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Theoretical and Practical Boundaries of Binary

Secure Sketches
J. Bringer, H. Chabanne, G. Cohen, B. Kindarji and G. Zémor

Abstract

Fuzzy commitment schemes, introduced as a link between biometrics and cryptography, are a way

of handling biometric data matching as an error correction issue. We focus here on finding the best

error-correcting code with respect to a given database of biometric data.

We propose a method that models discrepancies between biometric measurements as an erasure

and error channel, and we estimate its capacity. We then showthat two-dimensional iterative min-sum

decoding of properly chosen product codes almost reaches the capacity of this channel. This leads to

practical fuzzy commitment schemes that are close to theoretical limits. We test our techniques on public

iris and fingerprint databases and validate our findings.

Index Terms

Iris, fingerprint, biometrics, secure sketches, boundaries, min-sum decoding.

EDICS: MOD-CHAN, WAT-THEO, BIO-PROT.

I. INTRODUCTION

With the growing use of biometric recognition systems comesthe need to secure and protect the privacy

associated to biometric data. Juels and Wattenberg’s fuzzycommitment scheme [2] uses Error Correcting

Codes and was introduced to handle differences occurring between two captures of biometric data. Many

papers give applications of this technique for cryptographic purposes [3], [4], [5], [6], [7], [8], [9], [10],
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[11], [2], [12], [13] but only a few investigate what are the best codes for this decoding problem and

how to find them.

Secure sketches have been experimented with several biometrics. Applications to face recognition [14]

and to fingerprints [15] are proposed that make use of BCH codes and reliable bit extraction. In a different

way, Daugmanet al. experimented with the use of a concatenated Hadamard – Reed-Solomon code for

iris recognition [16].

In this paper, we explain how to estimate the theoretical performance limit of a secure sketch, applied

to binary biometric data, at a given code dimension. We then describe an efficient iterative decoding

algorithm on product codes, which leads to near-optimal performance in our experiments on iris and

fingerprint recognition.

A. Biometric Matching and Errors Correction

1) Biometric Templates: The issue of the best codes we can expect for biometric securesketches is

addressed here, in the context of binary biometric features, as is the case for iris recognition systems, see

[17] – more details on iris recognition are also available in[18]. So we focus our paper on iris biometrics

but it is also relevant to fingerprints.

Indeed, our techniques are applicable to recent methods which involve transforming real-valued tem-

plates into discrete ones so as to use secure sketches (cf. [14], [15]). A nice feature of discretization is

that Hamming distance becomes an efficient tool.

Note that in our setting, all templates will be binary arrays, even though our theoretical approach also

applies to arrays over any finite field.

2) Matching and Error Rates: Typically, a biometric-based recognition scheme consistsof two phases.

First, in the enrolment phase, a biometric templateb is measured from a userU and then registered in a

token or a database. The second phase – the verification – captures a new biometric sampleb′ from U

and compares it to the reference data via a matching function. According to some underlying measureµ

and some recognition thresholdτ , b′ will be accepted as a biometric measure ofU if µ(b, b′) ≤ τ , else

rejected. Mainly two kinds of errors are associated to this scheme: False Reject (FR), when a matching

user, i.e. a legitimate user, is rejected; False Acceptance(FA), when a non-matching one, e.g. an impostor,

is accepted.

Note that, when the threshold increases, theFR’s rate (FRR) decreases while theFA’s rate (FAR)

grows, and conversely.
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3) Error Correcting Codes and Secure Sketches: Our methods will resort to information theory and

coding. Some basic definitions are given hereafter. For morebackground, notations and classical results,

the reader is referred to [19] and [20] in these two fields respectively.

Let H be the collection of all binary N-tuples,H = {0, 1}N = F
N
2 , whereF2 = {0, 1}.

• The⊕ operator is the canonical exclusive-or overF2:

a ⊕ b =











0 if a = b

1 if a 6= b

• The Hamming distance over H is the metric distance defined as the number of binary differences

between two elements, i.e.

dH(u, v) =

N
∑

i=1

(ui ⊕ vi).

Equipped with the Hamming distance,H is called theHamming space of lengthN .

• An Error Correcting Code (ECC) overH is a subsetC ⊂ H; elements ofC are calledcodewords.

• An (N,S, d) binary ECC is an error correcting codeC overH with S elements such that for all

distinct codewordsc1 and c2, dH(c1, c2) ≥ d. N is called the length ofC, S is the size ofC and

d, the smallest Hamming distance between two distinct codewords, is the minimum distance.

• A binary linear error correcting codeC is a vector subspace ofFN
2 . By linearity, the minimum

distancedmin of C is now the minimum weight among non-zero codewords, where the weight of a

vectorx is its distance to the vector0. Whenk is the dimension of the subspaceC, C is denoted

by [N, k, dmin]2. Here, thecorrection capacity t of C is the radius of the largest Hamming ball for

which, for anyx ∈ F
N
2 , there is at most one codeword in the ball of radiust centred onx. Clearly,

t = ⌊(dmin − 1)/2⌋.

Assuming that the templates live inH, the main idea of fuzzy schemes, as introduced in [2], is to

convert the matching step into an error-correcting one. LetC be an(N,S, d) ECC in H.

• During the enrolment phase, one storesz = c ⊕ b, wherec is a random codeword inC,

• During the verification phase, one tries to correct the corrupted codewordz⊕ b′ = c⊕ (b⊕ b′). Note

that when the Hamming distancedH(b, b′) is small, recoveringc from c ⊕ (b ⊕ b′) is, in principle,

possible.

The correction capacity ofC may thus be equal toτ if we do not want to alter theFRR and theFAR

of the system. Unfortunately, the difference between two measures of one biometric source can be very

important, whereas the correction capacity of a code is structurally constrained.
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The fuzzy commitment scheme is then an error-tolerant authentication scheme which follows the above

method with the use of a committed value. The main goal is to protect the storage of biometric data

involved in an authentication biometric system. Leth be a cryptographic one-way function, and let us

storeh(c) in the enrolment phase, together withz = c ⊕ b. The authentication will be a success if the

verification returns a codewordc′ such thath(c′) = h(c). An illustration of the scheme is provided in

Fig. 1.

This construction has been formalized in [11] under the nameSecure Sketch. Informally, a secure

sketch is made of a probabilistic Sketching FunctionSS, which “hides” the biometric template, and a

deterministic Recovery FunctionRec which recovers the original template if not too many errors have

occurred.

Several constraints are studied in the literature, e.g. in [2], [9], [11], to achieve the protection ofb while

z is publicly known. These works show that the codeC must be adapted to the entropy of biometrics and

it leads in fact to a trade-off between correction capacity of C and the security properties of the scheme.

Moreover, the sizeS of C should not be too small, to preventz from revealing too much information

about the templateb: indeed the probability for an attacker to “guess”b out of z = c ⊕ b, with the

computation ofz ⊕ c̃ from the choice of a random codewordc̃, is lower bounded by1/S. This issue is

also discussed in Sec. IV-D.

B. Organization of this Work

We first look for theoretical limits. In Sec. II, we formalizeour problem by transforming a database

of biometric data into a binary erasure-and-error channel.We then give a method for finding an upper

Figure 1. The Fuzzy Commitment Scheme [2]
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bound on the underlying error correction capacity, and explain how to transpose this result into bounds

on FAR andFRR.

Section III introduces the biometric datasets – two for irisbiometric and one for fingerprints – we use

in our experiments; we then present the practical bounds deduced from our result.

In Sec. IV, we illustrate our method by describing a very efficient construction with iterative min-sum

decoding of product codes, and we provide parameters that put our performances close to the theoretical

limit for those databases.

Section V concludes.

II. T HEORETICAL OPTIMAL CORRECTION

A. Model

We consider two separate channels with a noise model based onthe differences between any two

biometric templates.

• The first channel, called thematching channel, is generated by errorsb ⊕ b′ whereb andb′ come

from the same userU .

• The second channel, thenon-matching channel, is generated by errors whereb andb′ come from

different biometric sources.

In a practical biometric system, the number of errors in thematching channel is on average lower than

in the non-matching channel.

Moreover, the templates are not restricted to a constant length. Indeed, when a sensor captures biometric

data, we want to keep the maximum quantity of information butit is rarely possible to capture the same

amount of data twice – for instance an iris may be occulted by eyelids – hence the templates are of variable

length. This variability can be smoothed by forming a list oferasures, i.e. the list of coordinates where

they occur. More precisely, in coding theory, an erasure in the received message is an unknown symbol

at a known location. We thus have an erasure-and-error decoding problem on thematching channel.

Simultaneously, to keep theFAR low, we want a decoding success to be unlikely on thenon-matching

channel: to this end we impose bounds on the correction capacity.

In the sequel, we deal with binary templates with at mostN bits and assume, for the theoretical

analysis that follows, that the probabilities of error and erasure on each bit are independent, i.e. we work

on a binary input memoryless channel. Note that resorting tointerleaving makes this hypothesis valid

for all practical purposes.
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B. Taking into Account Errors and Erasures

As we take into account erasures into our biometric model, wealso need to slightly enhance Juels

and Wattenberg’s scheme. Let(b,m) and (b′,m′) be two biometric templates,b, b′ denoting the known

information, andm,m′ the list of erasures, in the way IrisCodes are represented. We can represent some

(b,m) ∈ {0, 1}N × {0, 1}N by a ternary vector̃b ∈ {0, 1, ǫ}N , where the third symbolǫ represents an

erasure.

