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Abstract
We present in this paper an approach to the analysis of the pictorial content of artistic line-drawings. The pictorial
content is the combination of the stylistic content and of the visual features of the represented subject. This paper
focuses on the pictorial content hold by line strokes in line-drawings. To this aim, we propose a parameter-
free method to detect the hierarchical set of stroke contours. This structure allows to estimate the radius of the
drawing tool that has been used. This information then efficiently tunes several methods to extract strokes curvature
information, endpoints, stroke junctions and corners. The efficiency of the proposed methods is illustrated with
several experiments.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Vision and Scene Understanding]: Perceptual
reasoning, shape

1. Introduction

In this paper, we call pictorial content the combination of
the artistic style and of the visual features of the repre-
sented subject contained in an artwork. This content con-
tributes to the visual impression delivered to a human ob-
server. “In an abstract painting, ideas, emotions, and visual
sensations are communicated solely through lines, shapes,
colors, and textures that have no representational signifi-
cance” [Owe07]. The psychological effect delivered by the
pictorial content, or pictorial effect, is one part of the so-
called aesthetic effect [Sil84]. However, since computational
methods do not succeed in describing the representational
content, the aesthetic effect cannot be fully extracted. The
semantic gap [LSDJ06] is still a topical research problem
in computer vision. This gap is even wider in the visual
arts field since pictures are often not perfectly realistic. We
therefore limit our study to the pictorial level of analysis.
The analysis of the pictorial content is useful in many ap-
plications for identifying and retrieving similar artworks in
cultural heritage databases [SGJD06]. It is also useful for
non-photorealistic rendering (NPR) of scences in computer
graphics that produces the same pictorial effect as some real
artworks [JEGPO02, BD04, GTDS04].

The pictorial content is partially related to the artis-
tic style. The style detection problem has been tackled in
many references, see e.g. [vdHP00, LW04, YJ06]. These ap-

proaches are usually based on a list of low level features and
a few definitions of some modern art movements such as cu-
bism, impressionism, etc. The main problem is that artistic
style inherits from many definitions. According to the Amer-
ican Dictionary [P∗00], style is “the combination of distinc-
tive features of artistic expression, execution or performance
characterizing a particular person, group, school or era”. Un-
fortunately style depiction is often based on the same visual
effects as subject depiction. Style recognition is thus a very
difficult task, requiring the knowledge of numerous art his-
torians and experts, which still cannot be fully carried out
with computer vision techniques.

Line-drawings have long been considered as a very im-
portant study in artist preliminary works [Kan79, Kle04].
It is also often a standard format for illustration in print
publications using black ink on white paper. Line content
in artworks have been addressed in several perceptual stud-
ies. In its inspiring study [Wil97], Willats proposed several
depiction systems that let one person describe the artistic
rules chosen by an artist. These depiction systems are well
adapted to NPR line-drawings [GTDS04]. Leyton studies the
visual tension induced by the geometrical shapes in a paint-
ing [Ley06]. Leyton theory proposes to see shapes as mem-
ory storages. Practically, his theory is based on curvature ex-
trema information and local neighborhood of these extrema.
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This approach is closely related to cognitive studies such as
the seminal work of Attneave for instance [Att54].

Studying the line content in artworks has been rarely in-
vestigated in computer vision. Berezhnoy et al. [BPvdH05]
proposed a method using polynomial interpolation of paint-
ing brush-strokes on Van Gogh artworks. This approach is
adapted to very small strokes such as Van Gogh’s. Li and
Wang studied ancient black and white ink drawings using
wavelets and hidden Markov models [LW04]. Their method
is yet close to texture analysis in paintings. Onkarappa and
Guru studied the spatial mutual arrangement of strokes in
line-drawing images to achieve similarity retrieval [OG07].
This approach aims at describing the artistic composition of
an image.

In this paper, we first propose in Section 2 a parameter-
free approach to detect closed contours in line-drawings.
Next, we introduce in Section 3 several methods for ex-
tracting and characterizing some important visual features:
curvature, corners, junctions, endpoints. In Section 4, some
similarity experiments on a database of artistic line-drawings
will be used to demonstrate the efficiency of the features.

