shared between the
Reading and the Compositing steps. In particular, the scene
objects required for compositing need to provide mechanisms
for animations and for user interactions (e.g. read/write access
for scripting), whereas the scene objects required for
rendering need to be adequate for video and audio rendering
hardware/software interfaces such as OpenGL or OpenVG
[14]. These compositing and rendering requirements may be
conflicting, in which case different representations are used.
For example, the rendering of a Bézier curve may imply
producing a list of line segments while performing animation
of this curve may require accessing the curve control points.
Additionally, because the animations and interactions may
mute or make invisible some scene objects, not all objects
manipulated by the Compositing step are forwarded to the
Rendering step, as depicted in Figure 2.

896 IEEE Transactions on Consumer Electronics, Vol. 54, No. 2, MAY 2008

We can see from this description that the performance of
the Compositing step may be impacted by the structure of the
scene (i.e. how many objects need to be traversed to compose
the scene) and by the structure of each object (i.e. how easy it
is to access the object properties). In this paper, we propose a
design for scene objects together with compositing algorithms
compatible with the theoretical SVG compositing model.

C. Rendering
The last step in the visualization cycle is the Rendering

step. It consists in producing, from the scene structures as
forwarded by the Compositing step, the visual and aural result
for the end-user. In this paper, we will concentrate only on the
visual part of the rendering and omit the audio part.

To achieve efficient rendering, many existing algorithms
use indirect rendering where only the parts of the screen that
have changed are refreshed from one frame to another. There
are several reasons why a part of the screen may change:
either the geometry of an object has changed (e.g. if the length
of a rectangle is animated), or its position has changed, or
finally, its appearance (fill or stroke). Additionally, if an
object has changed, it may be necessary to redraw (parts of)
other objects due to transparency or anti-aliasing. We consider
that an efficient rendering algorithm should minimize the
computations required for detecting changes. Though the
rendering of the object can be language independent, the
change detection is specific. In this paper, we will present an
algorithm to detect changes, optimized for SVG content.

III. DESIGN CONSIDERATIONS
In the previous section, we have explained the generic

process of multimedia visualization, highlighting where our
contribution will reside. In this section, we present some
design consideration that must be taken into account to reach
our goal of designing a player that is computationally efficient
and that consumes the minimum amount of memory. We start
by presenting first some general considerations and then we
give some SVG specific ones.

A. General Considerations
As we have seen, the role of the Reading step is to produce

a memory representation of the scene that is efficient for the
Compositing step. To design a memory efficient scene
representation, it is important to understand the following
three generic aspects about multimedia scenes.

Multimedia scenes are made of a collection of primitives.
These primitives may be graphical primitives (rectangle,
curves, text …), media primitives (images, audio, and video),
structuring primitives (groups), and primitives for animation
or interactivity. Their complexity may range from a simple
audio/video scene to highly sophisticated maps, cliparts,
animated cartoons or user interfaces. In this paper, we will
focus our effort on the most frequent and largest scenes, i.e.
those using many graphical objects and animations.

In the design of a memory-efficient representation of scene
objects, we must also take into account the easiness for

accessing the data during the Compositing step. For example,
one could decide to store the objects in a compressed form,
the memory consumption would be minimal but each read
access during the Compositing step would require decoding
the data, and possibly encoding it when the object is modified
by scripting or animation. Such a design would therefore be
unacceptable, especially for heavily animated content, like
cartoons or games, where a high frame rate is desirable.

Finally, the design of the memory representation of scene
objects for compositing may be different from the one used
for creating the scene in an authoring tool, or from the one
used to transmit the scene. However, it should not be too far
from the one defined by the specification that describes the
language. Indeed, rich media services more and more rely on
scripting to modify the scene, such as in Ajax applications
[15]. The problem is that scripts use specific programming
interfaces which should not be hindered by the design choice.

B. SVG Specific Considerations
There are three aspects of the SVG language which have

important consequences on the design of a player that we
would like to highlight here: SVG scripting, SVG and CSS
inheritance; and SMIL animation and CSS inheritance.