The updatedxor rule on{0, 1, ǫ} is very similar to the usual one: we definex⊕̃x′ to bex ⊕ x′ if x

andx′ are bits, andǫ if one of x, x′ is ǫ.

In order to protectc andb, the updated sketch will simply be the sumz = c⊕̃b̃. The verification step

will also use the⊕̃ operation to combinez with b̃′ into z⊕̃b̃′. The decoding can then proceed to correct

incorrect bits and erasures.

C. Theoretical Limit

Our goal is to estimate the capacity, in the Shannon sense [21], of the matching channel when we

work with a code of a given dimension. Namely, we want to know the maximum number of errors and

erasures between two biometric measures that we can manage with secure sketches for this code.

Starting with a representative range of matching biometricdata, the theorem below gives an easy way

to estimate the lowest achievableFRR. The idea is to check whether the best possible code with the best

generic decoding algorithm, i.e. amaximum-likelihood (ML) decoding algorithm which systematically

outputs the most likely codeword, would succeed in correcting the errors.

Theorem 1: Let k ∈ N
∗, C be a binary code of lengthN and size2k, and m a random received

message, from a random codeword ofC, of lengthN with wn errors andwe erasures. Assume thatC

is an optimal code with respect toN andk, equipped with anML decoder.

If wn

N−we
> θ thenm is only decodable with a negligible probability for a largeN , whereθ is such that

the Hamming sphere of radius(N − we)θ in F
N−we

2 , i.e. the set{x ∈ F
N−we

2 , dH(x,0) = (N − we)θ},

contains2N−we−k elements. 2

Proof: In the case of errors only (i.e. no erasures) with error-ratep := wn/N , the canonical second

theorem of Shannon asserts that there are families of codes with (transmission) rateR := k/N coming

arbitrarily close to thechannel capacity κ(p), decodable with ML-decoding and a vanishing (inN ) word

error probabilityPe.
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In this case,κ(p) = 1 − h(p), whereh(p) is the (binary) entropy function (log’s are to the base 2):

h(x) = −x log x − (1 − x) log(1 − x).

Furthermore,Pe displays a threshold phenomenon: for any rate arbitrarily close to, but above capacity

and any family of codes,Pe tends to 1 whenN grows.

Equivalently, givenR, there exists an error-rate threshold of

p = h−1(1 − R),

h−1 being the inverse of the entropy function.

Back to the errors-and-erasures setting now. Our problem isto decode to the codeword nearest to the

received word on thenon-erased positions.

Thus we are now faced with a punctured code with lengthN − we, size2k, transmission rateR′ :=

k/(N − we) and required to sustain an error-ratep′ := wn

N−we
.

By the previous discussion, if

p′ > θ := h−1(1 − R′),

NO code and NO decoding procedure exist with a non-vanishingprobability of success.

To conclude the proof, use the classical Stirling approximation for the size of a Hamming sphere of

radiusαM in F
M
2 by 2h(α)M .

This result allows us to estimate the correcting capacity ofa biometric matching channel with noise

and erasures under the binary input memoryless channel hypothesis.

Indeed applying Theorem 1 to thematching channel gives a lower-bound on theFRR achievable

(i.e. thebest FRR), whereas applying it to thenon-matching channel gives an upper-bound of theFAR

(say theworst FAR).

Corollary 1: For a given biometric authentication system based on a binary secure sketch of length

N and dimensionk, and a given biometric databaseB = {bi}, let the functionfN,k be fN,k(ỹ) =

wn

N−we
− h−1

(

1 − k
N−we

)

, with wn the number of1’s occuring in ỹ and we the number ofǫ. Define

pG
N,k(x) (resp.pI

N,k(x)) as the probability density of results of all genuine (resp.impostor) comparisons

fN,k(b̃⊕̃b̃′) for b, b′ ∈ B.

Under these hypothesis, the following inequalities stand:FRR ≥
∫ +∞

0 pG
N,k(t)dt andFAR ≤

∫ 0
−∞

pI
N,k(t)dt.

2
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In other words, Corollary 1 can lead to a kind of theoretical ROC curve which is not represented

thanks to the classical matching score distributions but with the dimension of the underlying optimal

code on the abscissa axis. Therefore, from a given database and a given features extraction scheme –

dedicated to discrete representation, it is possible to induce an approximation of the error-rates one can

expect from templates of the same quality. In particular, itmay help to evaluate the efficiency of the

extraction algorithm.

Practical implications of this theorem are illustrated in Sec. III-B.

III. A PPLICATION TO BIOMETRIC DATA

To explain our approach, we now present the estimation of these optimal performances on several

public biometric databases.

A. Our Setting: Data Sets and Templates

We describe here the sets on which we made experiments. We first describe the iris pictures from ICE

2005 and CASIA v1, then the FVC 2000 dataset from which we extracted binary fingerprint templates.

For each dataset, we also represent the boundaries onFRR andFAR.

1) IrisCodesand associated databases: We first made different experiments on iris recognition, which

is a very natural target for binary error correcting codes. We chose two public databases:

• The ICE 2005 database: [22], [23].

It contains 2953 images coming from 244 different eyes. It istaken without modification but one

slight correction: the side of the eye 246260 has been switched from left to right. Hence we keep

2953 images. In this dataset the number of images for each eyeis variable.

• The CASIA database: [24].

This is the first version of the Chinese Academy of Science public iris database. It contains 756

pictures of 108 different eyes, with 7 pictures per eye.

A 256-byte (2048 bits) iris template, together with a 256-byte mask, is computed from each iris image

using the algorithm reported in [17]; the mask filters out theunreliable bits, i.e. stores the erasures

positions of the iris template. The resulting template is called IrisCode.

Note that the iris template as computed by this algorithm hasa specific structure: [17] reports 249

degrees-of-freedom within the 2048 bits composing the template. As described in [25], [17], [26], the

algorithm involves computation of several Gabor filters on separate and local areas of the iris picture. The
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picture is normalized onto its polar representation, then divided into areas of regular size. The amplitude

information is discarded and the actual bits are the phase quantization of this Gabor-domain representation

of the iris image. The ordering of the bits is directly linkedto the localization of the area. In practice,

the iris code can be represented by an 2D bits-array.

The classical way to compare two iris codesI1, I2 with masksM1,M2 is to compute the relative

Hamming distance

||(I1 ⊕ I2) ∩ M1 ∩ M2||

||M1 ∩ M2||
(1)

for some rotations of the second template – to deal with the iris orientation’s variation – and to keep the

lowest score.

This formula gives the Hamming distance distribution givenon Fig. 2(a), where the scores of matching

(intra-eyes) and non-matching (inter-eyes) comparisons are represented. We can see that there is an overlap

between the two curves, and that the number of errors to handle in the matching channel is large. On

iris matching-channel an additional difficulty originatesfrom the number of erasures which varies, for

instance for ICE, from 512 to 1977.

Although we know that all bits are not independent and that they do not follow the same distribution

(see e.g. [27]), following (1) the typical matching score computation does not use any internal correlations

between bits of the iris codes. So in this setting it is coherent to suppose the matching channel to be

a binary input memoryless channel with independent bit errors and erasures. It will thus be possible to

apply Theorem 1 in this context.

2) Fingerprint Encoding and Associated Database: Traditional fingerprint matching is made thanks

to minutiae extraction [28] and comparisons of unordered sets E , E ′ of variable length. Using the

characteristic functionχE – as done in [11], [29] – is a way to translate minutiae into a binary vector

of fixed length. The size corresponds to the number of values the coordinates could take. From a set

of minutiae, the idea is to construct a vector with all coordinates equal zero except those which are

associated with the position of one minutiae. The problem isthat this representation is not well-suited

for binary secure sketches. Indeed, the metrics associatedto the set representation is the symmetric set

difference, which does not take into account local distortion due to elasticity of the finger skin. Still,

Secure Sketches are easier to construct for the Hamming distance with aq-ary code.

To overcome this difficulty, Tuylset al. [15] describe a smart algorithm, in the line of the previous

works [30], [12], to extract stable binary vectors from fingerprints and to apply secure sketches on them.

We based our experiments on such a coding, more precisely on an improvement which has been proposed
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in [31].

We describe a synthesis of the algorithm below. The main ideais to deal with fingerprint patterns rather

than minutiae. It makes use of core-based alignment techniques and pattern features linked to directional

fields, thanks to the techniques described in [32], [33], [34]. Moreover, to increase the stability of the

vectors, the binary fixed-length strings are generated following some statistics by using several images

per user at the enrolment.

For these experiments, the FVC2000 [35] public database (Db. 2) was tested. This data set is made of

800 pictures of 100 different fingers, 8 pictures per finger. The image size is 256 by 364 pixels.

Before the enrolment step, we first align the picture on a fixedpoint, such as the core, if available.

For that, we preprocess the picture in order to extract the core point and an evaluation of the vertical

axis. We translate the picture, then adjust it to take care ofsome possible rotation. In practice, we did

prealign the fingerprints to solely test the binarization proposed.

These points are then executed:

1) Picture embedding: to take into account the alignment, weembed the256×364 pixels picture into

a larger picture of768 × 1092 to prevent any loss of information after re-alignment.