2. Detection of closed stroke contours

We thereafter call stroke cluster any set of connected strokes.
In this section, we explain how to associate closed contours
to the stroke clusters present in a line-drawing. This is a cru-
cial step since the geometrical analysis introduced in the next
section is based on these closed contours. Among the nu-
merous segmentation approaches proposed in the literature,
we choose to rely on level lines and draw our inspiration
from the method presented by Desolneux et al. in [DMM01].
Level lines hold several interesting properties. They are rep-
resented by closed curves in a hierarchical structure, they do
not require any initialization, and the selection method pro-
posed in [DMM01] relies on only one parameter which is
fixed for every image.

Level lines are defined as the connected components of
the topological boundary of level sets. There are both posi-
tive level lines (corresponding to upper level sets) and nega-
tive ones (corresponding to lower level sets). These lines are
organized in an inclusion tree, called the topographic map,
that can be efficiently computed on digital images, as de-
tailed in [MG00]. Level lines provide a fairly complete but
largely redundant representation of the geometry of an im-
age. Desolneux et al. have proposed an image segmentation
method relying on a filtering of the topographic. A meaning-
fulness measure called number of false alarms (NFA) is af-
fected to each line. This measure depends on both the length
of the line and its contrast. According to the NFA measure,
selecting meaningful level lines practically yields lines that
are well localized along contours but are still largely redun-
dant. In [DMM01], it is suggested to further filter the mean-
ingful lines by using a maximality principle. The goal of this

step is to associate exactly one line to each geometrical en-
tity present in the image. The maximality principle relies on
the fact that the set of meaningful level lines inherits the hi-
erarchical structure of the topographic map (i.e. two mean-
ingful level lines are either disjoint or linked by inclusion).
For each sequence of meaningful level lines that have each
exactly one child and are of the same type (positive or neg-
ative), only the more meaningful is kept. While giving good
results on natural images, this maximality principle is not
well adapted to the segmentation of line-drawings. This is
mainly due to contrast variations along the strokes.

We therefore propose an alternative way to filter the tree
of meaningful level lines that is specifically suited to line-
drawings and aims at associating a unique contour to each
stroke. The ideal structure we are aiming at is explained in
Figure 1 for some manually selected level lines on a line-
drawing. In order to achieve such a segmentation, we take
advantage of the fact that line-drawings have a constrained
structure, and in particular that a stroke is made of a sin-
gle shape inside which there is no contrast inversion. We
call Maximal Monotone Tree (MMT) a subtree of the set
of meaningful level lines than contain only positive or only
negative nodes and which cannot be included in another
monotone subtree. For each MMT of the tree of meaning-
ful level lines, we first look for the most meaningful level
line L according to the NFA measure. We then remove all
level lines from the MMT which are children or parents of
L. These two steps are repeated until the MMT is empty.
This principle allows us to keep only the most meaningful
level lines and it insures in most situations that each contour
of a stroke will be represented by a unique level line, without
having to tune any parameter. The contours obtained using
this MMT-principle on the tree of meaningful level lines in
Figure 1a is exactly Figure 1b. More examples of stroke con-
tours detection are to be seen in Figure 6.

a) b) c)

Figure 1: A simple line drawing of two leaves (left). Four
level lines are manually chosen to best represent the strokes
contours (middle). On the tree structure of these four level
lines (right), a positive or negative level line is represented
by a white or black node respectively. The unique positive
level line b describes the inner contour of the biggest leaf.

Finally we group these selected meaningful level lines to
model the contours of every stroke cluster. These groups of
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level lines, thereafter called coalescence sets, are obtained
by grouping every retrieved negative level line with its posi-
tive children. More details can be found in [HGCS08].

3. Pictorial content analysis

This section proposes several methods to analyze the co-
alescence sets introduced in the previous section. The es-
timation of the tool radius (Section 3.1) tunes several ge-
ometrical parameters in the following steps. The proposed
description of line-drawing is based on the curvature distri-
bution (Section 3.2) and on the detection of several visual
cues such as stroke junctions, corners and endpoints (Sec-
tion 3.3). Eleven scalar features are computed based on these
cues (Section 3.4).

