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Quantum Primitives for Se
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ksbyMinh-Dung DangB. S., Hanoi University of Te
hnology, 2001M. S., Institut de la Fran
ophonie pour l'Informatique, 2003
ABSTRACTIn this thesis, we are interested in the theory of un
onditional se
ure two-party 
om-putations. The primitives of Oblivious Transfer (OT) and Bit Commitment (BC) are funda-mental in the design of these 
ryptographi
 appli
ations. The prin
ipal obje
t of this thesisrelates to the theory of the design of un
onditional se
ure OT and BC.On one hand, my works are inspired from the framework of design of oblivious transferfrom noisy 
ommuni
ation 
hannels, pioneered by Cr�epeau, Morozov et al. [Cr�e97, CMW04℄.The prin
iple of this framework is to 
on
eive, from the noisy 
hannels, an intermediateerasure model, the Binary Symmetri
 Erasure Channel, whi
h is a variant of oblivious trans-fer. We 
ontributed to this framework by proposing a more general intermediate model,the Binary Symmetri
 Multi-Error-Rate Channel, whi
h also 
an be built from almost noisy
hannels. With this intermediate model, we 
an build a proto
ol of oblivious transfer fromthe noisy 
hannels more e�e
tively.In addition, inspired from the motivating works of building noisy 
hannel for oblivioustransfer fromWiesner's quantum 
onjugate 
oding (QCC) [BBC+93, Cr�e94℄, we expose a 
asestudy on emulating noisy model by a quantum nonorthogonal 
oding (QNOC) s
heme whi
huses two non-orthogonal pure state for en
oding two values of the 
lassi
al bit. We show thatQNOC is equivalent to QCC, and 
an only implement semi-honest oblivious transfer. Wealso show that the implementation of oblivious transfer from QNOC 
an be se
ure if we havea

ess to a se
ure bit 
ommitment proto
ol. An attempt to se
ure the implementation basedon a 
oin 
ipping proto
ol is shown to be impossible by atta
ks using quantum entanglement.On the other hand, this resear
h are inspired from the no-go theorems of Mayers, Loand Chau on the implementation of oblivious transfer and bit 
ommitment in the frameworkof quantum information [May97, LC97, Lo97℄. However the theorems has been being onlyinterpreted in a pure quantum two-party model, and 
aused 
ontroversial dis
ussions.We revise the quantum model for general two-party proto
ols 
on
erning 
lassi
al andquantum 
omputation and 
ommuni
ation. We state that in the general model, a 
lassi
al
hannel is inevitably ma
ros
opi
 and its de
oheren
e is so strong that quantum information isnot a

epted to be transfered on it. Thus, the quantummodel for two-party proto
ols be
omesthree-party, 
onsisted of three physi
al 
omponents: the ma
hine of Ali
e, the ma
hine ofiii



Bob, and the environment 
oupled with the ma
ros
opi
 
hannel whi
h should measure the
lassi
al messages.One should then re
onsider the no-go theorems in this general model. Indeed, withthe faithful interpretation of general proto
ols in this three-party model, we reaÆrm thatthese two-party proto
ols 
annot implement un
onditionally se
ure oblivious transfer and bit
ommitment.Inspired from this three-party model, penalized by the no-go theorems, we 
an gofurther to apply these negative results to the proto
ols using quantum trusted third-parties,named two-party ora
les, whi
h either do not store information entangled with informationin Ali
e's and Bob's ma
hines, or only make redundant 
opies of publi
 information of Ali
eand Bob. We see that this extended no-go result 
over Kent statement on 
oin-
ipping basedproto
ols [Ken99℄, as with the model of two-party ora
le, one 
an easily implement a proto
olof 
oin 
ipping.Moreover, this extension implies a 
orollary whi
h relates to the thermodynami
s:implementations of un
onditionally se
ure bit 
ommitment, oblivious transfer, and in generaltwo-party 
omputation, require the erasure of information and thus a dissipation of heat tothe external environment [Lan61℄.
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Chapter 1Introdu
tionCryptography was 
reated as a dis
ipline of hiding information in 
ommuni
ations. Classi
alCryptography has been being 
on
erned with the problem of se
uring two-party 
ommuni
a-tions from the inter
eption of mali
ious third-parties. For many years, this is all there hadbeen to 
ryptography. However, 
ryptography had been 
onsidered rather as an art than as
ien
e until Shannon's works shown how to prove the se
urity of 
iphersystems, based oninformation theory [Sha49℄. Shannon's se
urity is de�ned as the un
ertainty about the se-
ret information, measured by the entropy 
hara
terizing the randomness of the informationsour
e. This leads to the notion of information-theoreti
al se
urity or un
onditional se
urityas it does not depend on the 
omputational power of the adversary.An important mark for the beginning of Modern Cryptography was made by DiÆeand Hellman with their proposal of a key ex
hange proto
ol. In their arti
le, the authorsintrodu
ed the ideas of publi
-key systems and of provable se
urity based on 
omputational
omplexity, named 
omputational se
urity [DH76℄. The 
omputational se
urity is de�nedas it is redu
ible to a 
omputational problem 
ommonly adopted as hard : the adversary
an break the 
ryptosystem only if he has a 
omputer solving the underlying problem in areasonable time.This foundation of se
urity is related to unproven assumptions of intra
table problemson the underlying 
omputing model, i.e. Turing ma
hine. Thus, this foundation is notun
onditional and bears potential threats: (i) the assumptions of intra
table problems are notproven as one does not know whether eÆ
ient algorithms may exist for these problems; andfurthermore, (ii) there may exist advan
ed 
omputational models beyond Turing ma
hines.Nevertheless, with this new 
omputational 
omplexity foundation, Modern Cryptog-raphy has motivated a signi�
ant se
tion of resear
hers in the �eld of 
omputing s
ien
eand be
ome an important part of this widespreading domain. Besides providing 
ommuni-
ation se
urity, su
h as guaranteeing integrity and authenti
ity, as the 
entral goal, ModernCryptography has expanded to en
ompass many others more sophisti
ated and fas
inatingappli
ations of information priva
y.One of the major 
ontributions of Modern Cryptography has been the implementationof advan
ed se
urity of proto
ols between distrustful users. These proto
ols enable usersto ele
troni
ally solve many real world problems, play games, and a

omplish very general1



Chapter 1. Introdu
tionintriguing distributed tasks su
h as zero-knowledge proofs, voting proto
ols, and generallyse
ure multi-party 
omputations [Gol01, Gol04℄.In this thesis, we will fo
us on quantum primitive proto
ols for se
ure two-party
omputations whi
h is a sub
lass of general se
ure multi-party 
omputations, 
on
erningonly two distrustful users. This is a new interdis
iplinary �eld that bridges quantum physi
s,
omputer s
ien
e, and 
ryptography.1.1 Se
ure Two-party ComputationsIn a formal de�nition, a distributed n-party 
omputation is 
on
erned with an n-ary fun
-tionality F that maps n inputs (x1; :::; yn) to n outputs (y1; :::; yn) in a 
ontext where theinputs and outputs are distributed among n distrustful users in the distan
e. The se
urityis for users' lo
al inputs in the sense that what is learned by a user i(1 � i � n) during theproto
ol 
an be learned by that user from his lo
al input xi and his �nal output yi of the
omputation. This requirement is as though in an ideal setup where there exists an honestparty T , trusted by all users, who gathers all xi to lo
ally 
ompute (y1; :::; yn) = F (x1; :::; xn)and sends ba
k ea
h yi to ea
h user i [Gol04℄.Se
ure two-party 
omputations are in a sub
lass of se
ure multi-party 
omputations,
on
erning only two distrustful users, named Ali
e and Bob.1.1.1 Founding on Oblivious TransferOne 
ommon approa
h in engineering and hen
e in 
ryptography engineering is to sepa-rate appli
ations from ultimate implementations by layering and introdu
ing fundamentalintermediate primitives whi
h would be implemented with more freedom.The best that has been done so far is to prove theorems based on more gen-eral 
ryptographi
 assumptions, su
h as \trapdoor fun
tions exist," rather thanspe
i�
 assumptions, su
h as \fa
toring is hard." [Kil88℄This bearing leads to the dis
overy of oblivious transfer whi
h is the most importantprimitive for building general se
ure two-party 
omputations. Oblivious transfer be
omesthen one of the 
entral primitives and a foundation of Modern Cryptography.The �rst idea of oblivious transfer was issued in the 1970s by Wiesner, with a setting ofthe quantum 
hannel, named \quantum 
onjugate 
oding" or "multiplexing 
hannel" [Wie83℄.However, Wiesner did not go further for 
ryptographi
 appli
ations of his s
heme. Then, the�rst proposal of oblivious transfer, with its name, is to Rabin for implementing advan
ed
ryptographi
 tasks [Rab81℄. Rabin's version is a transmission s
heme where Ali
e sendsa bit to Bob who has only a probability 1=2 of re
eiving it, and Bob knows whether he hasre
eived the bit or nothing while Ali
e does not. Later, Even et al. proposed a s
heme similarto Wiesner's one, permitting Ali
e to send two messages to Bob who 
an 
hoose to read outonly one message while Ali
e is unaware of Bob's 
hoi
e, for building more general se
ure
omputation tasks [EGL85℄. This s
heme is named \one-out-of-two oblivious transfer," and
onsidered as the standard version of oblivious transfer. It was also shown that \one-out-of-two oblivious transfer" and Rabin's oblivious transfer are equivalent [Cr�e88℄.2



1.1. Se
ure Two-party Computations
Secure Two−party Computations

Oblivious Transfer

Bit Commitment

Zero−Knowledge Proofs Coin Flipping

Computational Primitives

Complexity TheoryFigure 1.1: Founding se
ure two-party 
omputations on oblivious transferIt was latter shown that oblivious transfer is suÆ
iently used as a building blo
k to
onstru
t se
ure two-party proto
ols for general fun
tionalities [Yao86, Kil88, Gol01, Gol04℄.As a sket
h: oblivious transfer 
an be used for building bit 
ommitment, 
oin 
ipping, zero-knowledge proofs; and the implementation of any se
ure two-party 
omputation 
an be madeupon these four primitives, 
f. Figure 1.1 [Gol04℄. Simply speaking:� Bit 
ommitment is a proto
ol for 
ommitting the eviden
e of a se
rete value: Ali
e hasto 
ommit the value of a se
ret bit to Bob su
h that Bob 
annot learn this value, butlater, when Ali
e is supposed to reveal the se
rete, she 
annot 
hange her mind.� Coin 
ipping is a proto
ol for two users in the distan
e generating a random bit su
has no one 
an 
ontrol the probability distribution of the out
ome.� Zero-knowledge proofs are proto
ols for a prover 
onvin
ing a veri�er about the validityof an assertion while not revealing any knowledge beyond the validity of the assertion.1.1.2 Removing the Intra
tability AssumptionsRe
all that Modern Cryptography is built on the foundation of 
omputational 
omplexitytheory where the se
urity is based on intra
tability assumptions. Oblivious transfer wasalso supposed to be built with 
onditional se
urity [Kil88, Gol04℄, and be
omes the 
utpoint on the links between two-party proto
ols and the 
omputational foundation of ModernCryptography, 
f. Figure 1.1. However, these assumptions were not proven, and the threatsto this foundation had been realized very early by 
ryptographers [Kil88℄, before an expli
itexample was made for famous RSA publi
-key system [Sho94℄.An emerging approa
h for removing the intra
tability assumptions is to seek forinformation-theoreti
al implementations of oblivious transfer. Unfortunately, we 
annot3