2) Real-vector extraction: we compute several Gabor filterson the resulting picture, of which we keep

only the magnitude. We also compute the directional field of the fingerprint. The concatenation of

both computations gives us a real-vector of lengthL = 17952, of which15968 positions are known

to be null, due to the embedding. These positions will be marked as erasures.

3) Binarization: the enrolment is done on several pictures per user and several users; a statistical

analysis gives enough information to quantize the vectors by comparing – coordinate after coordinate

– the mean value of a user to the mean value of the overall enrolment database. For each user, this

gives a vector from{0, 1, ǫ}L.

4) Reliable components selection: for each user, all enrolment vectors are combined into a bit string

of fixed lengthN . This is done by selecting only theN most stable coordinates from the different

vectors. As it is likely that real-life pictures never are pre-aligned, it is likely that the null positions

will not be the same for each fingerprint capture; this enables to chooseN ≥ 17952−15968 = 1984.

More details on component selection are given in [31].

Hence we obtain binary templates, together with a mask, of a fixed length. The verification step is

quite similar; to get the fresh biometric template, we use the positions selected at the enrolment step,

and then compare them with the enrolled vector.

In the sequel, we selected6 images per finger for the enrolment phase, one 2048-bit template per
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enrolled finger is obtained, possibly with some erasures, and the remaining 200 images are kept for

verification. As the verification step is done on just one picture, the verification template will always

contain at least2048− 1984 = 64 erasures; this is well captured by the decoding algorithm. To increase

the overall number of comparisons, we iterate the tests for every choices of6 images. This gives us a

genuine match count of 5600, and an impostor match count of 19800.

Any other biometrics may be used to apply Theorem 1 as soon as we succeed in getting a discrete

representation of the templates associated to a Hamming distance classifier.

B. Performances Estimation on these Databases

For each one of these databases we represent, in Figures 2, 3 and 4, the relative Hamming distance

distribution thanks to Eq. (1) for the matching and the non-matching channel and the corresponding FRR

and FAR curves. We have also estimated the optimal performances given by Corollary 1 and the results

are drawn in Figures 2(c), 3(c) and 4(c). The curves correspond to the best FRR achievable with respect

to the code’s dimension and the greatest possible FAR as a function of this dimension.

From the Hamming Distance distributions, it is obvious that, while iris recognition performs well with

the IrisCode algorithm, the chosen quantization is not as well adapted to fingerprint matching. Therefore,

the different results we shall have will significantly differ.

For the three datasets, we see that the ratio of errors to handle to approach the Equal Error Rate –EER

– is very high, which is a problem for classical correcting codes as it is explained in the next section.

We summed up some of the numerical limits onFAR and FRR in table I, for dimensions likely to

be chosen for practical purposes. A general consequence is that the dimension of the code can not be

chosen too high in order to keep goodFR rates.

Note that Theorem 1 gives us estimations of the theoretical limits based on asymptotic analysis under

a memoryless channel hypothesis, i.e. independent bits. Inprinciple, it could be possible to expect more

efficiency without resorting to bit interleaving which in practice makes the channel memoryless. However

this would require highly intricate modelling of the matching channel, and it seems unreasonable to expect

that the decoding problem would be within reach of present day algorithms.
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Figure 2. The ICE 2005 Dataset, IrisCodes

Code’s dimension Minimum FRR Maximum FAR

ICE CASIA FVC ICE CASIA FVC

42 2.49 · 10
−2

3.15 · 10
−2

0.59 · 10
−2

8.14 · 10
−4

1.13 · 10
−4

17.88 · 10
−2

64 3.76 · 10
−2

4.47 · 10
−2

1.26 · 10
−2

2.74 · 10
−4

0 10.32 · 10
−2

80 4.87 · 10
−2

5.77 · 10
−2

1.93 · 10
−2

2.57 · 10
−4

0 7.07 · 10
−2

128 9.10 · 10
−2

9.18 · 10
−2

5.87 · 10
−2

2.41 · 10
−4

0 2.67 · 10
−2

Table I

THEORETICAL L IMITS ON STUDIED DATABASES

IV. A N EAR OPTIMAL CONSTRUCTION

A. Previous Works

1) Quantization and BCH codes: In known applications of secure sketches to quantized biometrics,

for instance [14], [15], the error correcting codes are seendirectly to act as a Hamming distance classifier
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Figure 3. The CASIA v1 Dataset, IrisCodes

at a given threshold. Hence, the correction capacity naturally corresponds to the threshold we want to

attain. To this end, the use of BCH codes is proposed: the advantage is their existence for a wide class

of parameters, the main drawback is that the correction capacity is a hard constraint for the dimension.

As an illustration, in [14] the quantization technique is applied to face recognition on two databases,

FERET database [36] and one from Caltech [37]. A Hamming distance classifier gives Equal Error Rates

of 2.5% and 0.25% respectively for a threshold greater than0.32 with code length511. Unfortunately

to achieve this minimal distance, the BCH code has dimension1. A BCH of dimension40 enables a

threshold of0.185 with a FRR greater than10% and1% respectively.

This phenomenon holds in [15] and for our first experiments onthe FVC2000 dataset. Following Fig.

4(b), we remark that to achieve aFRR better than the EER, the threshold is high: for example, for a

rate around 2%, the threshold is near0.4 which is not realistic with non-trivial BCH codes. To overcome

this limitation, we propose in the sequel to use more appropriate codes.
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Figure 4. The FVC 2000 (Db. 2) Dataset, Binary Encoding

2) IrisCodesand Concatenated Codes: More efficient codes are proposed in [16]. The secure sketch

scheme is applied with a concatenated error-correcting code combining a Hadamard code and a Reed-

Solomon code. More precisely, the authors use a[32, kRS , 33 − kRS ]27 Reed-Solomon code and a

[64, 7, 32]2 Hadamard code: a codeword of 2048 bits is in fact constructedas a set of 32 blocks of

64 bits where each block is a codeword of the underlying Hadamard code. As explained in [16], the

Hadamard code is introduced to deal with the background errors and the Reed-Solomon code to deal

with the bursts (e.g. caused by eyelashes, reflections,. . .).

Note that in this scheme, the model is not exactly the same as ours, as the masks are not taken into

account. Moreover, the quality of the database used in [16] is better than the public ones we worked

with. The mean intra-eye Hamming distance reported in the paper is 3.37% whereas this number becomes

13.9% in the ICE database, which means that we must have a bigger correcting capacity. The inter and

intra-eyes distributions reported by the authors is drawn on Fig. 5.
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Figure 5. Hamming distance distributions from [16]

Even if [16] reports very good results on their experiments with a 700-image database , the codes do

not seem appropriate in our case as the same parameters on theICE database gave us a too large rate of

FR (e.g.10% of FR with 0.80% of FA), even for the smallest possible dimension of the Reed-Solomon

code whentRS = 15.

To sum up, with respect to the Hamming distance distributionin figures 2, 3, 4, we need to find

correcting codes with higher correction capacity. To achieve performances closer to the theoretical

estimation given in section III-B is also a great motivation.

B. Description of the Two-Dimensional Iterative Min-Sum Decoding Algorithm

We now describe a very efficient algorithm which will help us to overcome the difficulties mentioned

above.

For a linear code with a minimum distancedmin, we know that an altered codeword withwn errors and

we erasures can always be corrected, disregarding decoding complexity issues, provided that2wn +we <

dmin.

Classical algebraic decoding of BCH codes and concatenatedReed-Solomon codes achieve this bound,

but not more. This upper bound is however a conservative estimate: it has been known since Shannon’s

days that it is possible in principle to correct many more errors and erasures, all the way to the channel

capacity. In practice,iterative decoding algorithms are now known to be capable of achieving close-to-

capacity performance, for such code families as LDPC or turbo codes. It is therefore natural to try and

bring in iterative decoding to improve on secure sketches that use algebraic decoders. LDPC codes and
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turbo codes are however not usually designed for such noisy channels as the type we have to deal with: in

particular, classical turbo codes are known not to behave well under high noise. We have therefore chosen

to use product codes: this is because under the high noise condition particular to biometrics, we will be

dealing with codes of small dimension so that we can apply maximum-likelihood decoding (exhaustive

search) to the constituent codes and alternate between bothdecoders with an iterative process. This will

yield a particularly efficient blend of iterative decoding and exhaustive search.

We now describe product codes together with the specific iterative decoding algorithm we will use.

A product codeC = C1 ⊗ C2 is constructed from two codes:C1[N1, k1, d1]2 andC2[N2, k2, d2]2. The

codewords ofC can be viewed as matrices of sizeN2×N1 whose rows are codewords ofC1 and columns

are codewords ofC2, see Fig. 6.

This yields a[N1 ×N2, k1 × k2, d1 × d2]2 code. Whenk1 andk2 are small enough forC1 andC2 to

be decoded exhaustively a very efficient iterative decodingalgorithm is available, namely themin-sum

decoding algorithm. Min-sum decoding of LDPC codes was developed by Wiberg [38] as a particular

instance of message passing algorithms. In a somewhat different setting it was also proposed by Tanner

[39] for decoding generalized LDPC (Tanner) codes. The variant we will be using is close to Tanner’s

algorithm and is adapted to product codes. Min-sum is usually considered to perform slightly worse

than the more classical sum-product message passing algorithm on the Gaussian, or binary-symmetric

channels, but it is specially adapted to our case where knowledge of the channel is poor, and the emphasis

c =























c1,1 . . . c1,j . . . c1,n1

...

ci,1 . . . ci,j . . . ci,n1

...

cn2,1 . . . cn2,j . . . cn2,n1























∀i ∈ [0, n2], (ci,1, ci,2, . . . , ci,n1
) ∈ C1

∀j ∈ [0, n1], (c1,j , c2,j, . . . , cn2,j) ∈ C2

Figure 6. A codeword of the product codeC1 ⊗ C2 is a matrix where each line is a codeword ofC1 and each column a

codeword ofC2
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is simply to use the Hamming distance as the appropriate basic cost function.