First, as we have explained, the design of SVG scene
objects shall be compatible with and efficient for scripts. With
SVG scenes, a content creator may use either Document
Object Model (DOM) [4] interfaces or MicroDOM [1]
interfaces to modify a scene by scripts. MicroDOM interfaces
have been designed for mobile devices relying on typed data
instead of strings, simplifying navigation in the tree, etc. Our
algorithms and structures should therefore rather be
compatible with Micro-DOM than with DOM interfaces.

Secondly, like most scene description formats, SVG content
uses a tree structure. Nodes in this scene tree are grouped
according to their spatial properties. However, one important
aspect of the SVG language, which impacts compositing and
rendering, is its integration with web technologies like the
Cascading Style Sheet (CSS) specification. Specifically, SVG
reuses, from that specification, the concept of property
inheritance. According to this concept, some SVG attributes,
called presentation attributes, which actually correspond to
CSS properties, may be specified on grouping nodes. In this
case, their values (possibly after some intermediate
computation) are forwarded to the children of the grouping
node. Consequently, a child node may inherit the properties of
its parent node in the scene tree. This behavior also exists in
HTML or XHTML and allows applying a common style to a
whole scene subtree. This impacts greatly the design of the
scene elements and the memory requirements. On this aspect,
we found, in research papers, the work of Cogliati and
Vuorimaa in [7] which deals with the design of an optimized
Cascading Style Sheet engine with memory constraints. This
work focuses on the integration of a CSS engine in generic
XML browser but does not address the efficient design of the
scene objects, and especially not for SVG elements.

C. Concolato et al.: Design of an Efficient Scalable Vector Graphics Player for Constrained Devices 897

Finally, the last specific aspect of SVG compared to other
scene description languages lies in its animation model. The
SVG animation model follows the model defined by the
Synchronized Multimedia Integration Language (SMIL),
which defines the notion of base and animated value.
Therefore, theoretically, scene objects should maintain two
values per animatable attributes. Additionally, according to
the SMIL so-called “Sandwich model”, when CSS is used in
conjunction with the animation model, three values per
animated attributes should be accessible (see Figure 3). In this
paper, we propose a design which allows for a memory
efficient representation of this model.

IV. PROPOSED DESIGN AND ALGORITHMS

A. Scene Objects Structures
Our first design choice is to store attribute values as typed

data as opposed to strings. This choice has two impacts. First,
the Reading step is slowed down because attribute value
parsing is required but, the Compositing step is fasten because
accessing typed data is obviously faster. Since compositing
happens more often than reading, on the overall, we believe
this choice to be positive. This impacts as well the scripting
performance when string values are used, which affects only
DOM scripts, since MicroDOM scripts uses typed accesses.
This choice is therefore consistent with our objectives to
enable efficient playback on constrained devices and to stay
close to the MicroDOM design.

The second choice concerns the structure of the scene
objects. Two approaches were possible. The first one consists
in creating a node structure different for each type of node and
with all the possible attributes for this type statically allocated.
This has the advantage of a fast allocation process and a fast
access to the attributes values. The second one consists in
allocating a generic structure for all types of nodes and in
which the attributes are allocated only when there are
specified in the input source. When experimenting with SVG,
it appears rather rapidly that the first approach is not very
optimal. Indeed, in SVG, due to inheritance, many attributes
can be potentially specified on many elements. For example,
the SVG “rect” element can have up to 67 attributes. Hence,
using the first type of structure would consume an
unnecessary amount of memory. We therefore went for the
second option as described in the code below.

struct SVGAttribute {
 int attribute_identifier;
 void *value;
};

struct SVGElement {
 int type;
 ListOf(SVGAttribute) attributes;
 ListOf(SVGElement) children;
};
This second option also offers the advantage of being

compatible with DOM/MicroDOM APIs which require the

possibility to delete an attribute or to tell if the attribute was
specified or not in the source of data. The drawback of this
method is that, if no care is taken, it requires iteration of the
list of attributes each time the access to an attribute is needed.
This is the case for example when accessing the width, then
the height, then the top-left position then the color of a
rectangle. To avoid these successive iterations, we designed
an additional data structure which allows accessing any
attribute with a single iteration of the list of attributes. Such
structure, described in a simplified form in the code below, is
created only when needed, filled with the list of specified
attributes, and discarded when no longer needed. This
structure currently contains pointers for the approximately 200
possible attributes in SVG Tiny 1.2, as illustrated below.

struct SVGAllAttributes {
 SVG_ID *id;
 …
 SVG_Paint *fill;
 …
 SVG_Coordinate *x, *y;
 SVG_Length *width, *height;
 …
 SVG_Transform *transform;
 …
};

B. Compositing Algorithm
In the previous section we have presented the basic

structures of the SVG scene tree that we will use. We now
present the associated compositing algorithm.