Chapter 1. Introdu
tionbreak down the symmetry in trivial noiseless 
ommuni
ation for making su
h asymmetri-
al transmission s
hemes [Kil88, Mor05℄. Nevertheless, we 
an build un
onditionally se
ureoblivious transfer with information-theoreti
al assumptions about transmission media. Theresear
hes are motivated in two dire
tions:1. One goes ba
k to Rabin's oblivious transfer whi
h is de�ned as an information-erasing
hannel: Ali
e sends a bit to Bob who re
eives the bit with probability 1/2 otherwise anerasure symbol [Rab81℄. With this 
ommuni
ation point of view, one extends the familyof oblivious transfers with variants of erasure 
hannels by weakening the 
ondition onparameters su
h that the standard OT is still redu
ible to these 
ousins [Cr�e88, CK88,Dan06℄.2. One looks for implementations of these weakened erasure 
hannels from real-life 
om-muni
ation models [CK88, BBCS92, Cr�e97, CMW04℄.
Secure Two−party Computations

Oblivious Transfer

Bit Commitment

Zero−Knowledge Proofs Coin Flipping

Computational Primitives

Complexity Theory Noisy Models

Information−theoretic Primitives

Figure 1.2: Seeking for information-theoreti
al realization of the assumptionsThe approa
h had mu
h interest in noisy models of 
ommuni
ation 
hannels for im-plementing the desired erasure 
hannels. A major result states that oblivious transfer 
anbe made from nontrivial noisy 
hannels: if Ali
e and Bob are 
onne
ted by a fair nontrivialnoisy 
hannel with known parameters then they 
an implement a se
ure oblivious transferproto
ol, ex
ept with arbitrarily small failure probability, 
f. Figure 1.2 [CMW04, Mor05℄.It's also shown that we 
an build oblivious transfer with unfair noisy 
hannels for bounded
ontrol of Ali
e and Bob on the parameters of the 
hannels [Mor05℄.We say that oblivious transfer and then se
ure two-party 
omputations 
an be builtfrom almost any noisy 
hannel with un
onditional se
urity, ex
ept with assumptions aboutnoisy model of the 
hannel itself. 4



1.2. Quantum Ere and No-go Results1.2 Quantum Ere and No-go ResultsBesides, the dis
overy of appli
ation of quantum me
hani
al 
on
epts to information pro
ess-ing has led to a new framework for both 
omputation and 
ommuni
ation [NC04℄.The 
omputational pro
esses have been 
reated as a mathemati
al abstra
t invention.For long time, though there has been rigorous resear
hes on 
omputational models for de-s
ribing what 
an be 
omputed, the 
omputational models remain abstra
t su
h as Turingma
hines, logi
al 
ir
uits, programming languages, et
. Nevertheless, all of the real pro
esseshave to obey ultimate physi
al rules of Nature. Su
h a �rst statement was made by Landauerin his prin
iple \the erasure of a bit of information would lead to the dissipation of an amountof kT ln 2 of heat," solving Maxwell's thermodynami
al demon puzzle [Lan61℄.For a resume, 
lassi
al information pro
essing is 
on
erned with applying transitionson dis
rete input information whi
h are normally en
oded by sequen
es of binary symbolsf0; 1g under Boolean Algebra. For the implementation, these two symbols are representedby the distinguishable states fj0i ; j1ig of any two-state physi
al system. The development ofele
troni
 devi
es with transistor te
hnology has made 
omputers more and more powerfuleveryday. We are making denser and denser a

urate devi
es with fewer 
ubi
 nanometersper unit. However, the physi
al implementation of this abstra
t 
omputing model realizes therelation with physi
al laws as soon as a
tual 
omputers are made with atomi
 s
ale devi
eswhere quantum me
hani
al laws are involved. In the atomi
 s
ale, the physi
al systems a
tquite di�erently, for instan
e a two-state system 
an be in a superposition state, i.e. it 
anbe in any state a j0i+ b j1i where a; b are 
omplex numbers and jaj2+ jbj2 = 1. Moreover, thetransitions between quantum states are governed by the laws of quantum theory with newfeatures apart the 
lassi
al ones [Gri04, Per02℄.Most of all, this new ere has made signi�
ant impa
ts to the �eld of Cryptology(Cryptography and Cryptanalysis). These impa
ts are twofolds. In one dire
tion, a new
omputing model with robust algorithms [Sho94, Gro96℄ requires serious re
onsideration ofthe 
omputational se
urity based on 
lassi
al 
omputing models [PQC06℄. In the other one,the un
ertainty prin
iple and the non-
loneability of quantum me
hani
al information givenew un
onditionally se
ure 
ryptographi
 tools su
h as random number generator [JAW+00℄,key ex
hange s
hemes [BB84, Eke91, Ben92℄.Motivated by this promoting framework, many resear
hes are dire
ted to the 
onstru
-tion of un
onditionally se
ure primitives for se
ure 
omputations without any assumptionex
ept the postulates of ultimate laws of quantum theory.The �rst proposal is for a 
oin 
ipping proto
ol whi
h leads nearly to a bit 
ommitmentproto
ol [BB84℄. However, this s
heme is found to be 
awed by an atta
k whi
h exploits thespe
ial property of quantum entanglement. Later, despite many attempts to implementquantum se
ure two-party 
omputations' primitives [BCJL93℄, one 
ould �nally �nd some
aws behind [May96℄.Furthermore, a more general atta
k was 
laimed, exploiting the entanglement in thetwo-party models, to 
aw all possible quantum bit 
ommitment proto
ols [May97, LC97℄. Infa
t, in the proofs of Mayers and Lo-Chau, the impossibility of quantum bit 
ommitment issimply derived from a property of the pure bipartite quantum states whi
h leads to the fa
tthat if a bit 
ommitment proto
ol is se
ure against Bob before the opening, then Ali
e 
an5
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?Figure 1.3: Seeking for quantum me
hani
s based realization of the assumptionsuse a lo
al transformation to 
hange her se
ret.A similar proof for the impossibility of quantum oblivious transfer proto
ols was laterdes
ribed in [Lo97℄. Be
ause of the similarities between the no-go theorems for quantumbit 
ommitment and quantum oblivious transfer proto
ols, one used to talk only about thetheorem of quantum bit 
ommitment.However, though the theorem is 
laimed to be valid for all general proto
ols usinghybrid quantum and 
lassi
al 
ommuni
ation and 
omputation [May97, LC97℄, the inter-pretation for the generality remains un
lear and 
auses resear
hers not to 
ease to either
hallenge it [Yue00, Yue04, Che03℄, or 
on�rm it [Bub01b, Che05, Che06℄, or reestablishit [dKSW06℄.The obsession to this 
laim of generalization is that it is not 
lear to see how theproofs 
over all possible proto
ols whi
h 
an 
onsist of1. 
lassi
al 
omputations with se
ret random variables,2. 
ommuni
ations via a 
lassi
al 
hannel that does not permit a pure two-party model.One 
ould say that the theorem on the impossibility of un
onditionally se
ure quantumbit 
ommitment [LC97, May97℄, and the theorem on the possibility of un
onditionally se
urequantum key distribution [LC99, SP00℄, are among the most interesting subje
ts in the�eld of quantum 
ryptography. Moreover, these impossibility and possibility 
ould lead tophilosophi
al thoughts about quantum theory [Bub01b, CBH03, BF05℄.A related problem is to 
onsider the relation between 
ryptographi
 primitives in thequantum model of two-party proto
ols. While it was 
lassi
ally shown that bit 
ommitmentimplements 
oin 
ipping and is implemented by oblivious transfer [Kil88℄, oblivious transfer
an be built from bit 
ommitment by transmitting quantum information [Cr�e94, Yao95℄.6



1.3. Contributions and OutlineNevertheless, 
oin 
ipping, whi
h is also banned from being implemented in the s
ope ofquantum me
hani
s by other no-go results [LC98, Kit02℄, was shown to be stri
tly weakerthan bit 
ommitment in the two-party quantum model [Ken99℄.1.3 Contributions and OutlineThis thesis is 
on
erned with and 
ontributes to the theory of un
onditionally se
ure two-party primitives, with either positive or negative results, parti
ularly in the framework ofquantum me
hani
al model for two-party proto
ols.In Chapter 4, we provide in detail our reviews on related works, mainly 
on
erningthe 
onstru
tions of oblivious transfer based on noisy 
hannels [CMW04, Mor05℄; the 
on-stru
tions of quantum variants based on Wiesner's quantum 
onjugate 
oding; and Mayers',Lo's and Chau's (MLC) no-go theorems on quantum primitives.In Chapter 5, we expose a development [Dan07℄ 
ontributing to the framework forthe 
onstru
tion of oblivious transfer based on noisy models. We propose to 
onsider more
losely the model of a binary symmetri
 multi-error-rate 
hannel whi
h is implemented fromdis
rete memoryless 
hannels by the same 
onstru
tion of Cr�epeau et al. [CMW04℄. With this
hannel, we 
an realize a general binary symmetri
 erasure 
hannel by providing an error-ratebarrier separating good from bad error rates. We present also an implementation of se
ureoblivious transfer from these extensions. Moreover, with su
h 
onsideration of multi-error-rate 
hannels, we have freedom to separate two sets of good and bad for an improvementof eÆ
ien
y in building oblivious transfer, based on the probability distribution of the errorrates. We expe
t also that the introdu
tion of the model of multi-error-rate 
hannel 
an helpto solve the open problem on building oblivious transfer from noisy 
hannels with 
ontinuousalphabets [Mor05℄. However, a quantitative analysis is left to further 
onsideration.In Chapter 6, we present a framework of building oblivious transfer variants based ona quantum 
oding s
heme using two nonorthogonal quantum pure states. We show that thisframework is equivalent to the existing one based on quantum 
onjugate 
oding [BBCS92,Cr�e94, Yao95℄. We highlight also the ne
essary of 
onsidering quantum 
oherent atta
ks inproto
ol redu
tion s
hemes using 
lassi
al 
ombination of subroutines. In many 
ases, weshould be 
areful with traditional te
hnique of 
lassi
al priva
y ampli�
ation and 
onsidergeneral atta
ks by quantum ma
hines.Finally, in Chapter 7, we present our re
onsideration of general models for two-partyproto
ols. We show that in reality, a general two-party proto
ol is 
on
erned with a ma
ro-s
opi
 
hannel and should not be interpreted as a quantum two-party system 
onsisting onlyof two users' ma
hines. We present then a faithful interpretation for the generality of Mayer'sand Lo's & Chau's no-go theorems in this general model whi
h is a quantum three-party quan-tum system, extended to in
lude an environment system 
oupled with the 
lassi
al 
hannel.With this interpretation, we show that the theorems 
an be extended to 
over some parti
u-lar ora
le based models. These parti
ular quantum ora
les do not 
hange the features of thethree-party model whi
h is penalized by the atta
ks of the theorems. We remark that theseora
les are indeed in a 
lass of ora
les whi
h do not make erasure of information. This leadsto a dis
ussion on the thermodynami
al feature of two-party primitives, based on Landauer's7