Let (xij) be a vector of{0, 1}N1×N2 . The min-sum algorithm associates to every coordinatexij a cost

function κij for every iteration of the algorithm. The cost functions aredefined on the set{0, 1}. The

initial cost functionκ0
ij is defined byκ0

ij(x) = 0 if the received symbol on coordinate(ij) is x and

κ0
ij(x) = 1 if the received symbol is1 − x.

A row iteration of the algorithm takes aninput cost functionκin
ij and produces anoutput cost function

κout
ij . The algorithm first computes, for every rowi and for every codewordc = (c1 . . . cN1

) of C1, the

sum

κi(c) =

N1
∑

j=1

κin
ij (cj)

which should be understood as the cost of putting codewordc on row i. The algorithm then computes,

for every i, j, κout
ij defined as the followingmin, over the set of codewords ofC1,

κout
ij (x) = min

c∈C1,cj=x
κi(c).

This last quantity should be thought of as the minimum cost ofputting the symbolx on coordinate(ij)

while satisfying the row constraint.

A column iteration of the algorithm is analogous to a row iteration, with simply the roles of the row

and column indexes reversed, and codeC2 replacing codeC1. Precisely we have

κj(c) =

N2
∑

i=1

κin
ij (ci) (2)

and

κout
ij (x) = min

c∈C2,ci=x
κj(c).

The algorithm alternates row and column iterations as illustrated by Fig. 7. After a given number of

iterations (or before, if we find a codeword) it stops, and thevalue of every symbolxij is put atxij = x

if κout
ij (x) < κout

ij (1 − x). If κout
ij (x) = κout

ij (1 − x) then the value ofxij stays undecided (or erased).

The following theorem is fairly straightforward and illustrates the power of min-sum decoding.

Theorem 2: If the number of errors is less thand1d2/2, then two iterations of min-sum decoding of

the product codeC1 ⊗ C2 recover the correct codeword. 2

Proof: (Sketch)

Without loss of generality, the correct codeword is the all-zero vector. Suppose that after the second

iteration the algorithm prefers1 to 0 in some position(i, j). This means that the cost (2)κj(c) of some
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Figure 7. A row iteration followed by a column one

non-zero codewordc of C2 is smaller than the costκj(0) of the zero column vector. Now the costκj(c)

of putting codewordc in columnj is equal to the Hamming distance between the received vector(xij)
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and a vectorxc that hasc in columnj and only rows belonging toC1. The costκj(0) of putting the zero

vector in columnj is equal to the Hamming distance between the received vector(xij) and a vectorx0

that has only zeros in columnj and only rows belonging toC1. Now sincec belongs toC2 it has weight

at leastd2, therefore the Hamming distance betweenxc andx0 is at leastd2d1, andxc has at leastd2

rows of weight at leastd1 and at distance at leastd1 from the corresponding rows ofx0. Therefore, if

the received vector(xij) is closer toxc than tox0, it must have weight at leastd1d2/2.

C. Experiments and Results

To validate the algorithm described in section IV-B, we now present the results of experiments on

the public biometric databases introduced in Sec. III-A, where we succeed in obtaining some correction

performances close to the theoretical limit.

We have experimented the algorithm on these databases with aparticular choice for the code. In fact,

the product code is constructed to fit with an array of 2048 bits, by using Reed-Muller codes [40], [41] of

order 1 which are known to have good weight distributions. A binary Reed-Muller code of order 1 inm

variables, abbreviated asRM(1,m), is an[2m,m + 1, 2m−1]2 code. We chose to combine theRM(1, 6)

with the RM(1, 5), leading to a product code of dimension 42 and codewords of length 64 × 32.

The overall size of the code could appear small from a cryptographic point of view, but following the

theoretical analysis of section II-C, it is difficult to expect much more while achieving a lowFRR on a

practical biometric database. Achievable error rates are drawn in Sec. III-B for each database we studied.

The density of errors and erasures in an IrisCode can be very high in some regions, such as areas

where eyelashes occlude the iris. The same goes for the fingerprint for which the captured area differs

significantly between two measures, leading to high-erasures regions. Therefore, we also added a randomly

chosen interleaver to break the biometric structure and increase the efficiency of the decoding algorithm.

• In so doing, we succeeded in obtaining for ICE aFRR of about5.62% for a very smallFAR (strictly

lower than10−5). This is very close to the error rates obtained in a classical matching configuration.

Note that in contrast Eq. (1) and Fig. 2(a) only give aFAR of about10−4 for a similar FRR. .

• In the CASIA case, the algorithm gave us aFRR of 6.65% and0 FA. A basic Hamming distance

classifier would not give zeroFA for a FRR less than20%.

• For fingerprint from FVC2000 dataset, it yielded aFRR of 2.73% and aFA rate of5.53%, which

is also a very good result for a binary encoding scheme.
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In all cases, the correction rates are relatively close to the theoretical results from Table I, and so

the algorithm succeeds in achieving near-optimal results.We also noted that, unexpectedly, decoding

performances are more accurate than using a basic Hamming score such as Eq. (1) with a fixed threshold

for differentiating between matching and non-matching pairs. This underlines the fact that even though

Hamming scores give decent results for binary matching, theassociated classifier is suboptimal and

can be overtaken by more elaborate techniques such as our decoding algorithm, or alternative matching

functions that have been put forward recently,e.g. [42].

D. Cautions and Limitations

Remember that Theorem 1 is deduced from an asymptotic behaviour, thus to obtain better results, we

probably need to increase the length of the templates. Moreover, the base assumption for the computation

of the thresholdθ is that errors and erasures occur independently and with thesame probability. This

assumption is far from true in practice, thus the theoretical limit on the error rates obtained by Corollary

1 should give slightly smaller False Reject Rates.

Moreover, even though we achieved near-limit results, we must not neglect some warnings for the use

of Secure Sketches as a way to secure biometrics templates.

First of all, as it was noted in [3], a biometric database thatwould be secured thanks to Secure Sketches

would not protect its users’ privacy against forward verification. In a few words, if someone gains access

to a biometric templateb0, it is easy for him to check whether it corresponds to a previously enrolled

individual or not. As the biometrics we focused on – iris and fingerprints – are hardly private and secret,

this is a flaw to seriously consider.

The error rates on secure sketches are more than just an artefact from the classical biometric behaviour:

they lead to a security gap if secure sketches are used as theywere presented in [2]. Indeed, to decode a

sketch(z, h(c)) stored in a database, an attacker can try to decode everyb′ ⊕ z for b′ a template from a

collection of biometric measures. This collection can be anindependent database the attacker collected

for his personal use, or any public or secret biometric database. Whenever he obtains some codeword

c′, he can compareh(c′) with h(c). If the comparison is successful, the attacker deducesc = c′, and

thus b = z ⊕ c. This event is likely to happen with probabilityFAR, which we can upperbound by the

estimation given by Corollary 1.

Recall that a cryptographic application is nowadays considered as secure enough if the best attack

known to break it takes about280 operations to be successful. If no more consolidation is done on the

Fuzzy Commitment Scheme, there exists a vulnerability thatgives access tob andc with about1/FAR =
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2− log
2
(FAR) operations,i.e. way less than what would be acceptable. We thus strongly discourage the use

of Secure Sketches without further protection, such as [5],[4], [31].

V. CONCLUSION

This article demonstrates the inherent limits of error-correction based matching. We derived explicit

upper bounds on the correction capacity of secure sketches,and we validated our theoretical results on

two public iris databases and one fingerprint database. We then showed how the two-dimensional iterative

min-sum decoding algorithm achieves correction performance close to the optimal decoding rate.

We believe that our techniques are also of great interest to other biometrics when the number of errors

to manage and correct is quite large.

This paper shows a numerical constraint on the usual performance-security trade-off of secure sketches.

Future work in this domain includes finding nearer-limit codes and decoding algorithms as well as

improving the reliability of biometrics templates.
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Theoretical and Practical Boundaries of Binary
Secure Sketches

J. Bringer, H. Chabanne, G. Cohen, B. Kindarji and G. Zémor

Abstract—Fuzzy commitment schemes, introduced as a link
between biometrics and cryptography, are a way of handling
biometric data matching as an error correction issue. We focus
here on finding the best error-correcting code with respect to a
given database of biometric data.

We propose a method that models discrepancies between
biometric measurements as an erasure and error channel, and
we estimate its capacity. We then show that two-dimensional
iterative min-sum decoding of properly chosen product codes
almost reaches the capacity of this channel. This leads to practical
fuzzy commitment schemes that are close to theoretical limits.
We test our techniques on public iris and fingerprint databases
and validate our findings.

Index Terms—Iris, fingerprint, biometrics, secure sketches,
boundaries, min-sum decoding.

EDICS: MOD-CHAN, WAT-THEO, BIO-PROT.