The Compositing step requires that, at each visualization
cycle, the scene tree is traversed to determine the visual
parameters of each visible object. This means that some user
events need to be processed, timing dependencies resolved,
animations applied and the spatial positioning of each visual
element computed. In order to present a fluid visualization of
the scene, the Compositing step must be short and therefore
each of these sub-steps must be optimized.

The requirements of our algorithm are three-folds: to
perform at most one traversal of the scene tree during one
visualization cycle; to limit the number of nodes being
traversed at each cycle; and, to limit the number of operations
performed for each node.

Our approach considers that compositing an SVG scene can
be divided in three separate processes:

• Handling of the temporal primitives, including media
primitives (video),

• Handling of the event related primitives, and in
particular, of script elements,

• And finally, handling of the graphics and layout
primitives.

This division of the general compositing algorithm has the
following advantage. If, after processing the first two steps,
we detect that the graphical objects do not need to be
processed (because no change has happened since the
previous cycle), the compositing stops without traversing the

898 IEEE Transactions on Consumer Electronics, Vol. 54, No. 2, MAY 2008

major part of the scene tree. This allows for reducing the
compositing time of large scenes which contain only few
animations or few interaction primitives.

1) Handling of timed elements

Figure 3 – In the SMIL Animation Sandwich model, the result of the
animation of a node may depend on an animation at the parent level in
the scene tree.

Due to the inheritance and animation sandwich model, it is
not obvious that the proposed division of the compositing
process can be made while keeping the result conformant with
the SVG specification. In particular, the computation of the
presentation value of an animation may depend on the actual
position of the animation element in the scene tree. For
instance, if an animation element, animating a presentation
attribute, adds its interpolation value to the inherited value of
this property, then the resulting presentation value will also
depend on the presentation value at a parent level in the scene
tree. This behavior is illustrated in Figure 3.

To optimize the animation process, we first note that
performing animations involves first determining if the
animation is active, then computing the parameters of the
animation (begin, end, duration, fraction of the animation
duration, interpolation coefficient), and finally computing the
interpolation value and modifying the scene. Additionally, we
also note that the SVG specification defines only one time line
per document and that there is no relationship between the
CSS inheritance mechanism and the SMIL timing model.
Consequently, the first two tasks (determining the activation,
and computing the animation parameters) can be performed
outside of the main tree traversal, independently from the tree
traversal.

Based on this separation, our algorithm uses a flat list (as
opposed to a tree representation) of the timed elements, stored
at the compositor level. This list is traversed more easily,
before and independently of the main tree traversal to notify
the new scene time to the timed elements and to resolve
timing dependencies among them. Additionally, in our
algorithm, we also note that for timed media elements (i.e.
video), the final processing of the element, that is to say the

synchronization of the output of the media decoders with the
scene, which does not interfere with CSS, can also be applied
before the processing of the scene tree.

2) Handling of user events

Concerning user events, according to the interactivity
model as defined by the DOM Events Processing Model [4]
and as reused in SVG, several types of elements need to be
processed: listener elements, which specify that the capture for
specific user events is required; observer elements on which
the event is actually observed; target elements on which the
event is targeted; and handler or script elements which react to
the actual occurrence of the event after propagation of the
event in the scene tree.

Our approach is here similar to the one applied for
animation. We want to be able to handle events-related
elements independently from the graphics scene tree. To that
purpose, we can note that the processing of listener elements
does not depend on the positioning of the element in the scene
tree. However, because of the bubbling and capture phase of
the DOM event processing model, the handling of the events
by scripts or handlers elements requires the propagation of the
event in the tree from the observer to the target. But we can
also note that this propagation can be made without any
relationships to the CSS inheritance model. Consequently, our
design uses a list of listener elements, stored in the target
element, which is traversed independently from the main tree
traversal. A consequence of this algorithm is that in order to
perform the bubbling or capture phase, each node in the scene
tree must also contain a link to its parent node.