Chapter 1. Introdu
tionprin
iple [Lan61℄.For a preliminary on the ba
kgrounds of these works, the readers 
an refer to Chapter 2for basi
s of 
omputation theory, information theory and 
ryptography, and Chapter 3 forbasi
s of quantum information pro
essing.
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Chapter 2Probability, Computation, andCryptographyCryptography was an an
ient art of hiding information during 
ommuni
ations. Till nowa-days, it has been mu
h developed and 
on
erned to 
over a larger domain of appli
ationsin whi
h the primordial goal of 
ryptography is to 
onstru
t 
ryptosystems that will be ro-bust against mali
ious a
ting to make these s
hemes fail their pres
ribed fun
tionality. Inthis 
ooperative 
ontext, the 
ryptosystems are required to be designed in a

ordan
e withKer
kho�s' prin
iples [Ker83℄:\A 
ryptosystem should be se
ure even if everything about the system, ex
eptthe key, is publi
 knowledge."Forever, prote
ting the priva
y of se
ret information remains its main obje
t. Thequestion is \how mu
h an untrustful adversary 
an infer about the se
ret of the other(s)?" Ina more 
on
rete argument, \how se
ure is the se
ret against the adversary provided gainedsupplementary information?" With this argument, one bases the priva
y on two requirements:1. The se
ret is perfe
tly se
ure, i.e. the knowledge about the se
ret is not a�e
ted by theavailable information. In terms of information theory, the se
ret must be statisti
allyindependent from the supplementary information. This point of view is known asinformation based se
urity.2. The se
ret is se
ure if it is diÆ
ult to be 
omputed from the supplementary information,provided that 
omputational power of the adversary is well de�ned. This point ofview is known as 
omputational-based se
urity, developed by Modern Cryptography in
onne
tion with Computational Complexity Theory.9



Chapter 2. Probability, Computation, and Cryptography2.1 Probability Theory and Information-Theoreti
al based Se-
urity2.1.1 Probability TheoryProbability theory is a domain providing mathemati
al language for random phenomena thatlie beyond the limit of knowledge. A random phenomenon is asso
iated to a randomness thatsele
ts the out
ome from a set of possible values with assigned probabilities, representing thefrequen
y of ea
h possible value when the phenomenon is subje
t to a large number of trials.For the notation, a random variable X over a domain X takes any value xi 2 X withprobability Pr(X = xi) (or P (X = xi)). We denote by PX the probability distribution andPr(X = xi) 
an be repla
ed with PX(xi). By the normalization, Pxi2X PX(xi) = 1 fordis
rete X or Rxi2X PX(xi) = 1 for 
ontinuous X .The relation between two random variables is des
ribed by their dependen
y. Supposethat when variable X has taken value xi 2 X , a related variable Y will have a 
onditionalprobability distribution PY=X=xi where Y takes value yj in its domain Y with probabilityPY=X=xi(yj). In many 
ases it 
an be denoted as P (Y = yj=X = xi) or P (yj=xi). Y isindependent from X if and only if PY and PY=X=xi is identi
al for all xi 2 X .In the �eld of 
omputing and information theories, we are 
on
erned with binaryvariables and Bernoulli probability distribution:PX(1) = p; PX(0) = 1� p:The probabilities manifest themselves when the number of trials is suÆ
iently large,following the Laws of Large Numbers. An useful law of large numbers for binary distributionis:Theorem 2.1 (Rompel's Law of Large Numbers). Let X1; :::;Xn be Poisson trials, i.e.independent trials with 1 � i � n; P (Xi = 1) = pi and P (Xi = 0) = 1 � pi. Then, forX =Pni=1Xi, � = E(X) =Pni=1 pi, and any �=n > Æ > 0:P � jX � �jn > Æ� � 2e�nÆ2=2In 
ase of Bernoulli trials, i.e., when p1 = p2 = ::: = pn, this redu
es to the well-knownBernstein's law of large numbers:Theorem 2.2 (Bernstein's Law of Large Numbers). Let X1;X2; :::;Xn be independent ran-dom variables following a Bernoulli distribution with p as the probability parameter. Thenfor any Æ > 0 P �����Pni=1Xin � p���� � Æ� � 2e�nÆ2=22.1.2 Information TheoryIn the 40s, Shannon proposed a foundation for information theory in whi
h an informationsour
e is a statisti
al model for a physi
al entity that produ
es outputs 
alled messages in a10



2.1. Probability Theory and Information-Theoreti
al based Se
urityrandom manner with some a priory statisti
al parameters [Sha48, CT91℄. We are normally
on
erned with dis
rete sour
es whose messages take value in a set fx1; ::; xng with proba-bilities fpX(x1); ::; pX (xn)g. So, a message from this statisti
al sour
e is 
hara
terized by arandom variable X that takes value xi with probability pX(xi).We are usually working with dis
rete and memoryless 
hannels, i.e. the transmissionof one message over the 
hannel is statisti
ally independent from the previous ones. Basedon this probabilist model, the system is des
ribed by a dis
rete input symbols alphabet X =fx1; ::; xng, an output one Y = fy1; ::; ymg and a 
onditional probability distribution PY=Xwhere PY=X=xi(yj) spe
i�es the probability of re
eiving output yj when input xi has been sent.When the 
hannel is noiseless, the probability distribution is trivial, i.e. PY=X=xi(yi) = 1 withX � Y. We work frequently with binary symmetri
 
hannel (BSC) where X = Y = f0; 1gand the error probability is symmetri
 over X : pe = PY=X=0(1) = PY=X=1(0).Shannon introdu
ed also the �rst idea of mathemati
ally measuring the priva
y of ase
ret [Sha48℄. The main idea is to estimate the la
k of information about a se
ret (messageor key) from the en
rypted message, named 
iphertext. This is then rigorously treated bythe theory of information, based on probability theory and statisti
s.If a message, that must be assigned to some a priori known statisti
al sour
e, isunknown to a person, this person has no more knowledge about the message than the apriori statisti
al des
ription of its sour
e: a message X 
an be instant xi with a prioriprobability PX(xi). One measure of the knowledge 
an be expressed as the entropy of thesour
e, quantifying un
ertainty about, or the priva
y of, the message:H(X) = � nXi=1 PX(xi) logPX(xi): (2.1)H(X) = 0 when one of PX(xi) = 1, i.e. the person is a priori 
ertain about the o

urren
e xiof X. H(X) is maximal when all the pi are equal, i.e. H(X) = logn, and we say the messageis perfe
tly se
ret. For binary distribution fp; 1 � pg, the binary entropy is denoted ash(p) = �p log p� (1� p) log(1� p) = h(1� p): (2.2)Here, the probability distribution is merely subje
tive: if a message randomly 
hosenby a person A is kept se
ret from another person B then the probability distribution assignedto the message by A is trivial while the one by B is a 
at distribution.If another eviden
e y related to the message X is given to the 
onsidered person,this 
hanges the subje
tive probability distribution assigned to X by the person, knownas 
onditional probability distribution: X takes value xi with probability PX=y(xi). Theun
ertainty about X is nowH(X=y) = � nXi=1 PX=y(xi) logPX=y(xi):If the eviden
e is also given as a random variable Y that takes value yj 2 fy1; :::; ymg withprobability pY (yj), then the un
ertainty about X of the person is averaged:H(X=Y ) = � mXj=1 PY (yj)H(X=yj) = � nXi=1 mXj=1 PX;Y (xi; yj) logPX=Y=yj (xi) (2.3)11



Chapter 2. Probability, Computation, and CryptographyThis quantity is used for the remaining un
ertainty, named equivo
ation by Shannon, aboutX knowing Y . It's 
onvenient that knowing Y always redu
es the un
ertainty about X:H(X=Y ) � H(X);and I(X;Y ) = H(X)�H(X=Y ) is the mutual information between X and Y that quanti�esthe average amount of information about X revealed by Y .Then, the priva
y of the se
ret message X of a 
ryptosystem, that sends some messageY to an adversary, against that adversary is 
hara
terized by the amount of informationabout X revealed by Y , i.e. I(X;Y ). The system is perfe
tly se
ure only if I(X;Y ) = 0 orH(X=Y ) = H(X), i.e. X;Y are pairwise independent. Be
ause by de�nition, this se
urityis asso
iated to the randomness and independent of adversaries' 
omputational power, it isnamed un
onditional se
urity.The measure of entropy was then developed by Renyi with the de�nition of Renyientropy of order a, where a � 0.Ra(X) = 11� a log nXi=1(PX(xi))a! :When a approa
hes 1, Renyi entropy 
onverges to Shannon entropy:R1(X) = H(X):Spe
ially, Renyi entropy of order 2 is usually used by for priva
y ampli�
ation based onuniversal2 hashing [CW77, BBCM95℄:R2(X) = � log nXi=1(PX (xi))2! :2.1.3 One-Time-PadBy this measure, a simple 
ipher named Vernam's 
ipher has been proven to be perfe
tlyse
ure. Suppose we have a se
ret one-bit message des
ribed by random binary variable X:PX(1) = p = 1� PX(0). We 
hoose then a se
ret one-bit key K with PK(0) = PK(1) = 1=2,and ex
lusive-or X and K to produ
e 
iphertext Y = X �K:PY (1) = PX(0)pK(1) + PX(1)PK(0) = 1=2 = 1� PY (0):The 
onditional probabilities arePY=X=b(0) = PK(b) = 1=2 = 1� PY=X=b(1);PY=K=b(0) = PX(b) = 1� PY=K=b(1);PX=Y=0(b) = PX(b) = PX=Y =1(b);PK=Y=0(b) = PX(b) = PK=Y=1(b)12