I. I NTRODUCTION

With the growing use of biometric recognition systems
comes the need to secure and protect the privacy associated
to biometric data. Juels and Wattenberg’s fuzzy commitment
scheme [2] uses Error Correcting Codes and was introduced
to handle differences occurring between two captures of bio-
metric data. Many papers give applications of this technique
for cryptographic purposes [3], [4], [5], [6], [7], [8], [9], [10],
[11], [2], [12], [13] but only a few investigate what are the
best codes for this decoding problem and how to find them.

Secure sketches have been experimented with several bio-
metrics. Applications to face recognition [14] and to finger-
prints [15] are proposed that make use of BCH codes and
reliable bit extraction. In a different way, Daugmanet al.
experimented with the use of a concatenated Hadamard –
Reed-Solomon code for iris recognition [16].

In this paper, we explain how to estimate the theoretical
performance limit of a secure sketch, applied to binary bio-
metric data, at a given code dimension. We then describe an
efficient iterative decoding algorithm on product codes, which
leads to near-optimal performance in our experiments on iris
and fingerprint recognition.

J. Bringer, H. Chabanne and B. Kindarji are with Sagem Sécurité, Osny,
France. This work was partially supported by the French ANR RNRT project
BACH.

G. Cohen and B. Kindarji are with TELECOM ParisTech, Département
Informatique et Réseaux, Paris, France.

G. Zémor is with Institut de Mathématiques de Bordeaux, Université de
Bordeaux I, Bordeaux, France.

A preliminary version of this work was presented at the IEEE conference
Biometrics: Transactions, Applications and Systems, 2007, cf. [1].

A. Biometric Matching and Errors Correction

1) Biometric Templates: The issue of the best codes we
can expect for biometric secure sketches is addressed here,
in the context of binary biometric features, as is the case
for iris recognition systems, see [17] – more details on iris
recognition are also available in [18]. So we focus our paper
on iris biometrics but it is also relevant to fingerprints.

Indeed, our techniques are applicable to recent methods
which involve transforming real-valued templates into discrete
ones so as to use secure sketches (cf. [14], [15]). A nice feature
of discretization is that Hamming distance becomes an efficient
tool.

Note that in our setting, all templates will be binary arrays,
even though our theoretical approach also applies to arrays
over any finite field.

2) Matching and Error Rates: Typically, a biometric-based
recognition scheme consists of two phases. First, in the enrol-
ment phase, a biometric templateb is measured from a user
U and then registered in a token or a database. The second
phase – the verification – captures a new biometric sampleb′

from U and compares it to the reference data via a matching
function. According to some underlying measureµ and some
recognition thresholdτ , b′ will be accepted as a biometric
measure ofU if µ(b, b′) ≤ τ , else rejected. Mainly two kinds
of errors are associated to this scheme: False Reject (FR),
when a matching user, i.e. a legitimate user, is rejected; False
Acceptance (FA), when a non-matching one, e.g. an impostor,
is accepted.

Note that, when the threshold increases, theFR’s rate
(FRR) decreases while theFA’s rate (FAR) grows, and
conversely.

3) Error Correcting Codes and Secure Sketches: Our meth-
ods will resort to information theory and coding. Some basic
definitions are given hereafter. For more background, notations
and classical results, the reader is referred to [19] and [20] in
these two fields respectively.

Let H be the collection of all binary N-tuples,H =
{0, 1}N = F

N
2 , whereF2 = {0, 1}.

• The⊕ operator is the canonical exclusive-or overF2:

a ⊕ b =

{

0 if a = b

1 if a 6= b

• The Hamming distance over H is the metric distance
defined as the number of binary differences between two
elements, i.e.

dH(u, v) =

N
∑

i=1

(ui ⊕ vi).
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Equipped with the Hamming distance,H is called the
Hamming space of lengthN .

• An Error Correcting Code (ECC) over H is a subset
C ⊂ H; elements ofC are calledcodewords.

• An (N, S, d) binary ECC is an error correcting code
C over H with S elements such that for all distinct
codewordsc1 and c2, dH(c1, c2) ≥ d. N is called the
length of C, S is the size ofC and d, the smallest
Hamming distance between two distinct codewords, is
the minimum distance.

• A binary linear error correcting codeC is a vector
subspace ofFN

2 . By linearity, the minimum distance
dmin of C is now the minimum weight among non-zero
codewords, where theweight of a vectorx is its distance
to the vector0. Whenk is the dimension of the subspace
C, C is denoted by[N, k, dmin]2. Here, thecorrection
capacity t of C is the radius of the largest Hamming
ball for which, for anyx ∈ F

N
2 , there is at most one

codeword in the ball of radiust centred onx. Clearly,
t = ⌊(dmin − 1)/2⌋.

Assuming that the templates live inH, the main idea of
fuzzy schemes, as introduced in [2], is to convert the matching
step into an error-correcting one. LetC be an(N, S, d) ECC
in H.

• During the enrolment phase, one storesz = c⊕ b, where
c is a random codeword inC,

• During the verification phase, one tries to correct the
corrupted codewordz⊕ b′ = c⊕ (b⊕ b′). Note that when
the Hamming distancedH(b, b′) is small, recoveringc
from c ⊕ (b ⊕ b′) is, in principle, possible.

The correction capacity ofC may thus be equal toτ if we
do not want to alter theFRR and theFAR of the system.
Unfortunately, the difference between two measures of one
biometric source can be very important, whereas the correction
capacity of a code is structurally constrained.

The fuzzy commitment scheme is then an error-tolerant
authentication scheme which follows the above method with
the use of a committed value. The main goal is to protect
the storage of biometric data involved in an authentication
biometric system. Leth be a cryptographic one-way function,
and let us storeh(c) in the enrolment phase, together with
z = c ⊕ b. The authentication will be a success if the
verification returns a codewordc′ such thath(c′) = h(c). An
illustration of the scheme is provided in Fig. 1.

This construction has been formalized in [11] under the
nameSecure Sketch. Informally, a secure sketch is made of
a probabilistic Sketching FunctionSS, which “hides” the
biometric template, and a deterministic Recovery Function
Rec which recovers the original template if not too many
errors have occurred.

Several constraints are studied in the literature, e.g. in [2],
[9], [11], to achieve the protection ofb while z is publicly
known. These works show that the codeC must be adapted
to the entropy of biometrics and it leads in fact to a trade-off
between correction capacity ofC and the security properties
of the scheme. Moreover, the sizeS of C should not be too
small, to preventz from revealing too much information about

the templateb: indeed the probability for an attacker to “guess”
b out of z = c ⊕ b, with the computation ofz ⊕ c̃ from the
choice of a random codeword̃c, is lower bounded by1/S.
This issue is also discussed in Sec. IV-D.

B. Organization of this Work

We first look for theoretical limits. In Sec. II, we formalize
our problem by transforming a database of biometric data into
a binary erasure-and-error channel. We then give a method
for finding an upper bound on the underlying error correction
capacity, and explain how to transpose this result into bounds
on FAR andFRR.

Section III introduces the biometric datasets – two for iris
biometric and one for fingerprints – we use in our experiments;
we then present the practical bounds deduced from our result.

In Sec. IV, we illustrate our method by describing a very ef-
ficient construction with iterative min-sum decoding of product
codes, and we provide parameters that put our performances
close to the theoretical limit for those databases.

Section V concludes.

II. T HEORETICAL OPTIMAL CORRECTION

A. Model

We consider two separate channels with a noise model based
on the differences between any two biometric templates.

• The first channel, called thematching channel, is gener-
ated by errorsb⊕ b′ whereb andb′ come from the same
userU .

• The second channel, thenon-matching channel, is gen-
erated by errors whereb and b′ come from different
biometric sources.

In a practical biometric system, the number of errors in the
matching channel is on average lower than in thenon-
matching channel.

Moreover, the templates are not restricted to a constant
length. Indeed, when a sensor captures biometric data, we
want to keep the maximum quantity of information but it
is rarely possible to capture the same amount of data twice
– for instance an iris may be occulted by eyelids – hence

Figure 1. The Fuzzy Commitment Scheme [2]
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the templates are of variable length. This variability can be
smoothed by forming a list of erasures, i.e. the list of coordi-
nates where they occur. More precisely, in coding theory, an
erasure in the received message is an unknown symbol at a
known location. We thus have an erasure-and-error decoding
problem on thematching channel. Simultaneously, to keep
the FAR low, we want a decoding success to be unlikely on
thenon-matching channel: to this end we impose bounds on
the correction capacity.

In the sequel, we deal with binary templates with at most
N bits and assume, for the theoretical analysis that follows,
that the probabilities of error and erasure on each bit are inde-
pendent, i.e. we work on a binary input memoryless channel.
Note that resorting to interleaving makes this hypothesis valid
for all practical purposes.

B. Taking into Account Errors and Erasures

As we take into account erasures into our biometric model,
we also need to slightly enhance Juels and Wattenberg’s
scheme. Let(b, m) and (b′, m′) be two biometric templates,
b, b′ denoting the known information, andm, m′ the list
of erasures, in the way IrisCodes are represented. We can
represent some(b, m) ∈ {0, 1}N×{0, 1}N by a ternary vector
b̃ ∈ {0, 1, ǫ}N , where the third symbolǫ represents an erasure.