3.1. Tool radius estimation

We make the following hypothesis. Each stroke cluster Φ is
done with tools having the same radius RΦ. This may sound
restrictive since for example calligraphic artworks are dis-
carded, but line-drawings are often made all over with one
single tool. This hypothesis let us easily estimate the tool ra-
dius. Following a constant width stroke model made with a
circular tool, for each stroke cluster Φ associated with a co-
alescence set made of n level lines Li, the tool radius RΦ is
given by:

RΦ ≈
sur f ace

perimeter
=
−∑

n
i=1 sign(Li)Si

∑
n
i=1 Pi

, (1)

where Si (resp. Pi) is the polygonal surface (resp. perimeter)
of the level line Li.

3.2. Curvature computation

Curvature being quite sensible to noise, level lines of the
coalescence sets needs to be smoothed. Besides, the hier-
archical structure inherited from the topographic map must
be preserved. We thus rely on affine plane curve smoothing
which is morphologically invariant [Moi98]. This smoothing
is applied directly to the polygonal models of level lines. A
fixed sampling step at the curvilinear abscissa is used for
every image: ∆s = 0.5 pixels. Let us stress that only one
smoothing is operated here at a very fine scale. Our approach
differs from a multi-scale approach such as [Mok95].

For each curvilinear abscissa si along a level line L, the
curvature κ(si) is estimated as

κ(si) = θ
′(si)≈

θsisi+1 −θsi−1si

(sisi+1 + si−1si)/2
, (2)

where θsisi+1 is the local orientation of the segment sisi+1.
This curvature estimation is less sensitive to noise than the
ones based on first and second derivatives. It gives a curva-
ture value relative to the pixel size.

Curvature is a signed information depending on the di-
rection of shifting along a closed curve (clockwise or anti-
clockwise) and the local geometry (convex or concave). We
choose the following convention. Negative level lines will
be travelled clockwise. This induces negative curvature val-
ues at line convexities and positive values at line concavities.
On the opposite, positive level lines will be travelled anti-
clockwise to invert the curvature sign. This convention first
ensures us that pictorial elements such as stroke endpoints
or junctions have the same local curvature sign wherever
they are located in a coalescence set (Figure 2). Endpoints
have always a negative curvature values, and regions where
strokes create a non-reflex angle (e.g. at junctions) hold pos-
itive values.

Figure 2: During curvature computation, convention is cho-
sen so that negative (resp. positive) level lines are travelled
clockwise (resp. anticlockwise). On this example (left), one
negative level line delimits the outer contour, and one posi-
tive level line delimits the inner contour (right). Arrows no-
tify the travel direction. This convention induces negative
curvature values (red dots) and positive values (blue dots)
wherever they represent an inner or an outer stroke cluster
contour. This convention ensures us that pictorial elements
such as stroke endpoints or junctions have the same local
curvature sign.

Curvature zero-crossings contribute to artistic visual im-
pression and object recognition [Low85]. They are estimated
directly on the curvature signal. An example of a drawing
with detected curvature zero-crossing is to be seen in Fig-
ure 3a.

a) b)

Figure 3: Left, maximal meaningful level lines from a draw-
ing, and its superposed curvature zero-crossings. Right, cur-
vature maxima detected with the method presented in Sec-
tion 3.3.1. Red (resp. green) diamonds are positive (resp.
negative) maxima.
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3.3. Detection of endpoints, junctions and corners

This section proposes to detect three different strong visual
cues: stroke endpoints, stroke junctions and stroke corners,
following to the taxonomy presented in Figure 4. In Section
3.3.1, we first select a set of candidates to that taxonomy.

Figure 4: Taxonomy of high curvature values along stroke
contours: a) a simple high curvature point along the gesture
trajectory, b) an endpoint, c) a stroke corner, d) two types
of stroke junctions: X and T junctions. Plus and minus sign
refers to the curvature sign on the stroke contour. Strokes are
grey lines, and stroke contours are blue surrounding lines.