3) Handling of graphics and layout elements

At this stage, we have described that the scene tree
composition comprises a first step for notifying the time to the
timed elements and a second step for handling user events.
We describe here the algorithm for the last step which is the
traversal of a scene tree in which only the graphical and layout
elements remain to be processed.

A particular difficulty that needs to be solved in this last part
is the one of the theoretical animation sandwich model which
requires the use of a base value, of a computed value and of a
presentation value. Indeed, keeping these three values for each
attribute of each element would consume an unnecessary high
amount of memory. To solve this problem, we note that the base
value needs to be kept only for the attributes which are actually
animated, and if we also note that only the attributes which
correspond to CSS properties need to maintain the notion of
computed value; then we can derive the following proposal.

We propose, in each node, to store a list of animations
which apply to this node. In this list, animations are grouped
according to the attribute they target. Consequently, we store
the base value of an animated attribute in the animation group
itself. Hence, our algorithm does not duplicate the memory
consumption for all attributes, but only for animated
attributes, with only one copy of the base value regardless of
the number of animations.

Inheritance

Specified
value

(Parent
node)

Underlying
Value

Interpolation
value

Animation
(parent)

additive ?

…

Specified
value
(child
node)

Underlying
value

Interpolation
value

Animation
(child)

additive ?

Presentation
value

(parent node)

Presentation
value

(child node)

C. Concolato et al.: Design of an Efficient Scalable Vector Graphics Player for Constrained Devices 899

With respect to the CSS computed value, our algorithm
leverages the recursive characteristic of the scene tree
traversal to store temporarily the computed value of each CSS
property. More precisely, we define a property context. This
context is a collection of pointers to the property value that
applies when the context is used. It is initialized at the
document level with pointers to the so-called initial values for
all possible property. It is then forwarded down the tree during
the traversal and modified locally according to the CSS
inheritance mechanism: either the property is inherited and the
context is not modified, or the property is specified (with a
value different from inherit) and the context is updated to
point to the specified attribute. Additionally, the property
context is backed up before applying inheritance and restored
before returning to the parent level in the scene tree. Hence,
with our algorithm, the compositing of an element at a depth p
in a scene tree made of N elements will consume at most p+1
property contexts as opposed to N+1 in a theoretical
implementation. The memory consumption is linear with the
maximum depth of the tree and is not affected by the number
of elements, which is an important advantage for scenes like
maps or cliparts. For this description to be complete, we need
to indicate that the inheritance and animation processes must
actually be mixed. Indeed, when animating, there are cases
where interpolation will require using the value of a property
of the parent element and producing the result for the current
element which will then be used for inheritance to child
elements.

The complete algorithm is illustrated in the code below.

CompositingStep() {
 Until a stable state is reached, do {
Traverse the list of timed elements;
Evaluate the time attributes;
Determine the animation parameters;
Trigger the begin/end/repeat events;
 }
 For each user event, pick the target {
 For each listener element, do {
 If the event matches {
 Activate the corresponding handler;
 Apply propagation;
 }
 }
 }
 For each media element {
 Synchronize the output of the decoders.
 }
 TraverseElement(root, Initial Context).
}

TraverseElement(SVGElement E,
 PropertyContext C) {
 Backup the Property Context;

 For each animation A targeting E {

if first animation and first cycle,

 Save the base value;
if key values use inherit,
 Apply inheritance using C;
if animation is terminated,
 Restore the base value;
otherwise {
 Compute the interpolation value;
 Overwrite the presentation value;

 }
 }
 For each property P,

If E.P != inherit, modify C to point
 to E.P;

 If visible node,
 Add an object to the display list.

 For each child node E',
 TraverseElement(E', C);

 Restore the Property Context C;
}

C. Rendering Algorithm
The rendering algorithm we propose works on a display list

of SVG graphical elements produced by the Composition step.
As introduced in the previous sections, efficient rendering
algorithms rely on detecting changes between cycles. We
present in this section our method for efficiently detecting
changes in SVG scenes.