The updatedxor rule on{0, 1, ǫ} is very similar to the usual
one: we definex⊕̃x′ to bex ⊕ x′ if x andx′ are bits, andǫ
if one of x, x′ is ǫ.

In order to protectc andb, the updated sketch will simply
be the sumz = c⊕̃b̃. The verification step will also use thẽ⊕
operation to combinez with b̃′ into z⊕̃b̃′. The decoding can
then proceed to correct incorrect bits and erasures.

C. Theoretical Limit

Our goal is to estimate the capacity, in the Shannon sense
[21], of the matching channel when we work with a code of
a given dimension. Namely, we want to know the maximum
number of errors and erasures between two biometric measures
that we can manage with secure sketches for this code.

Starting with a representative range of matching biometric
data, the theorem below gives an easy way to estimate the
lowest achievableFRR. The idea is to check whether the best
possible code with the best generic decoding algorithm, i.e.
a maximum-likelihood (ML ) decoding algorithm which sys-
tematically outputs the most likely codeword, would succeed
in correcting the errors.

Theorem 1: Let k ∈ N
∗, C be a binary code of lengthN

and size2k, andm a random received message, from a random
codeword ofC, of lengthN with wn errors andwe erasures.
Assume thatC is an optimal code with respect toN and k,
equipped with anML decoder.

If wn

N−we
> θ then m is only decodable with a negligible

probability for a largeN , where θ is such that the Ham-
ming sphere of radius(N − we)θ in F

N−we

2 , i.e. the set
{x ∈ F

N−we

2 , dH(x,0) = (N − we)θ}, contains2N−we−k

elements. 2

Proof: In the case of errors only (i.e. no erasures)
with error-ratep := wn/N , the canonical second theorem
of Shannon asserts that there are families of codes with
(transmission) rateR := k/N coming arbitrarily close to the
channel capacity κ(p), decodable with ML-decoding and a
vanishing (inN ) word error probabilityPe.

In this case,κ(p) = 1 − h(p), whereh(p) is the (binary)
entropy function (log’s are to the base 2):

h(x) = −x log x − (1 − x) log(1 − x).

Furthermore,Pe displays a threshold phenomenon: for any
rate arbitrarily close to, but above capacity and any familyof
codes,Pe tends to 1 whenN grows.

Equivalently, givenR, there exists an error-rate threshold of

p = h−1(1 − R),

h−1 being the inverse of the entropy function.
Back to the errors-and-erasures setting now. Our problem

is to decode to the codeword nearest to the received word on
the non-erased positions.

Thus we are now faced with a punctured code with length
N − we, size 2k, transmission rateR′ := k/(N − we) and
required to sustain an error-ratep′ := wn

N−we
.

By the previous discussion, if

p′ > θ := h−1(1 − R′),

NO code and NO decoding procedure exist with a non-
vanishing probability of success.

To conclude the proof, use the classical Stirling approxima-
tion for the size of a Hamming sphere of radiusαM in F

M
2

by 2h(α)M .

This result allows us to estimate the correcting capacity of
a biometric matching channel with noise and erasures under
the binary input memoryless channel hypothesis.

Indeed applying Theorem 1 to thematching channelgives
a lower-bound on theFRR achievable (i.e. thebest FRR),
whereas applying it to thenon-matching channel gives an
upper-bound of theFAR (say theworst FAR).

Corollary 1: For a given biometric authentication system
based on a binary secure sketch of lengthN and dimension
k, and a given biometric databaseB = {bi}, let the function

fN,k be fN,k(ỹ) = wn

N−we
− h−1

(

1 − k
N−we

)

, with wn the
number of1’s occuring in ỹ andwe the number ofǫ. Define
pG

N,k(x) (resp.pI
N,k(x)) as the probability density of results

of all genuine (resp. impostor) comparisonsfN,k(b̃⊕̃b̃′) for
b, b′ ∈ B.

Under these hypothesis, the following inequalities stand:
FRR ≥

∫ +∞

0
pG

N,k(t)dt andFAR ≤
∫ 0

−∞
pI

N,k(t)dt. 2

In other words, Corollary 1 can lead to a kind of theoretical
ROC curve which is not represented thanks to the classical
matching score distributions but with the dimension of the
underlying optimal code on the abscissa axis. Therefore, from
a given database and a given features extraction scheme –
dedicated to discrete representation, it is possible to induce an
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approximation of the error-rates one can expect from templates
of the same quality. In particular, it may help to evaluate the
efficiency of the extraction algorithm.

Practical implications of this theorem are illustrated in Sec.
III-B.

III. A PPLICATION TO BIOMETRIC DATA

To explain our approach, we now present the estimation
of these optimal performances on several public biometric
databases.

A. Our Setting: Data Sets and Templates

We describe here the sets on which we made experiments.
We first describe the iris pictures from ICE 2005 and CASIA
v1, then the FVC 2000 dataset from which we extracted binary
fingerprint templates.

For each dataset, we also represent the boundaries onFRR
andFAR.

1) IrisCodes and associated databases: We first made
different experiments on iris recognition, which is a very
natural target for binary error correcting codes. We chose two
public databases:

• The ICE 2005 database: [22], [23].
It contains 2953 images coming from 244 different eyes.
It is taken without modification but one slight correction:
the side of the eye 246260 has been switched from left
to right. Hence we keep 2953 images. In this dataset the
number of images for each eye is variable.

• The CASIA database: [24].
This is the first version of the Chinese Academy of
Science public iris database. It contains 756 pictures of
108 different eyes, with 7 pictures per eye.

A 256-byte (2048 bits) iris template, together with a 256-
byte mask, is computed from each iris image using the
algorithm reported in [17]; the mask filters out the unreliable
bits, i.e. stores the erasures positions of the iris template. The
resulting template is calledIrisCode.

Note that the iris template as computed by this algorithm
has a specific structure: [17] reports 249 degrees-of-freedom
within the 2048 bits composing the template. As described in
[25], [17], [26], the algorithm involves computation of several
Gabor filters on separate and local areas of the iris picture.
The picture is normalized onto its polar representation, then
divided into areas of regular size. The amplitude information is
discarded and the actual bits are the phase quantization of this
Gabor-domain representation of the iris image. The ordering
of the bits is directly linked to the localization of the area. In
practice, the iris code can be represented by an 2D bits-array.

The classical way to compare two iris codesI1, I2 with
masksM1, M2 is to compute the relative Hamming distance

||(I1 ⊕ I2) ∩ M1 ∩ M2||

||M1 ∩ M2||
(1)

for some rotations of the second template – to deal with the
iris orientation’s variation – and to keep the lowest score.

This formula gives the Hamming distance distribution given
on Fig. 2(a), where the scores of matching (intra-eyes) and
non-matching (inter-eyes) comparisons are represented. We
can see that there is an overlap between the two curves, and
that the number of errors to handle in the matching channel
is large. On iris matching-channel an additional difficulty
originates from the number of erasures which varies, for
instance for ICE, from 512 to 1977.

Although we know that all bits are not independent and
that they do not follow the same distribution (see e.g. [27]),
following (1) the typical matching score computation does not
use any internal correlations between bits of the iris codes. So
in this setting it is coherent to suppose the matching channel
to be a binary input memoryless channel with independent bit
errors and erasures. It will thus be possible to apply Theorem
1 in this context.

2) Fingerprint Encoding and Associated Database: Tradi-
tional fingerprint matching is made thanks to minutiae extrac-
tion [28] and comparisons of unordered setsE , E ′ of variable
length. Using the characteristic functionχE – as done in [11],
[29] – is a way to translate minutiae into a binary vector of
fixed length. The size corresponds to the number of values
the coordinates could take. From a set of minutiae, the idea
is to construct a vector with all coordinates equal zero except
those which are associated with the position of one minutiae.
The problem is that this representation is not well-suited for
binary secure sketches. Indeed, the metrics associated to the
set representation is the symmetric set difference, which does
not take into account local distortion due to elasticity of the
finger skin. Still, Secure Sketches are easier to construct for
the Hamming distance with aq-ary code.

To overcome this difficulty, Tuylset al. [15] describe a
smart algorithm, in the line of the previous works [30], [12],
to extract stable binary vectors from fingerprints and to apply
secure sketches on them. We based our experiments on such
a coding, more precisely on an improvement which has been
proposed in [31].

We describe a synthesis of the algorithm below. The main
idea is to deal with fingerprint patterns rather than minutiae.
It makes use of core-based alignment techniques and pattern
features linked to directional fields, thanks to the techniques
described in [32], [33], [34]. Moreover, to increase the stability
of the vectors, the binary fixed-length strings are generated
following some statistics by using several images per user at
the enrolment.

For these experiments, the FVC2000 [35] public database
(Db. 2) was tested. This data set is made of 800 pictures of
100 different fingers, 8 pictures per finger. The image size is
256 by 364 pixels.

Before the enrolment step, we first align the picture on
a fixed point, such as the core, if available. For that, we
preprocess the picture in order to extract the core point andan
evaluation of the vertical axis. We translate the picture, then
adjust it to take care of some possible rotation. In practice,
we did prealign the fingerprints to solely test the binarization
proposed.

These points are then executed:
1) Picture embedding: to take into account the alignment,
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we embed the256 × 364 pixels picture into a larger
picture of768×1092 to prevent any loss of information
after re-alignment.