3.3.1. Selection of candidates to a taxonomy of high
curvature points

We first extract a large set of extrema that are candidates
to the extrema point taxonomy shown in Figure 4. We it-
eratively consider every continuous portion of the curvature
signal where |κ(i)|> κt with κt = 1/(kcRΦ). We will discuss
the choice of kc in Section 4.1. Zero-crossings of the deriva-
tive signal of each of these portion are considered as candi-
dates to the taxonomy. Depending on the curvature sign, an
extremum can be either positive or negative. An example of
extrema detection is shown in Figure 3b. Thanks to the cho-
sen convention on curvature presented in Section 3.2, stroke
endpoints coincide with negative maxima (Figure 4b), and
junctions coincide with several positive maxima (Figure 4d).
Corners have one positive maximum on the concave side,
and one negative maximum on the convex side (Figure 4c).
This information will be useful in the next three sections to
analyze stroke endpoints, junctions and corners.

3.3.2. Stroke junctions

Stroke junctions are important geometrical characteristics of
the 1D content of a drawing. Each junction indicate a possi-
ble occlusion denoting an actual level of perspective in the
depicted scene [Wil97]. A positive curvature maximum in-
dicate possible junction nearby its location point pm in the
drawing. Recall that RΦ is the tool radius. To state for a junc-
tion we center a disk of radius k jRΦ on pm. If there are three
or more pieces of level lines covered by the disk, a stroke
junction is detected and pm corresponds to one of the non-
reflex angle of this junction. If there are only two pieces,
this maximum is a line corner which will be characterized

further in Section 3.3.3. Once all positive curvature maxima
in a coalescence set have been analyzed, the ones that have
been detected as belonging to a stroke junction are finally
merged if their mutual distances are less than k jRΦ.

3.3.3. Stroke corners

A positive maximum that has not been classified as stroke
junctions is considered as a stroke corner. Such maxima
points have a very strong pictorial impact [Ley06]. Among
the characteristics that have been previously proposed in
the perception literature to measure the visual strength of
a corner, we use the relative surface as a corner strength de-
scription [WPW02]. Considering a maximum pm, we iter-
atively consider the polygon pm−i . . . pm . . . pm+i for i > 0.
This polygon is expanded while it does not contain any
other point belonging to the coalescence set than the points
{pm− j, . . . , pm+i}. The strength value is computed as the rel-
ative surface of this maximal polygon normalized by the to-
tal surface of the image.

If the underlying stroke describes a form that is perceptu-
ally visible such as an object contour, a line corner can be
convex or concave and induces a different pictorial effect.
This type effect has been recently studied in [FBG05,FS05].
Recognizing the type of a corner, i.e. stating if it convex or
concave, can be an ill-defined problem in a line-drawing. In-
deed, strokes do not always describe a part of an object con-
tour and objects described by an open contour also create
some ambiguities. We propose a well-defined way to pre-
cise the visual orientation of a corner at stake, that we call
sign of a corner. We say that a stroke corner is negative if
it points toward the barycenter of the whole coalescence set
to which it belongs, and positive if it points toward the op-
posite direction. The corner orientation is estimated with the
orientation of the geometrical vector −−−−−→pm−iΦ pm +−−−−−→pm+iΦ pm,
where iΦ is such that iΦ∆s≈ RΦ. This works in most of the
situations. However a typical case where a corner sign and a
corner type do not correspond is when the form describes a
U-bend around the corner.

3.3.4. Stroke endpoints

To detect stroke endpoints, the set of negative curvature
maxima is analyzed. Stroke endpoints are important com-
ponents of the pictorial content. A drawing made of dotted
lines delivers a different pictorial effect than the same draw-
ing made with continuous strokes. For each negative max-
imum point pm, we consider the two points pi, p j where
i < m < j along the level line at a keRΦ distance from the
maximum. If the Euclidean distance between pi and p j is
less than 3RΦ, and if there does not exist any point pq inside
the triangle pi pm p j such that q < i and q > j, then pm is
considered as an endpoint. This distance threshold tolerates
a 50% precision error on RΦ. If the maximum is an endpoint,
the distance between pi and p j should be indeed close to the
width 2RΦ. This method is illustrated on Figure 5.
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Figure 5: Left: negative maximum is classified as a stroke
endpoint. Right: some points pq which are not belonging to
the level line portion [pi, p j], are included in the triangle.
This maximum is thus not classified as a stroke endpoint.