Animation target

Property not inherited

Animation scope

Figure 4 – The scope of the animation of a property in a scene tree is
impacted by inheritance and attributes explicitly specified.

There are two sources of changes in SVG scenes: animations
or scripts. In our implementation, we also consider LASeR
updates as a potential source of updates. In all cases, detecting
and propagating changes in an SVG scene is difficult. This
difficulty is a consequence of the use of inheritance. Indeed, as
we have seen, an animation may modify a property of a
grouping element. However, the result of this animation may
not apply to the whole sub-tree if some parts of the sub-tree do
not inherit this property. This is illustrated in Figure 4.

900 IEEE Transactions on Consumer Electronics, Vol. 54, No. 2, MAY 2008

Additionally, another challenge when detecting changes is
to ensure that this detection is also valid for use elements,
which are, as specified in SVG, live clones of the referencing
element. This live cloning implies in particular that change
detection shall be made on the use element and not on the
referenced element.

Our algorithm first detects when animations are active, and
when they produce a different result compared to the previous
frame. This detection is not made by comparing the actual
result of this animation because this would need actually
doing the interpolations and comparing the previous and
current value. This would imply unnecessary computations
and memory usage, e.g. on complex values like paths. Instead,
we detect changes in the result of accumulated animations
based on comparisons between previous and current
animation parameters (interpolation coefficients). Our
algorithm also includes the handling of cumulative and
additive animations.

Once we have determined that a combination of animations
targeting a same attribute has produced a different result
compared to the previous frame, we mark the node as dirty. A
node can be dirty in different manners. Several features may
have changed: its geometry, its stroke width, its line style …
We would therefore need a marker for each feature. In order
to keep a compact representation of the markers, using a 32
bits word, we chose to group some features together. This may
cause some inefficient redrawing operations in some complex
cases but we deem them infrequent enough. The list of
markers (less than 32) that we use is given in Table I.

TABLE I

LIST OF SVG SCENE DETECTION CHANGE MARKERS

COLOR_DIRTY DISPLAYALIGN_DIRTY

FILL_DIRTY FILLOPACITY_DIRTY

FILLRULE_DIRTY FONTFAMILY_DIRTY

FONTSIZE_DIRTY FONTSTYLE_DIRTY

FONTVARIANT_DIRTY FONTWEIGHT_DIRTY

LINEINCREMENT_DIRTY OPACITY_DIRTY

SOLID_DIRTY STOP_DIRTY

STROKE_DIRTY STROKEDASHARRAY_DIRTY

STROKEDASHOFFSET_DIRTY STROKELINECAP_DIRTY

STROKELINEJOIN_DIRTY STROKEMITERLIMIT_DIRTY

STROKEOPACITY_DIRTY STROKEWIDTH_DIRTY

TEXTPOSITION_DIRTY VECTOREFFECT_DIRTY

XLINK_HREF_DIRTY

As we explained, the difficulty of the detection change is

due to the use of inheritance together with animations. To
solve this problem, we propose to add a novel step to our
implementation. We add to the joint inheritance-animation
process, described in previous section, a marker inheritance
step. In other words, when an animation modifies a property at
some level in the scene tree, the target element is marked as
dirty for this property and this marker is forwarded to the
children node together with the property context. If a child

node does not inherit a property, it forces the marker as non-
dirty for this property. But if it inherits the property, it will be
marked.

V. RESULTS
In previous sections we exposed a set of structures and

algorithms for the playback of SVG content. In this section,
we first describe the experimental setup that we used to
evaluate the performances, then we present the test sequences
and we finally give measurements and comparison of the
memory consumption and computational efficiency of our
method with traditional players.

A. Experimental Setup
We have implemented the proposed structures and

algorithms using the C language in the Osmo4 player of the
GPAC Framework [8]. For the Reading step, we implemented
a SAX parser which is capable of reading SVG Tiny 1.2
documents and which produces scene trees as described in
previous sections. We have also implemented the binary
decoding of MPEG-4 LASeR streams which also produces the
same scene tree. The player, including the proposed algorithm,
has been ported on different operating systems for desktop
(Windows, Linux) and mobile platforms including Windows
Mobile 5.