2) Real-vector extraction: we compute several Gabor filters
on the resulting picture, of which we keep only the
magnitude. We also compute the directional field of
the fingerprint. The concatenation of both computations
gives us a real-vector of lengthL = 17952, of which
15968 positions are known to be null, due to the
embedding. These positions will be marked as erasures.

3) Binarization: the enrolment is done on several pictures
per user and several users; a statistical analysis gives
enough information to quantize the vectors by compar-
ing – coordinate after coordinate – the mean value of a
user to the mean value of the overall enrolment database.
For each user, this gives a vector from{0, 1, ǫ}L.

4) Reliable components selection: for each user, all enrol-
ment vectors are combined into a bit string of fixed
length N . This is done by selecting only theN most
stable coordinates from the different vectors. As it is
likely that real-life pictures never are pre-aligned, it
is likely that the null positions will not be the same
for each fingerprint capture; this enables to choose
N ≥ 17952−15968 = 1984. More details on component
selection are given in [31].

Hence we obtain binary templates, together with a mask,
of a fixed length. The verification step is quite similar; to get
the fresh biometric template, we use the positions selectedat
the enrolment step, and then compare them with the enrolled
vector.

In the sequel, we selected6 images per finger for the
enrolment phase, one 2048-bit template per enrolled finger
is obtained, possibly with some erasures, and the remaining
200 images are kept for verification. As the verification stepis
done on just one picture, the verification template will always
contain at least2048 − 1984 = 64 erasures; this is well
captured by the decoding algorithm. To increase the overall
number of comparisons, we iterate the tests for every choices
of 6 images. This gives us a genuine match count of 5600,
and an impostor match count of 19800.

Any other biometrics may be used to apply Theorem 1 as
soon as we succeed in getting a discrete representation of the
templates associated to a Hamming distance classifier.

B. Performances Estimation on these Databases

For each one of these databases we represent, in Figures
2, 3 and 4, the relative Hamming distance distribution thanks
to Eq. (1) for the matching and the non-matching channel
and the corresponding FRR and FAR curves. We have also
estimated the optimal performances given by Corollary 1 and
the results are drawn in Figures 2(c), 3(c) and 4(c). The curves
correspond to the best FRR achievable with respect to the
code’s dimension and the greatest possible FAR as a function
of this dimension.
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Figure 2. The ICE 2005 Dataset, IrisCodes

From the Hamming Distance distributions, it is obvious that,
while iris recognition performs well with the IrisCode al-
gorithm, the chosen quantization is not as well adapted to
fingerprint matching. Therefore, the different results we shall
have will significantly differ.

For the three datasets, we see that the ratio of errors to
handle to approach the Equal Error Rate –EER – is very
high, which is a problem for classical correcting codes as it
is explained in the next section.

We summed up some of the numerical limits onFAR and
FRR in table I, for dimensions likely to be chosen for practical
purposes. A general consequence is that the dimension of the
code can not be chosen too high in order to keep goodFR
rates.
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Code’s dimension Minimum FRR Maximum FAR
ICE CASIA FVC ICE CASIA FVC

42 2.49 · 10−2 3.15 · 10−2 0.59 · 10−2 8.14 · 10−4 1.13 · 10−4 17.88 · 10−2

64 3.76 · 10
−2

4.47 · 10
−2

1.26 · 10
−2

2.74 · 10
−4

0 10.32 · 10
−2

80 4.87 · 10
−2

5.77 · 10
−2

1.93 · 10
−2

2.57 · 10
−4

0 7.07 · 10
−2

128 9.10 · 10−2 9.18 · 10−2 5.87 · 10−2 2.41 · 10−4 0 2.67 · 10−2

Table I
THEORETICAL L IMITS ON STUDIED DATABASES
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Figure 3. The CASIA v1 Dataset, IrisCodes

 0 %

 1 %

 2 %

 3 %

 4 %

 5 %

 6 %

 7 %

 8 %

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

O
cc

ur
re

nc
e 

N
um

be
r

Relative Hamming Distance

Impostors
Genuine

(a) Hamming distance distributions

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.2  0.4  0.6  0.8  1

E
rr

or
 R

at
es

Threshold

FAR
FRR

(b) FAR and FRR via the Hamming distance (Eq. 1) using a
threshold

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 50 100 150 200 250

Li
m

it 
E

rr
or

 R
at

es

Code Dimension k=log2|C|

Maximum FAR
Minimum FRR

(c) Worst FAR and best FRR w.r.t. the code dimension

Figure 4. The FVC 2000 (Db. 2) Dataset, Binary Encoding
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Note that Theorem 1 gives us estimations of the theoretical
limits based on asymptotic analysis under a memoryless
channel hypothesis, i.e. independent bits. In principle, it could
be possible to expect more efficiency without resorting to bit
interleaving which in practice makes the channel memoryless.
However this would require highly intricate modelling of the
matching channel, and it seems unreasonable to expect that
the decoding problem would be within reach of present day
algorithms.

IV. A N EAR OPTIMAL CONSTRUCTION

A. Previous Works

1) Quantization and BCH codes: In known applications
of secure sketches to quantized biometrics, for instance [14],
[15], the error correcting codes are seen directly to act as a
Hamming distance classifier at a given threshold. Hence, the
correction capacity naturally corresponds to the threshold we
want to attain. To this end, the use of BCH codes is proposed:
the advantage is their existence for a wide class of parameters,
the main drawback is that the correction capacity is a hard
constraint for the dimension.

As an illustration, in [14] the quantization technique is
applied to face recognition on two databases, FERET database
[36] and one from Caltech [37]. A Hamming distance classifier
gives Equal Error Rates of2.5% and 0.25% respectively for
a threshold greater than0.32 with code length511. Unfor-
tunately to achieve this minimal distance, the BCH code has
dimension1. A BCH of dimension40 enables a threshold of
0.185 with a FRR greater than10% and1% respectively.

This phenomenon holds in [15] and for our first experiments
on the FVC2000 dataset. Following Fig. 4(b), we remark
that to achieve aFRR better than the EER, the threshold
is high: for example, for a rate around 2%, the threshold is
near 0.4 which is not realistic with non-trivial BCH codes.
To overcome this limitation, we propose in the sequel to use
more appropriate codes.

2) IrisCodes and Concatenated Codes: More efficient
codes are proposed in [16]. The secure sketch scheme is
applied with a concatenated error-correcting code combining
a Hadamard code and a Reed-Solomon code. More precisely,
the authors use a[32, kRS , 33 − kRS ]27 Reed-Solomon code
and a [64, 7, 32]2 Hadamard code: a codeword of 2048 bits
is in fact constructed as a set of 32 blocks of 64 bits where
each block is a codeword of the underlying Hadamard code.
As explained in [16], the Hadamard code is introduced to deal
with the background errors and the Reed-Solomon code to deal
with the bursts (e.g. caused by eyelashes, reflections,. . .).

Note that in this scheme, the model is not exactly the same
as ours, as the masks are not taken into account. Moreover,
the quality of the database used in [16] is better than the
public ones we worked with. The mean intra-eye Hamming
distance reported in the paper is 3.37% whereas this number
becomes 13.9% in the ICE database, which means that we
must have a bigger correcting capacity. The inter and intra-
eyes distributions reported by the authors is drawn on Fig. 5.

Even if [16] reports very good results on their experiments
with a 700-image database , the codes do not seem appropriate

Figure 5. Hamming distance distributions from [16]

in our case as the same parameters on the ICE database gave
us a too large rate ofFR (e.g.10% of FR with 0.80% of FA),
even for the smallest possible dimension of the Reed-Solomon
code whentRS = 15.

To sum up, with respect to the Hamming distance distribu-
tion in figures 2, 3, 4, we need to find correcting codes with
higher correction capacity. To achieve performances closer to
the theoretical estimation given in section III-B is also a great
motivation.

B. Description of the Two-Dimensional Iterative Min-Sum
Decoding Algorithm

We now describe a very efficient algorithm which will help
us to overcome the difficulties mentioned above.

For a linear code with a minimum distancedmin, we know
that an altered codeword withwn errors andwe erasures can
always be corrected, disregarding decoding complexity issues,
provided that2wn + we < dmin.

Classical algebraic decoding of BCH codes and concate-
nated Reed-Solomon codes achieve this bound, but not more.
This upper bound is however a conservative estimate: it
has been known since Shannon’s days that it is possible in
principle to correct many more errors and erasures, all the
way to the channel capacity. In practice,iterative decoding
algorithms are now known to be capable of achieving close-
to-capacity performance, for such code families as LDPC
or turbo codes. It is therefore natural to try and bring in
iterative decoding to improve on secure sketches that use
algebraic decoders. LDPC codes and turbo codes are however
not usually designed for such noisy channels as the type
we have to deal with: in particular, classical turbo codes
are known not to behave well under high noise. We have
therefore chosen to use product codes: this is because under
the high noise condition particular to biometrics, we will
be dealing with codes of small dimension so that we can
apply maximum-likelihood decoding (exhaustive search) tothe
constituent codes and alternate between both decoders withan
iterative process. This will yield a particularly efficientblend
of iterative decoding and exhaustive search.
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We now describe product codes together with the specific
iterative decoding algorithm we will use. A product code
C = C1 ⊗C2 is constructed from two codes:C1[N1, k1, d1]2
and C2[N2, k2, d2]2. The codewords ofC can be viewed as
matrices of sizeN2 × N1 whose rows are codewords ofC1

and columns are codewords ofC2, see Fig. 6.
This yields a [N1 × N2, k1 × k2, d1 × d2]2 code. When

k1 and k2 are small enough forC1 and C2 to be decoded
exhaustively a very efficient iterative decoding algorithmis
available, namely themin-sum decoding algorithm. Min-sum
decoding of LDPC codes was developed by Wiberg [38] as
a particular instance of message passing algorithms. In a
somewhat different setting it was also proposed by Tanner [39]
for decoding generalized LDPC (Tanner) codes. The variant
we will be using is close to Tanner’s algorithm and is adapted
to product codes. Min-sum is usually considered to perform
slightly worse than the more classical sum-product message
passing algorithm on the Gaussian, or binary-symmetric chan-
nels, but it is specially adapted to our case where knowledge
of the channel is poor, and the emphasis is simply to use the
Hamming distance as the appropriate basic cost function.