2.1. Probability Theory and Information-Theoreti
al based Se
urityfor b 2 f0; 1g. Thus, the 
onditional un
ertainties of the message and the key, given the
iphertext, are H(X=Y ) = h(p) = H(X); H(K=Y ) = h(p) � H(K):Therefore, the message is perfe
tly se
ure while the key is not. The solution is that we useonly one key on
e for one message, i.e. for a sequen
e of n bits, we use a key of n randombits. This perfe
t 
ipher is so known as one-time-pad, and it is shown that any perfe
t 
iphermust be as 
onsuming in se
ret key as one-time-pad: H(K) � H(X) [Sha49, Sti95℄. Thus,un
onditional se
urity and Vernam's 
ipher is hard to be realized for 
ommuni
ating betweentwo users be
ause it requires a shared se
ret key of the same length as the message. Neverthe-less, one-time-pad is eÆ
iently used in the 
onstru
tion of redu
tions between 
ryptographi
primitives [Gol01, Gol04℄.2.1.4 Error Corre
tion and Priva
y Ampli�
ationRe
all that the gap between knowledges of legitimate user and untrustful user upon a se
retis 
ru
ial for 
ryptosystems. In the 
omputational point of view, this gap is expressed as the
omputational easiness-diÆ
ulty in one-way fun
tions [Gol01℄. In the information-theoreti
alpoint of view, this gap is measured by entropies: the situations are interesting when thelegitimate user has less un
ertainty about the se
ret than the mali
ious one. In su
h 
ases,there exist mathemati
al tools for enhan
ing in one way the knowledge of the legitimate userand in the other way the un
ertainty of the mali
ious user: error 
orre
tion and priva
yampli�
ation:1. while legitimate user, who has some advantageous knowledge, 
an produ
e the 
orre
tse
ret by error 
orre
ting 
odes [MS77℄,2. the remaining partial knowledge, after error 
orre
ting phase, of mali
ious user 
an beredu
ed to be negligible by priva
y ampli�
ation [BBCM95℄.These two te
hniques are used in exploiting noisy models for un
onditionally se
ure appli
a-tions su
h as key agreement [Wyn75, BBB+92, Mau93℄, oblivious transfer [CMW04, Mor05℄.We 
ite here two important related asymptoti
 results for error 
orre
tion and priva
y am-pli�
ation [BBCM95, Mor05℄:Theorem 2.3. For any ' > 0 there exists � > 1 su
h that for all 
 < 1 � h(') andsuÆ
iently large N there exists a linear 
ode with the length N and a number of 
he
k bitsat most (1� 
)N , failing to 
orre
t 'N uniformly distributed errors only with probability atmost �(
�1+h('))N .Theorem 2.4. Let V be a uniformly distributed n-bit string and let W be generated byindependently sending ea
h bit of V over a '-BSC. Let, furthermore, syn : f0; 1gn ! f0; 1grbe a linear fun
tion and G be a random variable 
orresponding to the uniformly random 
hoi
eof a fun
tion from a universal 
lass of hash fun
tions2 f0; 1gn ! f0; 1gl. Then,I(G(W ); (G;V = v; syn(W ))) � 2�(R2(W jV=v)�l�r)= ln 2for all suÆ
iently large n. R2(W jV = v) > (h(') � 
)n for any �xed 
 > 0 and suÆ
ientlylarge n ex
ept probability exponentially small in n.13



Chapter 2. Probability, Computation, and Cryptography2.2 Computation Theory and Computational Complexity basedSe
urityThe theory of 
omputation is 
on
erned with the automation of 
omputing by algorithmi
pro
esses of des
ribing and transforming information. The fundamental question is \what
an be (eÆ
iently) automated?"In 1936, Turing proposed the Turing ma
hine (TM) as a model of 
omputation. It isan abstra
t ma
hine for deterministi
ally manipulating symbols, equipped with a state thatis in any of a �nite set of states, an in�nite tape of 
ells that hold symbols from a �nitealphabets, and tape-head that s
ans the tape. In ea
h step, following a �nite set of rules
alled program, the ma
hine reads the symbol in the positioned 
ell, 
hanges the state andmoves the tape-head to left or right. The ma
hine has a spe
ial state for whi
h the ma
hinehalts, known as halting state. For some input string, whi
h is the initial 
ontent of the tape,the ma
hine 
an terminate with halting state after a �nite number of steps or run forever. Ifthe ma
hine halts, the 
ontent of the tape is the output 
omputed by the ma
hine.In terms of languages, the set of input strings on whi
h a Turing ma
hine halts isnamed \language re
ognizable by" that ma
hine.Although its simpli
ity, one believes the assumption that this ma
hine is the model forany possible 
lassi
al 
omputation, known as Turing thesis. The modern theory of 
omputa-tion is indeed the theory of what 
an be 
omputed by Turing ma
hine [HMU01℄. Moreover,the major obje
t of 
omputing theory is 
on
erned with the eÆ
ien
y of Turing ma
hinesfor 
omputational problems. Beside many easy problems whi
h 
an be eÆ
iently 
omputedby TM (in polynomial time), there are many diÆ
ult problems believed to not be eÆ
iently
omputed (in polynomial time), named as intra
table problems. Two important 
lasses ofeasy and believably diÆ
ult problems are:� P: 
lass of languages that 
an be re
ognizable by a polynomial-time Turing ma
hine.� NP : 
lass of languages L that is asso
iated with a witness language Y and a verifyinglanguage RL � L� Y :1. 8x 2 L;9y 2 Y su
h as (x; y) 2 RL,2. if x 62 L then 8y 2 Y; (x; y) 62 RL,3. RL is re
ognizable in polynomial-time in measure of length of x.NP has an important sub
lass known as NP-
omplete with the property that any NPproblem p1 
an be redu
ible to a NP-
omplete problem p2 in polynomial-time. Then afamous theorem of Cook proved that the boolean satis�ability problem is NP-
omplete([HMU01℄, Theorem 10.9).Then, modern 
ryptography is related to the theory of 
omputational 
omplexitywhere the se
urity of se
rets is based on assumptions of diÆ
ult problems. For instan
e, these
urity of the famous RSA publi
-key system is based on the diÆ
ulty of fa
toring largeintegers. 14



2.3. Se
ure Two-party Computations' PrimitivesEvidently, the se
urity based on hard problems is 
onditional and dependently relatedto the unproven assumptions of their diÆ
ulty, e.g. P 6= NP or fa
toring large integers ishard, as well as the 
omputing model, i.e. Turing ma
hine is the model for any possible 
om-putation. This 
onditional se
urity 
an be threatened by potential advan
es in algorithmi
or 
omputing models. In fa
t, new 
on
epts of quantum 
omputing permit to fa
tor integersin polynomial time [Sho94℄, breaking RSA system, or speed up exhaustive sear
hes of witnessfor NP problems [Gro96℄.Nevertheless, founded on 
omputational 
omplexity, modern 
ryptography has madedrasti
 advan
es where the embra
ed gap between easy and diÆ
ult problems leads to asym-metri
al 
ryptosystems of fruitful appli
ations [Gol04℄.2.3 Se
ure Two-party Computations' Primitives2.3.1 The Essential PrimitivesOblivious TransferThe �rst proposal of oblivious transfer to be used in 
onstru
tion of 
ryptographi
 appli
a-tions was made by Rabin [Rab81℄, in whi
h the sender sends a bit and the re
eiver has onlyprobability 1=2 for re
eiving it while the sender does not know what has happened. Later,another version was proposed by Even et al. [EGL85℄, known as 
hosen one-out-of-two obliv-ious transfer, and preferred as a standard oblivious transfer. In this standard version, thesender sends two bits and the re
eiver se
retly sele
ts to re
eive one and only one of sender'sbits. Moreover, the two versions are equivalent [Cr�e88℄.In terms of two-party fun
tionality, oblivious transfer is de�ned as an one-sided map-ping f0; 1g2 � f0; 1g 7! ; � f0; 1g where the sender introdu
es two bits (b0; b1), the re
eiverintrodu
es a 
hoi
e bit 
, and at the end the re
eiver re
eives b0 � (1 � 
) + b1 � 
 while thesender learned nothing.Bit CommitmentSimply speaking, bit 
ommitment is a proto
ol where Ali
e 
ommits the eviden
e of the valueof a se
ret bit to Bob who 
annot dis
over Ali
e's se
ret, but then if Ali
e is supposed toreveal the se
ret, she must prove its value and Bob 
an dete
t if Ali
e 
heats.In terms of information-theoreti
al se
urity, the proto
ol must hold� The 
on
ealment: Bob gains no information about Ali
e's bit with the 
ommittedinformation.� The binding: At the opening phase, if Ali
e 
hanges the se
ret value, Bob 
an su

ess-fully dete
t it.It has been stated that a bit 
ommitment proto
ol 
an be built, provided an oblivioustransfer proto
ol [Cr�e89℄:Proto
ol 2.1. OT ! BC(b) 15



Chapter 2. Probability, Computation, and Cryptography� Commitment phase:1. Ali
e prepares a sequen
e of n random bits x1; :::; xn and generates another se-quen
e y1; :::; yn su
h that 8i(1 � i � n); xi � yi = b. Bob prepares a sequen
e ofrandom bits 
1; :::; 
n.2. For 1 � i, Ali
e and Bob exe
ute OT (xi; yi)(
i), and Bob re
eives then a sequen
ez1; :::; zn.� Opening phase:1. Ali
e reveals b and sends all of (x1; :::; xn), (y1; :::; yn) to Bob.2. Bob a

epts if and only if 81 � i � n; zi = xi(1� 
i) + yi
i and xi � yi = b.We see that the proto
ol is 
on
ealing be
ause for ea
h pair xi; yi Bob 
an re
eive onlyone bit, and 
annot determine the x-or of them. Besides, the binding 
an be assumed ex
eptwith probability exponentially small in n.Coin FlippingInformally, 
oin 
ipping is a proto
ol for Ali
e and Bob agree on a truly random bit.If they are present at the same lo
ation, it is trivial for one user to toss a fair 
oinwith the observation of the other. However, if the two are far apart the one from the otherthen they 
annot realize the above s
heme as the tossing user 
an lie about the out
ome. Inthat 
ase, it is not trival to generate a random bit of whi
h the probability distribution isindependent from the intentions of Ali
e and Bob with noiseless 
ommuni
ation 
hannels.However, if we have a bit 
ommitment proto
ol, we 
an easily implement a proto
olfor Ali
e and Bob 
ipping a random bit:Proto
ol 2.2. BC ! CF1. Ali
e prepares a random bit a and sends the 
ommitment 
(a) to Bob.2. Bob prepares a random bit b and sends it to Ali
e.3. Ali
e opens the 
ommitment a with 
(a) and Bob veri�es. Then ea
h user 
omputesr = a� b.Moreover, mu
h of interests in se
ure 
omputation are 
on
erned with the situation inwhi
h one user has to generate random bits to be kept se
ret but the other one would ratherhas 
ommitment of the values [Gol04℄. Simply, we 
an slightly modify the above s
heme tohave su
h an augmented 
oin 
ipping proto
ol:Proto
ol 2.3. BC ! augmented-CF1. Ali
e prepares a random bit a and sends the 
ommitment 
(a) to Bob.2. Bob prepares a random bit b and sends to Ali
e who 
omputes r = a� b.16