B. Test Content
In order to evaluate our methods, we needed to evaluate

two criteria: memory consumption and computation
efficiency. Therefore, we used two kinds of test content:
complex and large static vector graphics like maps or clip arts
and highly animated graphics. For clip arts or maps, we
mostly used SVG maps publically available from Wikipedia.
Figure 5 (a) shows an example of such type of content. For
animated content, we used content from the SVG Tiny
Competition as shown in Figure 5 (b), some of the SVG
conformance tests and some cartoons translated from the
Adobe Flash format.

Figure 5 – Example of a) static SVG content (Map_of_Iceland.svg,
source: Wikipedia) and b) animated SVG content (surprise.svg, source:
http://www.tinyline.com)

Table II and Table III indicate the statistics of the sequences
that were used.

C. Concolato et al.: Design of an Efficient Scalable Vector Graphics Player for Constrained Devices 901

TABLE II

STATISTICS OF THE SVG STATIC SEQUENCES

Sequence name
File
Size
(kB)

Number
of

elements

Number of
attributes

Number
of points

2007-02-
20_time_zones_white
_bck.svg

2 397 4 707 13437 77 765

Africa_map_political-
fr.svg 610 509 4518 23 458

America-blank-map-
01.svg 650 889 2660 27 604

Centrales_Nucleaires_
fr.svg 1 805 1 202 5649 61 109

cowboy.svg 437 2 735 2737 25 264
EspecesMammiferes
Menacees_fr.svg 437 663 2623 41 760

GareNord1.001.svg 1 647 13 262 50890 158 085
gearflowers.svg 522 1 237 8782 9 374
Islam_by_country_01.
svg 2 745 793 1362 133 103

Map_France_1477-
fr.svg 1 251 1 435 15415 56 496

Map_of_Iceland.svg 830 4 398 11185 51 872
Map_of_the_Ancient_
Rome_at_Caesar_time
-fr.svg

1 231 406 4344 56 567

Mapa_Cor-de-
Rosa.svg 2 830 3 476 21998 123 302

Mapa_municipal_del_
domini_català.svg 3 459 2 632 25711 128864

Northern_Cities_Vow
el_Shift.svg 298 246 1141 14 080

Paris_RER.svg 690 1 489 10211 31 516
plan.svg 38 395
Pohjoisnapa.svg 1 437 2 804 6499 83 378
Quechuan_langs_map
.svg 2 865 3 525 22676 123 762

svg-cards-2.0.svg 910 1 750 5740 78 390
tiger.svg 95 482 622 6 089
World_map_blank.sv
g 579 1 151 3697 41 083

Worldmap_wdb_com
bined.svg 855 9 30 47 237

TABLE III

STATISTICS OF THE SVG ANIMATED SEQUENCES

Sequence File size Number of
elements

Number of
animations

animate-elem-30-t.svg 21 860 74 17
animate-elem-37-t.svg 4 680 52 7
animate-elem-38-t.svg 7 126 9 42
animate-elem-80-t.svg 12 366 40 139
animate-elem-81-t.svg 6 322 8 68
animate-elem-82-t.svg 11 154 32 114
animate-elem-83-t.svg 8 710 19 90
bass2.svg 21 155 57 112
happybirthdayp.svg 32 241 63 110
retro4.svg 13 374 28 65
surprisep.svg 132 934 142 571
map.svg 21 860 74 17
cuisine.svg 21 898 82 5

C. Results
The first set of results concerns the memory consumption.

Because it is difficult to efficiently measure memory usage of
real-time applications on mobile devices and because few
mobile players are freely available, we compare here the
memory consumption of our player only with existing desktop

players. These players are Adobe SVG Viewer 6.0, Firefox
2.0.0.8, Opera 9.25, Safari 3.0.3, and Renesis 0.7. We provide
here the operating systems measurement. Even though it is not
very precise, we will see that the results are already
interesting. Additionally, since most players provide other
functionalities than SVG visualization (i.e. browser features),
in order to have a fair comparison, we give the difference
between the memory usage when no content is loaded and
when the content is loaded and displayed. In order to emulate
the results on mobile devices, we modified the test sequences
to set a width and height of the content to a small size
(176x144).