3.4. Indexing features

To illustrate how the proposed features can be used for the
indexing of line-drawings, a similarity retrieval framework
is considered in the experimental section. Based on the pic-
torial content analysis presented in previous sections, eleven
scalar features are computed, summarized in Table 1. The
three first features are computed on the distribution of curva-
ture values κ(i) satisfying −κt ≤ κ(i) ≤ 0. Negative curva-
ture values let us select one half of the curvature points along
the strokes (see Figure 2). We thus indirectly consider points
that are related to the underlying drawing stroke. We only
consider values that respect κ(i)≥−κt to discard the strong
curvature values that belong to stroke endpoints. These three
features give an indication of how straight are the flat parts
of the strokes independently of the rest of the geometrical
information. Curvature values are normalized by the image
diagonal. These three features thus become invariant to the
drawing scale. This is required if we want that two images of
a same drawing with two different resolutions have the same
values.

Features 4 to 8 are linear densities of curvature zero-
crossings, stroke endpoints, stroke junctions, positive and
negative stroke corners. The linear density of each of these
geometrical elements is defined as its total number in the
image divided by the total length of the level lines of the
coalescence sets in the image. Each linear density is normal-
ized by the image diagonal. Features 9 and 10 are the sum
of the strength values of convex and concave stroke corners.
These two features are normalized by the image surface and
therefore represent the relative image surface corresponding
to each signed stroke corners. The last feature is the tool ra-
dius normalized by to the image diagonal.

Let us notice that linear densities of endpoints and junc-
tions have been previously proposed by Julesz for percep-
tive preattentive discrimination of textures [Jul86]. We con-
ducted several experiments on Julesz textons using the meth-
ods proposed in this paper. They led to the same perceptive
results as in Julesz studies.

Table 1: Features vector used for similarity retrieval

Features

1. mean of the curvature distribution of κ(i) ∈ [−κt ,0]
2. standard deviation of the curvature distribution of κ(i) ∈ [−κt ,0]

3. kurtosis of the curvature distribution of κ(i) ∈ [−κt ,0]

4. linear density of curvature zero-crossings

5. linear density of stroke endpoints

6. linear density of stroke junctions

7. linear density of positive stroke corners

8. linear density of negative stroke corners

9. sum of the depths of positive stroke corners

10. sum of the depths of negative stroke corners

11. tool radius normalized by the image diagonal

4. Experiments and results

Section 4.1 studies the setting of the three parameters that
have been used to extract the characteristic points: kc, ke and
k j. Some similarity retrieval results on a database of artistic
line-drawings are discussed in Section 4.3.

4.1. Setting of parameter kc, ke and k j

Ideally, κt is set in such a way that the three first features of
Table 1 do not depend on the presence of endpoints. This is
not true when kc is too low since endpoints regions may be
integrated in the distribution. On the opposite, a too high
value of kc raises the risk of not discriminating between
a drawing holding strictly straight linear parts and another
made of slightly curvy strokes. A good tradeoff has been em-
pirically set with kc = 5, using synthetic images made with
different tool radius and real line-drawings.

Endpoints are detected using a triangle of scale keRΦ

around a maximum candidate (Section 3.3.4). Increasing ke
raises the risk to miss some endpoints that are very close to
a junction. Lowering ke raises the risk to detect some elon-
gated junctions of two strokes as an endpoints. Stroke junc-
tions are detected using a disk region whose radius is k jRΦ.
Increasing k j raises the risk to consider too large regions
than what is necessary to cover a stroke junction, and thus
provoke some false detection. Lowering k j raises the risk to
miss some stroke junction. Empirical experiments with real
and synthetic drawings led us to choose k j = ke = 5. It is not
surprising that k j and ke hold the same value since they are
related to the same local scale of extremum neighborhood.
In the remaining part of this paper, we will thus use those
two values.

4.2. Detection of endpoints, junctions and corners

Three examples of analyzed drawings are to be seen in Fig-
ure 6. Detected stroke endpoints, junctions and corners are
represented. First example shows that corner signs quite of-
ten correspond with corner types (Section 3.3.3). Corners
strength (i.e. corner relative surface) is not shown for bet-
ter visibility. Yet, we can see that this feature may have a
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a) b) c)

Figure 6: Examples of analyzed line-drawings. Green dots are detected stroke endpoints, black dots are detected stroke junc-
tions, and green (resp. red) stars are positive (resp. negative) stroke corners. Coalescence sets have different colors. Left, middle
and right images are the queries for the first, second and third retrieval example respectively in Figure 7.

discriminative impact between these three examples. Left
example is made of many short strokes. It is thus strongly
characterized by a particularly high linear density of end-
points.