2.3. Se
ure Two-party Computations' PrimitivesZero-Knowledge ProofsThe zero-knowledge proofs were introdu
ed into the �eld of 
ryptography with mu
h interest.The �rst servi
e is for proving assertions, 
ommonly as \instan
e x belongs to language L"in terms of 
omputing theory, without dis
losing any additional knowledge than the validityof the assertions. The se
ond is that, its formulation gave the idea of a simulator ma
hinewhi
h is widely used as standard formalism for proving proto
ol se
urity.An intera
tive proof system 
onsists of two intera
tive ma
hines, P for prover andV for veri�er, where the prover want to 
onvin
e the veri�er the validity of an assertion
ommonly expressed as \a string x belongs to a language L." The two ma
hines have a
ommon input x and �nally V produ
es 1 if x 2 L and 0 otherwise. The introdu
tionof probabilist 
omputation would weaken this 
ondition with some negligible probability oferror. An intera
tive proof system (P; V ) for language L is zero-knowledge if for every veri�erV � , there is a simulatorMV � su
h that for x 2 L, the distribution of output byMV � on inputx is indistinguishable from the distribution of output by V � intera
ting with P on input x.An important result states that [Gol01℄:Theorem 2.5. Given bit 
ommitment proto
ol, zero-knowledge proofs exist for all languagesin NP The idea for this statement is a 
onstru
tion for the 3 � SAT language, known asNP-
omplete, and then any other NP language 
an be redu
ed to that, 
f. Se
tion 2.2.2.3.2 Redu
tionsSe
ure Two-Party ComputationsWe present here a sket
h of the de
omposition of se
ure two-party 
omputations.Any fun
tionality 
an be de
omposed into a logi
al 
ir
uits 
onsisting of AND andXOR gates, provided inputs and random tapes whi
h is distributed to Ali
e and Bob. Onebuild then an oblivious evaluation proto
ol that repla
es ea
h gate by an augmented gatethat works on the shares instead of the plaintext-data: given the plaintext a then the sharesare aA hold by Ali
e and aB by Bob su
h that aA�aB = a, where � denotes the ex
lusive-or(x-or) operator. In fa
t, we 
an implement evaluation gates with help of a 1-to-4 oblivioustransfer proto
ol, 
f. Proto
ols 2.4, 2.5.Proto
ol 2.4. Gate XOR: (aA; bA); (aB ; bB)! (a� b)A; (a� b)B.� Ali
e 
omputes (a� b)A = aA � bA� Bob 
omputes (a� b)B = aB � bBthen (a� b)A � (a� b)B = aA � bA � aB � bB = (a� b).Proto
ol 2.5. Gate AND: (aA; bA); (aB ; bB)! (a:b)A; (a:b)B17



Chapter 2. Probability, Computation, and Cryptography� Ali
e prepares a random bit r, and a table of 4 membersi; j 2 f0; 1g;Xij = (aA � i):(bA � j)� r� Ali
e sends Bob the table via 1-to-4 OT where Bob 
an 
hoose to re
eive only one ofthe members. Bob enters aBbB as his 
hoi
e to re
eive XaBbB .� Ali
e holds r as (a:b)A and Bob hold XaBbB as (a:b)B .then (a:b)A � (a:b)B = r � ((aA � aB):(bA � bB)� r) = a:b.Suppose that Ali
e and Bob want to 
ompute a fun
tion f(x; y), and Ali
e holds inputx, Bob holds input y. Initially, Ali
e generates a random key xA as a share; 
omputes andsends the other share xB = x � xA to Bob. Bob does the same for the shares yA; yB of y.Then, with the evaluation proto
ol based on augmented gates for fun
tion f , Ali
e and Bob
ompute with the shares and then get the shares of the �nal results of f . They are requiredonly a round for 
ombining the �nal shares to obtain the de
rypted results.However, the above 
onstru
tion is se
ure only if Ali
e and Bob are semi-honest i.e.ea
h user respe
ts the proto
ol but wants to learn the other's se
ret. In reality, the users
an be mali
ious with unlimited behaviours, for instan
e they generate unfair random tapes,substitute the intermediate results. Thus, it's more diÆ
ult to 
onstru
t a se
ure proto
olin su
h a mali
ious model. It was showed that with help of 
ommitment, 
oin 
ipping andzero-knowledge proto
ols, we 
an for
e mali
ious user to a
t as semi-honest [Gol04℄. Thegeneral 
ompilation for the mali
ious model 
an be sket
h as follows:1. Ea
h user makes the 
ommitment of the inputs to the other.2. Ea
h user makes random tapes with augmented 
oin 
ipping proto
ol giving the 
om-mitment to the other.3. The users realize the oblivious evaluation proto
ol, but at ea
h 
ommuni
ation step,the sender has to prove the 
orre
tness of the output message by zero-knowledge proofs.It's be
ause the 
orre
tness of the next message, whi
h is deterministi
ally produ
edfrom 
ommitted data and the previous in
oming messages, is a NP statement.Besides, given oblivious transfer, we 
an build bit 
ommitment, and then 
oin 
ippingand zero-knowledge proofs for NP languages. In summary, the redu
tion s
hemes show thatthe se
ure 
omputation of any two-party fun
tionality 
an be built from oblivious transfersolely. In other words, se
ure two-party 
omputations 
an be founded on oblivious transfer,
f. Figure 1.1.Proof of Se
urityIn many 
ir
umstan
es, we expe
t building new, more interesting proto
ols upon existingproto
ols served as subroutines. This te
hnique is named redu
tion or proto
ol redu
tion.In a formal way, the subroutines are treated as ideal ora
les that implement thespe
i�ed fun
tionalities of the subroutines, and the 
omposed proto
ol invokes these ora
les18



2.3. Se
ure Two-party Computations' Primitiveswhen ne
essary. Ideally, we would expe
t that the 
omposite proto
ol is itself implementedby an ideal ora
le for the spe
i�ed fun
tionality.In the �eld of 
ryptography, we have to 
onsider the se
urity for the new proto
ol byguaranteeing that what a mali
ious party 
an do with the 
omposed proto
ol is the sameas, or indistinguishable from, what this party 
an do when invoking the ideal ora
le for theproto
ol. The standard approa
h for arguing the se
urity of the 
omposed proto
ols whi
hare built upon the subroutines leads to the zero-knowledge 
riteria. It's required that for themali
ious user, there exists a simulator whi
h produ
es by itself indistinguishable output fromwhat produ
ed by the ma
hine intera
ting with the other honest users [Cr�e90, Gol01, Gol04℄.In this thesis, we are only 
on
erned with two-party proto
ols where the se
urity is
onsidered when a party tries to 
heat the other being honest. We will also simplify our proofsof se
urity without appealing to this beautiful but 
ompli
ated framework using simulatorma
hines. In ea
h 
on
rete proto
ol, we will expli
itly 
onsider the information revealed tothe mali
ious adversary.

19
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Chapter 3Quantum Information Pro
essingThe 
omputing or information pro
essing ma
hinery has obtained the ever greater su

essin 20th 
entury, issuing the ele
troni
 implementation of Von Neumann model whi
h realizesthe Universal Turing Ma
hine, an abstra
t 
omputing ma
hine stated to be able to 
omputewhat is naturally regarded as 
omputable.In a way, any abstra
t 
omputing ma
hine musts be abstra
ted from me
hani
allye�e
tive steps whi
h 
an be automated, that is what \ma
hine" means. The most familiarabstra
tion is to Turing with Turing's thesis for his 
omputing ma
hine:Thesis 3.1 (Turing's thesis). LCMs [logi
al 
omputing ma
hines: Turing's expression forTuring ma
hines℄ 
an do anything that 
ould be des
ribed as \rule of thumb" or \purelyme
hani
al". (Turing 1948: 7.)
Laws of motion

Final state

Initial stateInput

Output

Computing machine (abstract) Physical system (model)

Rules

Figure 3.1: Conne
tion between Information Pro
essing and Physi
al MotionInversely, any abstra
t 
omputing ma
hine may be 
on
eivable within a physi
alframework. Any real information pro
essing system relies for its implementation upon sys-tems whose behavior is 
ompletely des
ribed by the laws of physi
s. The 
onne
tion between21



Chapter 3. Quantum Information Pro
essingwhat 
an be done me
hani
ally and an abstra
t 
omputing model 
an be sket
hed as inFigure 3.1 [Deu℄.In this dissertation, we will be 
on
erned with quantum information, in whi
h the fun-damental models for information pro
essing are based upon the laws of quantum me
hani
s.In the view of Figure 3.1, information are introdu
ed as quantum states of physi
al systems,observed by observable values from quantum measurement, and pro
essing rules are realizedby quantum me
hani
al laws of motion.This 
hapter introdu
es some fundamental features of quantum information, empha-sizing quantum me
hani
al 
on
epts of physi
al state, laws of motion and measurement.3.1 Quantum State Spa
e, Evolution and MeasurementWe have �rst to be familiar to a mathemati
al language provided by quantum theory for de-s
ribing physi
al systems of quantum s
ale of whi
h the behavior is probabilisti
 but manifestsinterferen
e of waves. Remark that the notion \physi
al system" is rather an abstra
tion, maynot be a real entity. For instan
e, in a desired experien
e, the physi
al system is the polariza-tion of a photon, not the photon itself; or in another experien
e, where we 
onsider \position-momentum" of a photon, the physi
al system is now reported to \position-momentum." Onemay admit an inverse de�nition as\A quantum system is whatever admits a 
losed dynami
al des
ription withinquantum theory" [Per02℄.Then, with the physi
al system in test,\a state is 
hara
terized by the probabilities of the various out
omes of every
on
eivable test" [Per02℄.For unifying the interferen
e of probabilities of out
omes in quantum tests, quantum theoryhas formulated ea
h quantum state as a wave fun
tion whi
h 
hanges over time a

ording toS
hrodinger's equation, and belongs to a state spa
e whi
h is a Hilbert spa
e. Although onemay be aware of the fa
t that\quantum phenomena do not o

ur in a Hilbert spa
e, they o

ur in a labora-tory" [Per02℄,it suÆ
es for getting the hang of quantum language within its mathemati
al formulation inHilbert spa
es, provided quantum postulates. A Hilbert spa
e is de�ned as1. It is a ve
tor spa
e H over 
omplex number �eld C .2. It is assigned an inner produ
t fun
tion (:; :) from H �H to C that maps an orderedpair of ve
tors ('; ) to a 
omplex number with properties:(a) ( ; ) � 0 and the equality happens i�.  = 0.(b) ('; a: 1 + b: 2) = a('; 1) + b('; 2) for a; b 2 C .22