-

10 000

20 000

30 000

40 000

50 000

60 000

70 000

17
6x

14
4

10
24

x7
68

17
6x

14
4

10
24

x7
68

17
6x

14
4

10
24

x7
68

17
6x

14
4

10
24

x7
68

17
6x

14
4

10
24

x7
68

17
6x

14
4

10
24

x7
68

Osmo4 0.4.5-
dev build 18

Renesis 0.7 Opera 9.25 Firefox 2.0.0.8 Safari 3.0.3
(522.15.5)

Adobe SVG
Viewer 6.0

M
em

or
y

C
on

su
m

pt
io

n
(b

yt
es

)

Minimum Average Maximum
Figure 6 – Memory consumption for the sequences of Table II.

Figure 6 shows the minimum, average and maximum

memory consumption for all tests and for two resolutions. It
shows that our method for visualizing SVG content is efficient
in terms of memory consumption. It performs better in both
cases (small or big rendering size) than many existing desktop
applications (Firefox, Safari, Internet Explorer with ASV6),
with the additional advantage of being able to run on mobile
devices. Only Opera and Renesis achieve comparable results.
Opera performs better when the rendering size is small but
consumes a higher amount of memory than GPAC when the
rendering size is big, which could be a problem for Set Top
Box implementations. Renesis also shows good results (for
both rendering sizes). It is better than GPAC when the
consumption is at its maximum but not on average nor on
minimum.

Second, in order to give figures about the computational
efficiency of our algorithms, we evaluated the average frame
rate which can be achieved on different platforms. The test
platforms are: average desktop PC (1.2 GHz Core Solo, 2 GB
RAM), PDA Dell Axim X51v (624 MHz, 64 MB RAM),
Smartphone SPV C 500 (200 MHz, 24 MB RAM).

These results are given in Table IV. The frame rate is an
average of the frame rate computed every 30 frames.
Additionally, we were not able to measure this number for
other players either because they don’t support animation
(Firefox, Renesis) or for the others, because frame rate
information is not provided.

902 IEEE Transactions on Consumer Electronics, Vol. 54, No. 2, MAY 2008

For interested readers, all test sequences, detailed results and
software implementation are available for download at
http://www.enst.fr/~concolat/ToCE_data.zip.

TABLE IV

AVERAGE FRAME RATE ACHIEVABLE WITH THE GPAC PLAYER ON THE
SVG ANIMATED SEQUENCES FROM TABLE III

Average Frame Rate Sequence
PC PDA Phone

animate-elem-30-t.svg 270 45 25
animate-elem-37-t.svg 90 100 50
animate-elem-38-t.svg 70 60 30
animate-elem-80-t.svg 260 70 26
animate-elem-81-t.svg 220 150 80
animate-elem-82-t.svg 200 85 19
animate-elem-83-t.svg 110 30 15
bass2.svg 200 70 29
happybirthdayp.svg 170 33 16
retro4.svg 270 105 45
surprisep.svg 110 75 30
map.svg 120 35 20
cuisine.svg 330 45 25

We can see from this table that our proposed algorithms can

achieve very good frame rates, even for complex animations.
High frame rate (>100) can be reached on average desktop PC
and reasonable frame rates (>25) can be reached on limited
devices like our SPV mobile phone.

VI. CONCLUSION
We have described in this paper the general principles

behind the visualization of multimedia scenes. We have then
highlighted the problematic of the SVG visualization. Since
this format is part of the selected formats for mobile devices,
we have designed scene structures and according compositing
and rendering algorithms which achieve interesting results
both in terms of memory usage and animation frame rate,
while remaining fully compliant with the standard. We believe
these results are the consequence of innovative algorithms, in
particular the SVG scene tree change-detection algorithm.

However, the proposed algorithms have some drawbacks.
We can mention some problems with the order of definition
and usage of inherited gradients and the fact that accessing the
computed value requires a dedicated sub-tree traversal. These
are items we will try to improve in future work.