4.3. Similarity results on a line-drawings database

In this section, we rely on a database made of 105 line-
drawings. Most of this database comes from an exhibition
catalogue of drawings made by Henri Matisse and Ellsworth
Kelly [RL02]. Images have been scanned with an HP Scan-
jet 8200 with 4800 ppi resolution. 21 images come from sev-
eral Picasso sketch books released on DVD-Rom in 2006 as
a 800×600 digital facsimile edition [dMNR06]. Finally, 31
computer drawings from [Exp02] have also been included.
Computational times for the complete features extraction
procedure takes around 15 seconds for a 800× 600 image
using a PC Pentium IV running at 4.3gHz. Most of this time
is dedicated to the stroke contours detection. Thanks to the
Euclidean distance and the size of the feature vector, a query
runs almost instantaneously.

Each drawing is described by its eleven scalar features
(Table 1). Once each feature is computed for every draw-
ing in a database, it is centered by the mean and normal-
ized by the standard deviation of the feature distribution over
the database. Let V i(k), j ∈ [1,11] be the eleven normalized
features of a drawing, then the similarity measure d(V1,V2)
between two drawings is the following Euclidean distance:
d(V1,V2) = (∑11

k=1(V
i
1(k)−V i

2(k))
2)1/2.

Retrieval results on this database are shown in Figure 7.
On these figures, the query image is on the top left corner,
followed by the closest results according to the Euclidean
distance. First example is based on the query image of Fig-
ure 6a. All results hold a high linear density of endpoints.
This example gives a good insight of what we call picto-

rial effect, results being semantically different, yet deliver-
ing a very similar pictorial expression. Same remark can be
done for examples 2, 4, 7 and 8. Examples 3, 6, 5 and 9 are
very similar both from the pictorial and semantical point of
view. The visual features of the represented subject are in-
deed very similar and discriminative compared to the rest
of the database content. The two last results of the 10th ex-
ample for instance are yet so different from the query and
the three closest images that they look unsatisfying, know-
ing that more similar rendered birds are in the database.
This points out a limit of the proposed description: in some
cases, the semantic impact delivered by the represented sub-
ject might overwhelm the pictorial effect. In the image re-
trieval context, this limit could be moved away by integrating
some subject metadata when available, if someone seeks im-
ages having the same semantical content and being rendered
with the same style as the query. The whole database and
all retrieval results are to be seen online on a website†. This
database has also been classified by a professional artist into
13 classes. Discounted cumulative gain (DCG) and Bull-eye
percentage (BEP) [SMKF04] are 93.8% and 88.2% respec-
tively using these classes.

5. Conclusion and future work

In this paper we introduced a method for the pictorial con-
tent analysis of line drawings using the geometrical infor-
mation of stroke contours. Computer Graphics and Non-
Photorealistic Rendering (NPR) could benefit from methods
that are able to analyze the artistic content. This would en-
able style transferring for the rendering of drawings or line
textures. We believe that the proposed methods are a promis-
ing step toward this objective. This work opens several per-
spectives. First we are presently collaborating with several

† URL: http://www.hurtut.net/geometry/
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1 2

3 4

5 6

7 8

9 10

Figure 7: Similarity retrieval results in 105 line-drawings database. For each example, image query is in the upper-left corner
followed by its five closest images.
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artists to evaluate the efficiency of the proposed features.
These artists will be asked to classify a database on which
we will rely to quantify the performance of our approach.
Another perspective concerns more sophisticated similarity
measures using some kernel optimization for non-uniform
weighting. We are also investigating the possibility to de-
scribe separately every coalescence set in a line-drawing and
to model the comparison of two groups of coalescence sets
through a global optimization procedure, e.g. by relying on
the Earth Mover Distance [RTG00]. This paper is limited to
line-drawings, that is drawings fully based on 1D content.
Our goal was to observe the importance of 1D content inde-
pendently of other types of primitive. It would be interesting
to further investigate some methods to extract 1D content in
any type of artwork as for example in paintings.
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