3.1. Quantum State Spa
e, Evolution and Measurement(
) ('; ) = ( ;')� where the asterisk (�) symbolizes for the 
omplex 
onjugate.In the area of quantum theory, one is familiar to Dira
's ket notations:� j i stands for ve
tor  .� h'j i stands for inner produ
t ('; ).� j i h'j stands for proje
tion operator whi
h maps ve
tor jvi to h'j vi : j i.For des
ribing the state of a quantum physi
al system, we adopt the �rst postulate ofquantum theory language:Postulate 3.1 (Quantum pure state). Any isolated physi
al system is asso
iated a state spa
ewhi
h is a Hilbert spa
e. The system is 
ompletely des
ribed by a unit ve
tor in the asso
iatedstate spa
e, i.e. its norm k k =ph j i = 1. This state ve
tor en
odes the probabilities forthe out
omes of all possible measurements applied to the system.Then, the state of a quantum system evolves in time following quantum theory ofmotion:Postulate 3.2 (Unitary evolution). The evolution of a 
losed system is des
ribed by a unitaryoperator on the state spa
e of the system. That is, given the initial state j i and the evolutionoperator U , UU y = U yU = I, the �nal state is�� 0� = U j i :For human knowledge about a quantum system, one needs to measure the systemwith observables whi
h intera
t with the quantum system, amplify the magnitudes and showthe results as ma
ros
opi
 signals. After the measurement, the state of the quantum systemis modi�ed a

ording to the result. So, the ultimate measurement is an observable whi
his a 
olle
tion of proje
tions 
orresponding to possible real out
omes, known as proje
tivemeasurement:Postulate 3.3 (Proje
tive measurement). Every physi
al observable is represented by a Her-mitian operator on the state spa
e of the system being observed, i.e. the observable operator
an be diagonalizable with real eigenvalues. It has a spe
tral de
ompositionM =Xi aiPi;where the eigenvalues ai 2 R represent the out
ome signals, and Pi is the proje
tor onto theeigen-spa
e of M with eigenvalue ai. We see that Pi = Pj jviji hvijj for fjvijigj being the
olle
tion of 
orresponding eigenve
tors of ai.When measuring the state j i, the probability of getting out
ome ai isp(ai) = h jPi j iand given that out
ome ai o

urs, the state of the measured system is proje
ted by Pi, or
ollapsed to: Pi j ipp(ai) :23



Chapter 3. Quantum Information Pro
essingNormally, rather than giving an observable in Hermitian formalism, one spe
i�es a
olle
tion of 
omplete orthogonal proje
tion operators fPig, Pi Pi = I; PiPj = ÆijPi for animpli
it observable M =Pi iPi. Parti
ularly, one frequently uses the term \measure in thebasis fjviig", where fjviig forms an orthonormal basis of the state spa
e, for the observablegiven by the proje
tion operator list fPi = jvii hvijg. Then, any state ve
tor is an unit(or normalized) ve
tor jvi = Pi 
i jvii ; 
i 2 C . The measurement of the system in statejvi \in the basis" will give out
ome i with probability pi = j
ij2, Pi j
ij2 = 1, and if theout
ome ai o

urs then the system is in state jvii. 
i are known as probability amplitudes,but furthermore they inherit the property of 
omplex numbers and manifest the interferen
ewithin the linear algebra over Hilbert spa
es.3.2 Statisti
al Ensembles, Density MatrixIn quantum world, probabilities are not always manifested as 
omplex amplitudes. Sometime,we are given a system in a mixed state whi
h is des
ribed by a statisti
al ensemble, i.e. thesystem is in one of states fj iigi with respe
tive probability pi. This ensemble is normallydenoted as fpi; j iig. We are then provided the density operator language as a 
onvenientmathemati
al des
ription for this kind of quantum state. Within this language, the abovestatisti
al ensemble is represented by a matrix� =Xi pi j ii h ij with 8i; pi � 0 and Xi pi = 1:When the system is measured with an observable M =Pj ajPj , a

ording to Postulate 3.3,ea
h member state j ii (with probability pi) gives out
ome aj with probabilityp(aj=i) = h ijPj j iiand the 
orresponding output state isj iji = Pj j iipp(aj=i) :Thus globally, out
ome aj o

urs with probabilityp(aj) =Xi pip(aj=i) =Xi pi h ijPj j ii =Xi pitr(Pj j ii h ij) = tr(Pj�)where tr(:) is the tra
e operator, and the 
orresponding output state of the system is anensemble fp(i=aj); j ijigi with p(i=aj) = pip(aj=i)p(aj) . Then, by the density operator language,the matrix representation of this ensemble is�0j =Xi p(i=aj) j iji h ijj =Xi piPj j ii h ijp(aj) = Pj�tr(Pj�) :Evidently, when the system is in a pure state j i then its matrix representation is j i h j,and more general, we 
an show that if a system is prepared to be in states with matrix24



3.2. Statisti
al Ensembles, Density Matrixrepresentation �i with respe
tive probability pi then the matrix representation of the globalstate is � =Pi pi�i.In general, every matrix representation � adopted as above satis�es the followingproperties, and de�ned as density matrix or density operatorDe�nition 3.1 (Density operator). A matrix (operator) � is a density matrix (density op-erator) if and only if1. � is a positive matrix (operator), i.e. 8 j i ; h j � j i � 0, and2. � has tra
e equal to one - tr(�) = 1.Within this new language, Postulates 3.1 3.3 and 3.2 are generalized asPostulate 3.4. The state of any isolated system is 
ompletely des
ribed by a density operatoron its state spa
e. If the system is in state �i with probability pi then the density operator forthis probabilist state is � =Pi pi�i.Postulate 3.5. The evolution of a 
losed system is des
ribed by a unitary operator. Giventhe system in starting state � and a unitary operator U , the �nal state is then�0 = U�U yPostulate 3.6. When measuring a system in state � with an observable whi
h is a Hermitianoperator M =P aiPi;Pi Pi = I, out
ome ai o

urs with probabilityp(ai) = tr(Pi�)and the a

ording output state of the system is�i = Pi�Pitr(Pi�)An important property is that a density operator 
an represent in�nitely many mixedstates, i.e. statisti
al ensembles. For instan
e, the density operator� = I=2 = �12 00 12�
an be seen as a mixture f1=2; jiig; i 2 f0; 1g or a mixture f1=2; jjig; i 2 f+;�g wherej+i = (j0i + j1i)=p2, j�i = (j0i � j1i)=p2. We 
an see later that a density operatorrepresents also the state of a 
omponent of a 
omposite system whi
h is in an entangledstate. No matter for whi
h mixture a density operator stands, i.e. how it is prepared, itsbehavior is 
onsistent to the laws of Postulates 3.5 and 3.6.For the 
lassi�
ation of ensembles whi
h give a density matrix, Hughston et al. showedthatTheorem 3.1 ([HJW93℄'s theorem). Two ensembles fpi; j iig and fqj ; j'jig generate thesame density matrix if and only ifppi j ii =Xj uijpqj j'ji ;where (uij) is an unitary matrix with indexes i; j while padding some ve
tors 0 to the set ofsmaller number ve
tors. 25



Chapter 3. Quantum Information Pro
essing3.3 Composite Systems, Entanglement and Partial Tra
eIn many 
ases, we are 
on
erned with physi
al systems whi
h are made up of distin
t 
om-ponent systems. For des
ribing the state of 
omposite systems, quantum theory appeals totensor produ
t and issues the following postulate:Postulate 3.7. The state spa
e of a 
omposite system is the tensor produ
t, denoted 
, ofthe state spa
es of its 
omponent systems. If we prepare a 
omposite system by preparingea
h 
omponent, indexed by i = 1; :::; n, in states j ii then the joint state of the global systemis j 1i 
 :::
 j ni. Or, in the density operator language, if ea
h 
omponent i is prepared instate �i then the 
omposite system is in state �1 
 :::
 �n.Spe
i�
ally, if fjiigm is a basis of state spa
e H1 and fjjign is a basis of state spa
eH2, then fjii 
 jjigm�n forms a basis of m�n-dimension joint state spa
e H1
H2. In mostof 
ases, we 
an use jiji for joint state jii 
 jji, but not for joint state spa
e.A major di�eren
e of this quantum joint state spa
e from 
lassi
al 
ounterpart is thejoint superposition in the global spa
e, i.e. given a basis fji1i 
 jj2i 
 :::gm�n�::: (or shortlyfjij:::igm�n�:::), any superposition�11::: j11:::i + :::+ �mn::: jmn:::i ; �ij::: 2 Cis also a possible state of the 
omposite system. In prin
iple, we 
an measure the 
ompositesystem by an observable on the joint state spa
e. For instan
e, withM =Pij::: aij::: jij:::i hij:::j,aij::: 2 R, then out
ome aij::: o

urs with probability j�ij j2 and the 
orresponding 
ollapsedstate is jij:::i. Moreover, we 
an separate the 
omponents of the 
omposite system, andmeasure any of the 
omponents lo
ally. For instan
e, we measure only the �rst 
omponentswith the observableM =Pi bi jii hij. The initial state of the global system may be rewrittenas Pi jii 
 (Pj:::�ij::: jj:::i). Then the lo
al measurement will proje
t the �rst 
omponentto a 
ollapsed state jii with probability pi = Pj::: j�ij:::j2, and the global system is in the
orresponding state jii 
 (Pj::: �ij::: jj:::i)=ppi.Thus, this leads to a parti
ular 
ase that some superposition joint statePij::: �ij::: jij:::i
annot be prepared by separately preparing ea
h 
omponent in 
ertain states j i and joiningthem as a tensor produ
t j 1i 
 j 2i 
 :::. With su
h quantum states, there is a 
orrelationbetween the probability distributions of lo
al measurements on separated 
omponents. Forinstan
e, we prepare a two-
omponent system in a statej 0i 
 j'0i+ j 1i 
 j'1ip2 ; for h 0j 1i = 0; h'0j'1iand separate the two 
omponents arbitrary long apart. Now we are supposed to measurethe �rst 
omponent with an observable 
onsisting of j 0i h 0j ; j 1i h 1j, then if the �rstout
ome o

urs then the global system is 
ollapsed to j 0i 
 j'0i, i.e. if we measure these
ond 
omponent with an observable 
onsisting of j'0i h'0j ; j'1i h'1j then we re
eive the �rstout
ome with 
ertainty. Here, the a
tion of the measurement on the �rst 
omponent instantlyhas e�e
t on the distant se
ond 
omponent, that makes the most �
titious 
hara
teristi
of quantum theory. This phenomenon is referred to as quantum entanglement, dis
overed26