REFERENCES
[1] “Scalable Vector Graphics (SVG) Tiny 1.2 Specification”, W3C

Candidate Recommendation 10 August 2006,
http://www.w3.org/TR/SVGMobile12/

[2] “Synchronized Multimedia Integration Language (SMIL 2.1)”, W3C
Recommendation 13 December 2005, http://www.w3.org/TR/SMIL2/

[3] “Cascading Style Sheets, level 2 (CSS2) Specification”, W3C
Recommendation 12 May 1998, http://www.w3.org/TR/REC-CSS2/

[4] “Document Object Model (DOM) Level 2”, W3C Recommendation 13
November 2000, http://www.w3.org/DOM/DOMTR

[5] “Information technology - Coding of audio-visual objects - Part 20:
Lightweight Application Scene Representation (LASeR) and Simple
Aggregation Format (SAF)”, International Standard ISO/IEC 14496-
20:2006

[6] M. Kostoulas,, M. Matsa., N. Mendelsohn., E. Perkins., A. Heifets., and
M. Mercaldi., “XML screamer: an integrated approach to high
performance XML parsing, validation and deserialization”, Proc. of the
15th international Conference on World Wide Web, pp. 93-102. 2006.

[7] A. Cogliati, and P. Vuorimaa, “Optimized CSS Engine”, Proc. of the 2nd
International Conference on Web Information Systems and
Technologies, pp. 206-213, 2006.

[8] J. Le Feuvre, C. Concolato, and J.-C. Moissinac, “GPAC: open source
multimedia framework” Proc. of the 15th international Conference on
Multimedia, pp. 1009-1012, 2007.

[9] “Over 250 Million Ikivo Powered Mobile SVG Devices Shipped”, Press
Release, available at
http://www.ikivo.com/pdf/pressreleases/250_million_shipped.pdf

[10] “Dynamic and Interactive Multimedia Scenes”,
http://www.3gpp.org/specs/WorkItem-info/WI--34032.htm

[11] BitFlash SVG Tiny Player, http://www.bitflash.com/
[12] “Remote Events for XML (REX) 1.0”, W3C Working Draft 13 October

2006, http://www.w3.org/TR/rex/
[13] “The XMLHttpRequest Object”, W3C Working Draft 26 October 2007,

http://www.w3.org/TR/XMLHttpRequest/
[14] “OpenVG - The Standard for Vector Graphics Acceleration”,

http://www.khronos.org/openvg/
[15] Jesse James Garret. “Ajax: A New Approach to Web Applications”,

http://adaptivepath.com/ideas/essays/archives/000385.php
[16] “Document Object Model (DOM) Level 2 Events Specification, Version

1.0”, W3C Recommendation 13 November, 2000,
http://www.w3.org/TR/DOM-Level-2-Events/

[17] “Efficient XML Interchange (EXI) Format 1.0”, W3C Working Draft,
26 March 2008, http://www.w3.org/TR/2008/WD-exi-20080326/

Cyril Concolato received the Ingénieur (M.Sc.) degree in
Telecommunications (2000) and the Ph.D. degree for his
work on scene descriptions representations (2007) from
the Ecole Nationale Supérieure des Télécommunications
in Paris, France, where he is now Associate Professor in
the Multimedia group of the Signal Processing and Image
Department. His research interests are multimedia scene

description languages, content adaptation and content distribution. He was an
active contributor to the MPEG-4 BIFS standard and, in particular was editor
of the Advanced Text and Graphics amendment. He is actively contributing
and participating to the standardization activities of MPEG and W3C. He is
one of the lead developers of the Open Source GPAC project.

Jean Le Feuvre received his Ingénieur (M.Sc.) degree in
Telecommunications in 1999, from TELECOM
Bretagne. Co-founder of Avipix, an MPEG-4 consulting
and software provider company, he has been involved in
MPEG standardisation since 2000. He joined TELECOM
ParisTech in 2005 as Associate Professor within the

Signal Processing and Image Department. Expert in multimedia delivery and
rendering systems, he is the project leader and maintainer of GPAC, a rich
media framework based on standard technologies (MPEG, W3C, and
Web3D).

Jean-Claude Moissinac is Associate Professor within
the Multimedia group of the Signal Processing and
Image Department. His main research focus is defining
tools to produce and consume multimedia contents
within networks. He is also a member of the SVG
working group of W3C. He is contributor to the
SpipCarto and GPAC Open-Source projects.

C. Concolato et al.: Design of an Efficient Scalable Vector Graphics Player for Constrained Devices 903

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