Let (xij) be a vector of{0, 1}N1×N2 . The min-sum algo-
rithm associates to every coordinatexij a cost functionκij for
every iteration of the algorithm. The cost functions are defined
on the set{0, 1}. The initial cost functionκ0

ij is defined by
κ0

ij(x) = 0 if the received symbol on coordinate(ij) is x and
κ0

ij(x) = 1 if the received symbol is1 − x.
A row iteration of the algorithm takes aninput cost function

κin
ij and produces anoutput cost functionκout

ij . The algorithm
first computes, for every rowi and for every codewordc =
(c1 . . . cN1

) of C1, the sum

κi(c) =

N1
∑

j=1

κin
ij (cj)

which should be understood as the cost of putting codeword
c on row i. The algorithm then computes, for everyi, j, κout

ij

defined as the followingmin, over the set of codewords ofC1,

κout
ij (x) = min

c∈C1,cj=x
κi(c).

This last quantity should be thought of as the minimum cost
of putting the symbolx on coordinate(ij) while satisfying
the row constraint.

c =

0

B

B

B

B

B

B

@

c1,1 . . . c1,j . . . c1,n1

...
ci,1 . . . ci,j . . . ci,n1

...
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1

C

C

C
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A

∀i ∈ [0, n2], (ci,1, ci,2, . . . , ci,n1
) ∈ C1

∀j ∈ [0, n1], (c1,j , c2,j , . . . , cn2,j) ∈ C2

Figure 6. A codeword of the product codeC1 ⊗C2 is a matrix where each
line is a codeword ofC1 and each column a codeword ofC2
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Figure 7. A row iteration followed by a column one

A column iteration of the algorithm is analogous to a row
iteration, with simply the roles of the row and column indexes
reversed, and codeC2 replacing codeC1. Precisely we have

κj(c) =

N2
∑

i=1

κin
ij (ci) (2)

and
κout

ij (x) = min
c∈C2,ci=x

κj(c).

The algorithm alternates row and column iterations as
illustrated by Fig. 7. After a given number of iterations (or
before, if we find a codeword) it stops, and the value of every
symbol xij is put at xij = x if κout

ij (x) < κout
ij (1 − x). If

κout
ij (x) = κout

ij (1 − x) then the value ofxij stays undecided
(or erased).

The following theorem is fairly straightforward and illus-
trates the power of min-sum decoding.

Theorem 2: If the number of errors is less thand1d2/2,
then two iterations of min-sum decoding of the product code
C1 ⊗ C2 recover the correct codeword. 2
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Proof: (Sketch)
Without loss of generality, the correct codeword is the

all-zero vector. Suppose that after the second iteration the
algorithm prefers1 to 0 in some position(i, j). This means
that the cost (2)κj(c) of some non-zero codewordc of C2 is
smaller than the costκj(0) of the zero column vector. Now
the costκj(c) of putting codewordc in columnj is equal to
the Hamming distance between the received vector(xij) and
a vectorxc that hasc in column j and only rows belonging
to C1. The costκj(0) of putting the zero vector in columnj
is equal to the Hamming distance between the received vector
(xij) and a vectorx0 that has only zeros in columnj and
only rows belonging toC1. Now sincec belongs toC2 it has
weight at leastd2, therefore the Hamming distance betweenxc

andx0 is at leastd2d1, andxc has at leastd2 rows of weight
at leastd1 and at distance at leastd1 from the corresponding
rows ofx0. Therefore, if the received vector(xij) is closer to
xc than tox0, it must have weight at leastd1d2/2.

C. Experiments and Results

To validate the algorithm described in section IV-B, we
now present the results of experiments on the public biometric
databases introduced in Sec. III-A, where we succeed in ob-
taining some correction performances close to the theoretical
limit.

We have experimented the algorithm on these databases
with a particular choice for the code. In fact, the product
code is constructed to fit with an array of 2048 bits, by using
Reed-Muller codes [40], [41] of order 1 which are known to
have good weight distributions. A binary Reed-Muller code
of order 1 in m variables, abbreviated asRM(1, m), is an
[2m, m+1, 2m−1]2 code. We chose to combine theRM(1, 6)
with the RM(1, 5), leading to a product code of dimension
42 and codewords of length64 × 32.

The overall size of the code could appear small from a
cryptographic point of view, but following the theoretical
analysis of section II-C, it is difficult to expect much more
while achieving a lowFRR on a practical biometric database.
Achievable error rates are drawn in Sec. III-B for each
database we studied.

The density of errors and erasures in an IrisCode can be
very high in some regions, such as areas where eyelashes
occlude the iris. The same goes for the fingerprint for which
the captured area differs significantly between two measures,
leading to high-erasures regions. Therefore, we also addeda
randomly chosen interleaver to break the biometric structure
and increase the efficiency of the decoding algorithm.

• In so doing, we succeeded in obtaining for ICE aFRR
of about5.62% for a very smallFAR (strictly lower than
10−5). This is very close to the error rates obtained in
a classical matching configuration. Note that in contrast
Eq. (1) and Fig. 2(a) only give aFAR of about10−4 for
a similarFRR. .

• In the CASIA case, the algorithm gave us aFRR of
6.65% and 0 FA. A basic Hamming distance classifier
would not give zeroFA for a FRR less than20%.

• For fingerprint from FVC2000 dataset, it yielded aFRR
of 2.73% and aFA rate of5.53%, which is also a very
good result for a binary encoding scheme.

In all cases, the correction rates are relatively close to
the theoretical results from Table I, and so the algorithm
succeeds in achieving near-optimal results. We also noted
that, unexpectedly, decoding performances are more accurate
than using a basic Hamming score such as Eq. (1) with a
fixed threshold for differentiating between matching and non-
matching pairs. This underlines the fact that even though
Hamming scores give decent results for binary matching, the
associated classifier is suboptimal and can be overtaken by
more elaborate techniques such as our decoding algorithm,
or alternative matching functions that have been put forward
recently,e.g. [42].

D. Cautions and Limitations

Remember that Theorem 1 is deduced from an asymptotic
behaviour, thus to obtain better results, we probably need
to increase the length of the templates. Moreover, the base
assumption for the computation of the thresholdθ is that
errors and erasures occur independently and with the same
probability. This assumption is far from true in practice, thus
the theoretical limit on the error rates obtained by Corollary
1 should give slightly smaller False Reject Rates.

Moreover, even though we achieved near-limit results, we
must not neglect some warnings for the use of Secure Sketches
as a way to secure biometrics templates.

First of all, as it was noted in [3], a biometric database
that would be secured thanks to Secure Sketches would not
protect its users’ privacy against forward verification. Ina few
words, if someone gains access to a biometric templateb0, it
is easy for him to check whether it corresponds to a previously
enrolled individual or not. As the biometrics we focused on –
iris and fingerprints – are hardly private and secret, this isa
flaw to seriously consider.

The error rates on secure sketches are more than just an
artefact from the classical biometric behaviour: they leadto a
security gap if secure sketches are used as they were presented
in [2]. Indeed, to decode a sketch(z, h(c)) stored in a database,
an attacker can try to decode everyb′⊕z for b′ a template from
a collection of biometric measures. This collection can be an
independent database the attacker collected for his personal
use, or any public or secret biometric database. Whenever he
obtains some codewordc′, he can compareh(c′) with h(c). If
the comparison is successful, the attacker deducesc = c′, and
thusb = z⊕ c. This event is likely to happen with probability
FAR, which we can upperbound by the estimation given by
Corollary 1.

Recall that a cryptographic application is nowadays con-
sidered as secure enough if the best attack known to break
it takes about280 operations to be successful. If no more
consolidation is done on the Fuzzy Commitment Scheme, there
exists a vulnerability that gives access tob and c with about
1/FAR = 2− log

2
(FAR) operations,i.e. way less than what

would be acceptable. We thus strongly discourage the use of
Secure Sketches without further protection, such as [5], [4],
[31].
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V. CONCLUSION

This article demonstrates the inherent limits of error-
correction based matching. We derived explicit upper bounds
on the correction capacity of secure sketches, and we val-
idated our theoretical results on two public iris databases
and one fingerprint database. We then showed how the two-
dimensional iterative min-sum decoding algorithm achieves
correction performance close to the optimal decoding rate.

We believe that our techniques are also of great interest to
other biometrics when the number of errors to manage and
correct is quite large.

This paper shows a numerical constraint on the usual
performance-security trade-off of secure sketches. Future work
in this domain includes finding nearer-limit codes and de-
coding algorithms as well as improving the reliability of
biometrics templates.
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