3.4. General Measurement and POVMand 
riti
ized by [EPR35℄, but 
on�rmed by the experien
ed violation of variants of Bell'sinequality [Bel64, TBZG98℄.For des
ribing parts of a 
omposite system, one may seek for how to 
orre
tly des
ribeobservable quantities of these parts. The uniquely appropriate formulation found for that isthe partial tra
e operator, ([NC04℄ - Box 2.6), de�ned as�A = trB(j 1iA 
 j'1iB h 2jA 
 h'2jB) = (h'2j'1i) j 1i h 2j :Then, in the language of density operator, if a 
omposite system in produ
t state �AB = �1
�2then the redu
ed tra
e for system A is �A = trB(�1 
 �2) = �1. This density operator isexa
tly density operator state of 
omponent A. In 
ase of entangled state, for instan
ej�+iAB = j0A0Bi+ j1A1Bip2then the partial tra
e for A is �A = j0i h0j =2 + j1i h1j =2. Although this density operator islike the state of a mixture, for instan
e f1=2; jiig; i 2 f0; 1g, the state of A may not exist asits state is not assigned to any real mixture. Nevertheless, the density operator �A des
ribesa

urately the behavior of A a

ording to Postulates 3.5, 3.6.3.4 General Measurement and POVMBy 
oupling a system with another an
illa system, doing unitary dynami
s and proje
tivemeasurement on the an
illa, we 
an realized any general measurement ([NC04℄ - pages 94-95):Postulate 3.8. Quantum measurements are des
ribed by a 
olle
tion of measurement oper-ators fMmg a
ting on the state spa
e of the system being measured. This 
olle
tion satis�esthe 
ompleteness: PmM ymMm = I, the identity operator.If the state of the system before the measurement is j i then out
ome m o

urs withprobability p(m) = h jM ymMm j iand after the measurement, when m o

urs, the system is in stateMm j ip(m)Or in the density operator language, if the initial state is � thenp(m) = tr(M ymMm�)and the 
orresponding �nal state is �m = M ym�Mmpp(m)27



Chapter 3. Quantum Information Pro
essingWhen we are only interested in the measurement stati
s, not the post-measurementstate of the system being measured, it suÆ
es to abbreviate the measurement operator asPositive Operator-Valued (POV)Em =M ymMm; for Mm being general measurement operators:The measurement of a system in state j i will output m with probabilitypm = h jEm j i :Any POV measurement (POVM) is then de�ned as a 
olle
tion of positive operators fEmg,i.e. 8m; j i ; h jEm j i � 0, su
h that PmEm = I. This formalism is simpler than the onefor general measurements and suÆ
ient to determine the probabilities of di�erent out
omesin a general measurement.3.5 Non-Cloning and DistinguishabilityIn many 
ir
umstan
es, it may happen that we have to identify or guess the state of a singlequantum system, prepared to be in a state from a set f�bg assigned some a priori probabilitiesfpbg, i.e. the statisti
al ensemble fpb; �bg. We will see that the distinguishability of quantumstates is a fundamental measure for the se
urity of quantum 
ryptographi
 proto
ols.A 
ru
ial property of quantum system is that we 
annot reliably 
opy an arbitraryquantum state [WZ82℄. Indeed, suppose we have su
h a 
opying ma
hine, whi
h 
ouples thesystem that we want to 
opy its state j i with an equivalent system initialized in a 
ertainstate jei, and does a quantum dynami
s over the 
omposite system to have the se
ond systemin the desired state j i. In the quantum language, this dynami
s is a unitary operator overthe produ
t state spa
e: U(j i 
 jei) = j i 
 j i :Thus, for any two di�erent states j 1i ; j 1i:U(j 1i 
 jei) = j 1i 
 j 1i ; U(j 2i 
 jei) = j 2i 
 j 2i :And, by the linearity of quantum operators, if we introdu
e a state j 0i = a j 1i+ b j 2i thenthe output state isU((a j 1i+ b j 2i)
 jei) = U(a j 1i 
 jei+ b j 2i 
 jei) = a j 1i 
 j 1i+ b j 2i 
 j 2iwhi
h is not the desired result j 0i
j 0i that the 
opying a
tion would have made. Moreover,as the unitary operator preserves the inner produ
t:hej 
 h 1j 2i 
 jei = hej 
 h 1jU yU j 2i 
 jei) hej 
 h 1j 2i 
 jei = h 1j 
 h 1j 2i 
 j 2i, h 1j 2i = h 1j 2i228



3.5. Non-Cloning and Distinguishabilitythat 
an only happen when either h 1j 2i = 0 or h 1j 2i = 1, i.e. j 1i ; j 2i are eitherorthogonal or identi
al. Thus, we 
annot 
opy quantum states belonging to a set of non-orthogonal states.Evidently, if we are given a system in a state belonging to a set or orthogonal statesfjviig, we 
an measure it with a proje
tive measurement fPi = jvii hvijg and prepare a newsystem in state jvii if out
ome i o

urs.Conforming to that, two non-orthogonal states 
annot be reliably distinguished byany measurement. One see that, for distinguishing quantum states, one must use a 
ertainmeasurement, whi
h is in general a POVM fEig, and one may distinguish them based on theprobability distribution of out
omes for ea
h prepared state [Fu
95℄.Suppose that we are provided a quantum system in one of two states �1; �2 with whi
hthe POVM outputs i with respe
tive probabilities pi; qi. The distinguishability 
an be thenmeasured as the distan
e between probability distributions pi; qi. A 
onvenient measure ofdistan
e is the �delity F (pi; qi) =Xi ppiqi:We see that when F (pi; qi) = 1, the two distributions are identi
al, i.e. we 
annot distinguishthem, and when F (pi; qi) = 0 then for all out
omes i one 
an reliably distinguish pi; qi be
ausethere must be either pi = 0 or qi = 0. And so, the distinguishability of two quantum states
an be measured by the �delity of the best measurement, i.e.F (�1; �2) = minfEigF (pi; qi)It is shown that [NC04℄ F (�1; �2) = trq�1=21 �2�1=21The �rst proposal for quantum �delity, due to Jozsa, was the square of the above 
ommonlyused �delity, i.e. (trq�1=21 �2�1=21 )2 [Joz94℄.Therefore, provided two non orthogonal states j 1i ; j 2i, F (j 1i h 1j ; j 2i h 2j) =j h 1j 2i j > 0, we 
annot reliably distinguish them.Another usual measure of distinguishability is the mutual information that the out-
omes of the measurement reveal about the initial state. For a POVM fEbg, the probabilityof out
ome b is p(b) =Xi pitr(�iEb) = tr(�Eb)where � =Pi pi�i is the density matrix for the ensemble fpi; �ig. Besides, the probability ofout
ome b when the system is prepared in state �i ispi(b) = tr(�iEb):Then the mutual information [Sha48, CT91℄ with the POVM fEbg isI(i; b) = H(b)�Xi piH(b=i)29



Chapter 3. Quantum Information Pro
essingwhere H(b) = Pb p(b) log p(b) and H(b=i) = Pb pi(b) log pi(b). This amount of a

essibleinformation is bounded by Holevo's inequality:I(i; b) � S(�)�Xi piS(�i)where S(:) is Von Neumann entropy fun
tion of a density matrix:S(�) = �tr(� log �): (3.1)Conformally, the mutual information is suÆ
ient to reveal the identity of the prepared state,I(i; b) = H(i), when the subspa
es expanding �i's eigenstates are pairwise orthogonal.3.6 Bipartite State: S
hmidt De
omposition and Puri�
ationThis dissertation is primarily 
on
erned with 
omposite systems made up of two major 
om-ponents lying at users' lo
ations of two-party proto
ols. This kind of 
omposite systems isspe
i�
ally named bipartite systems whose states are des
ribed in a bipartite state spa
e.Two properties of great importan
e for bipartite systems are the S
hmidt de
omposi-tion and puri�
ation.Theorem 3.2 (S
hmidt de
omposition). Suppose j i is a pure state of the 
omposite sys-tem AB where the state spa
es HA;HB are of dimensions m;n respe
tively. Then thereexist an orthonormal ve
tor set fju1i ; :::; jurig of HA and an orthonormal orthonormal setfjv1i ; :::; jvrig with some r � minfm;ng su
h thatj i = rXi=1 �i juii jvii ;where �i are positive real numbers, named S
hmidt-
oeÆ
ients.Proof. Suppose �A is the redu
ed density matrix of j i for system A:�A = trB(j i h j):This matrix is diagonalizable with positive eigenvalues pi and stands for an ensemble of itsr � minfm;ng eigenstates fpi; juiig. We 
an add to this ensemble some orthonormal statesjuii ; i = r + 1; :::;m (with probability 0). These eigenstates form an orthonormal basis ofHA. Then, there exist ve
tors j'ii in HB su
h thatj i = mXi=1 juii j'iiAs, �A = trB(j i h j), it musts hold that h'ij'ji = 0 for i 6= j, h'ij'ii = 1 for i = 1; :::; rand h'ij'ii = 0 for i = r + 1; :::;m. 30



3.6. Bipartite State: S
hmidt De
omposition and Puri�
ationThus, we 
an �nd the orthonormal states jvii = �i j'ii with �i > 0 andj i = rXi=1 �i juii j'ii :Returning to the diagonal form of �A, we noti
e that pi = �2i .With this de
omposition of bipartite states, Theorem 3.1 implies an important 
orol-lary for generating �-ensemble at spa
e-like separation, whi
h leads dire
tly to the no-gotheorem for bit 
ommitment of Mayers, Lo and Chau [May97, LC97℄:Theorem 3.3 (theorem for bit 
ommitment). Suppose j 0i ; j 1i are two pure states of abipartite system AB satisfying that the redu
ed partial tra
es for B are identi
al:trA(j 0i h 0j) = trA(j 1i h 1j):Then there exists a lo
al unitary transformation a
ting on the state spa
e of A, UA, that mapsj 0i into j 1i: UA j 0iAB = j 1iABProof. (Sket
h) - Let the S
hmidt de
ompositions of j 0i, j 1i bej 0i = rXi=1 �i jeii jfii ; j 1i = r0Xj=1 �0j ��e0j� ��f 0j� :As trA(j 0i h 0j) = trA(j 1i h 1j), it musts hold that r = r0 and 8i = j; �i = �j ; jfii = ���f 0jE.Thus, there exists a unitary transformation on HA that transforms the orthonormal set feiginto fje0iig, and hen
e j 0i into j 0i.On the other hand, the puri�
ation assumes that for the state � of a system A, we
an introdu
e another system B and prepare a pure state j i for the 
omposite system ABsu
h that the redu
ed partial density matrix for A is the same as �:trB(j i h j) = �Noti
e that, from the S
hmidt de
omposition, 
f. Theorem 3.2, it suÆ
es to take HB = HA.There may be many puri�
ation of a parti
ular density matrix �.Moreover, the relation between a density matrix and its puri�
ation states is statedby Uhlmann's theorem [Joz94℄Theorem 3.4 (Uhlmann's theorem). Suppose �1; �2 are two density operators a
ting on asame state spa
e then F (�1; �2) = max j h 1j 2i jwhere the maximum is taken over all puri�
ations j 1i of �1 and j 2i of �2.Indeed, the proofs of Uhlmann's theorem gave a strengthen version of this theo-rem ([NC04℄ - exer
ise 9.15) [Joz94℄: 31



Chapter 3. Quantum Information Pro
essingTheorem 3.5 (strengthen Uhlmann's theorem). Suppose �1; �2 are two density operatorsa
ting on a same state spa
e, and j 1i is a puri�
ation of �1 thenF (�1; �2) = max j h 1j 2i jwhere the maximum is taken over all puri�
ations j 2i of �2, and there exists a puri�
ationj 2i realizing the maximum.3.7 Quantum Me
hani
al Pro
essing of InformationFinally, the laws of quantum physi
s 
an be used for information pro
essing as in Figure 3.1:information are represented by quantum states, pro
essed by quantum operators, and �nallyobserved by human via measurements.Similarly to the domain of 
lassi
al information, the elementary unit of quantuminformation is a quantum bit, named qubit, whi
h is the state of a single physi
al system of2-dimension state spa
e H2. Normally, a standard orthonormal basis is sele
ted with twoorthonormal qubits fj0i ; j1ig, and any qubit is expressed as a superposition a j0i + b j1i.Physi
ally, a qubit 
an be 
arried out by the polarization of a photon, the spin of an ele
tron,or any two-state system ... [Pre℄.Moreover, quantum information inherits the features of quantum me
hani
s, issuingvarious important results. The emergen
e of quantum information pro
essing has the mostnoti
eable impa
ts to the domain of Cryptology, for both Cryptography and Cryptanalysis.Quantum ComputingQuantum 
omputing is primarily 
on
erned with the the design of quantum algorithms fordesired 
omputations. The most referred as standard quantum 
omputational model is the
ir
uit model whi
h 
onsists of three stages: (i) preparing a quantum system in state j0i;(ii) applying a unitary evolution to the initial state; (iii) reading out the �nal result withmeasurements [NC04℄. Though there exist some other equivalent 
omputational modelssu
h as measurement-based 
omputation model [RB01, Nie03℄, quantum adiabati
 
ompu-tation [FGGS00, vDMV01, Rol04, AvDK+04℄, we will primarily use the standard quantum
ir
uit model in the sequel.It is stated that any quantum unitary transformation on an n-qubit system 
an be de-
omposed into one-qubit unitary rotations and two-qubit 
ontrolled not (CNOT) gates [NC04℄.The 
omplexity of a quantum transformation is then measured by the number of these prim-itive gates used for building it.Any sequen
e of qubits is then 
hara
terized by the produ
t of their state spa
es,H2 
 :::
H2. Thus, if a 
lassi
al message of n bits 
an take one of 2n values x 2 f0; 1gn, aquantum message of n qubits 
an be in any of in�nitely many statesPx2f0;1gn 
x jxi ; 
x 2 C .The information pro
essing algorithms are realized by unitary quantum dynami
s. Thus,by the linearity, if we introdu
e a superposition of inputs to a unitary U then we 
an geta superposition of pro
essed 
ounterparts: U(Px2f0;1gn 
x jxi) = Px2f0;1gn 
xU jxi. Thisproperty makes the �
titious parallelism of quantum information pro
essing , exploited tobuild robust quantum algorithms [NC04℄. 32



3.7. Quantum Me
hani
al Pro
essing of InformationThis new dis
ipline has led to outstanding results, ever gainable in the 
lassi
al 
om-puting models [Sho94, Gro96℄. This progress has most impa
t on the �eld of Cryptanalysis:Shor's quantum fa
toring algorithm would breaks down the widely used RSA and relatedsystems; Grover's sear
h algorithm would speed up the breaking of se
ret keys [Gro96℄.Quantum Communi
ationIn another dire
tion, the 
ommuni
ation of quantum information also reveals advantageousfeatures.The non-
opiability and non distinguishability of non orthogonal states 
an help tobuild quantum 
ommuni
ation 
hannel whi
h help to implement un
onditionally se
ure pro-to
ols, imposible with trivial 
lassi
al 
ounterpart, for ex
hanging se
ret keys [BB84, Eke91,Ben92℄.Besides, the spe
ial 
orrelation between the states of distantly separated quantumsystems, known as quantum entanglement, provides signi�
ant redu
tion of the 
ost of 
om-muni
ation in distributed 
omputations [BW92, SvD00, BCvD℄. Quantum entanglement alsohelps to transfer an unknown quantum state by sending only 
lassi
al information [BBC+93℄.
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Chapter 4Noisy Channels, QuantumConjugate Channel, and The No-goTheoremsAs shown in the Chapter 2, general se
ure two-party 
omputations 
an be implemented,solely based on oblivious transfer. In turn, oblivious transfer 
annot be 
lassi
ally builtfrom s
rat
h, i.e. without any assumption [Kil88℄. Nevertheless, this primitive be
omes anintermediate layer, a term borrowed from the �eld of 
omputer network engineering, thatseparates well the appli
ations from spe
i�
 
ryptographi
 assumptions, su
h as modern
omputational 
omplexity assumptions. This relaxing en
ouraged resear
hers to investigatewhether they 
an make the se
urity of proto
ols better, based on other assumptions than
omputational 
omplexity ones.The main stream of these investments is seeking for realisti
 noisy 
hannels that 
ouldimplement oblivious transfer proto
ols. The implementation is based only on informationtheory that 
arries a provable un
onditional se
urity, evidently depending on assumptionsabout noise models.In one dire
tion, these investments relax the assumption of standard oblivious trans-fers, Rabin OT and one-out-of-two OT. This weakening a
tion may 
over a larger 
lass ofpossible noisy models [CK88, Cr�e97, DKS99, KM01, SW02, CMW04, Mor05℄.In the other dire
tion, one would �nd out pra
ti
ally physi
al 
hannels that mat
hthe theoreti
al assumptions. Sin
e the introdu
tion of quantum me
hani
s into the �eldof 
ommuni
ation and 
ryptography [Wie83℄, the su

essful implementation of key ex
hanges
hemes [BB84, Eke91, Ben92℄ with provable un
onditional se
urity [LC99, SP00℄ has en
our-aged resear
hers to seek for quantum un
onditionally se
ure bit 
ommitment and oblivioustransfer [CK88, BBCS92, BCJL93℄. Mu
h interest aimed to exploit the un
ertainty prin
i-ple and the non-
loning property to implement wanted noisy 
hannels for oblivious trans-fer [CK88, BBCS92℄. However, this intention was reje
ted by a no-go theorem of Mayers andLo & Chau, whi
h was �rst dis
overed for quantum bit 
ommitment proto
ols [May97, LC97℄and then for quantum oblivious transfer proto
ol [Lo97℄.The material of this 
hapter 
on
erns a review of the two mentioned resear
h dire
tions35



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsand Mayer's, Lo's & Chau's no-go theorems.4.1 A General De�nition of Oblivious TransferEven though one-out-of-two oblivious transfer and Rabin's oblivious transfer are equiva-lent [Cr�e88℄, the former is more 
onvenient to use and 
onsidered as the standard version ofoblivious transfers. We will shortly name it \oblivious transfer" while Rabin's version willbe named \Rabin OT".Simply speaking, by de�nition, OT is a primitive where Ali
e has two se
ret bits b0; b1and Bob 
an 
hoose to get one but not both while Ali
e 
annot know Bob's 
hoi
e. In termsof information theory and probabilities, we usually work with non-ideal oblivious transfersas oblivious transfer proto
ols provided 
hara
terizing parameters.De�nition 4.1. An oblivious transfer proto
ol is a transmission s
heme where Ali
e has twose
ret bits b0; b1 to send to Bob who has a 
hoi
e 
 to get the bit b
. The s
heme assumesthree non-zero values:� Corre
tness PC : the probability that Bob gets b
 when Ali
e and Bob are honest.� Ali
e's priva
y HB: the �nal minimal remaining un
ertainty of Bob about b1�
 whateverhis strategy when Ali
e is honest.� Bob's priva
y HA: the �nal minimal remaining un
ertainty of Ali
e about 
 whateverher strategy when Bob is honest.We see that an ideal oblivious transfer proto
ol has PC = 1;HB = 1;HA = 1. Inan asymptoti
 manner, we 
an have un
onditional but non-ideal oblivious transfer withPC ;HB;HA asymptoti
ally 
lose to 1, depending on some parameter N .4.2 Building Oblivious Transfer from Noisy Channels4.2.1 Oblivious Transfer as Erasure ChannelsThe original version of oblivious transfer proto
ol, proposed by Rabin [Rab81℄, is simply aBinary-Symmetri
 Erasure Channel with erasure probability 1=2:De�nition 4.2. BSEC(r) , Rabin OT(r)1. Ali
e sends r.2. Bob re
eives r0 = (r with probability 1=2;? with probability 1=2:where ? is the erasure out put symbol.This erasure 
hannel 
an implement the 
hosen one-out-of-two oblivious transfer, fol-lowing Crepeau's redu
tion s
heme [Cr�e88℄: 36



4.2. Building Oblivious Transfer from Noisy ChannelsProto
ol 4.1. BSEC ! OT (b0; b1)(
)1. Ali
e pi
ks 3n random bits ri, i = 1; :::; 3n, and sends to Bob via the BSEC. Bob re
eivesr0i;�i2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n, su
h that �i = 0 for all i 2 I0,and announ
es (I
; I1�
) to Ali
e.3. Ali
e 
omputes b̂0 = �Li2I
 ri�� b0, b̂1 = �Li2I1�
 ri�� b1 and sends to Bob.4. Bob 
omputes b
 = �Li2I0 r0i�� b̂
Roughly speaking, based on the Law of Large Numbers, the 
orre
tness of Proto
ol 4.1
an be hold as Bob re
eives in average 3n=2 bits ri without errors with large value of n. SoBob 
an make n indexes I0 with 
omplete knowledge of rI0 for de
oding b̂
. Nevertheless,Bob 
annot set 2n indexes for getting 
omplete knowledge of rI0 :rI1 , and thus one of b0; b1must 
an not be learned.4.2.2 General Binary Symmetri
 Erasure ChannelRelaxing the se
urity assumptions, we 
an have an extended version of imperfe
t binarysymmetri
al erasure 
hannel:De�nition 4.3. (';'0; pg)-BSEC1. Ali
e sends r.2. Bob re
eives (r0;�) with � = (0 with probability pg;1 with probability 1� pg;where � is a symbol denoting the erasure status of the 
hannel. The error rate in the non-erased 
ase is ', i.e. p(r0 6= r=� = 0) = ' and the error rate in the erased 
ase is signi�
antlygreater, bounded by '0: 1=2 � p(r0 6= r=� = 1) � '0 > '.Inspired from Cr�epeau's redu
tion [Cr�e88℄, with help of appropriate error-
orre
ting
odes and priva
y ampli�
ation algorithms, we 
an implement an oblivious transfer proto
olwith this imperfe
t erasure 
hannels [Cr�e97, CMW04℄:Proto
ol 4.2. (';'0; pg)-BSEC ! OT(b0; b1)(
)1. Ali
e pi
ks N random bits ri, i = 1; :::; 2N , and sends to Bob via the ('; �; pg)-BSEC.Bob re
eives r0i;�i2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n, su
h that �i = 0 for all i 2 I0,and announ
es (I
; I1�
) to Ali
e.3. Ali
e 
omputes and sends (s0 = syn(rI
); s1 = syn(rI1�
)) to Bob.4. Ali
e pi
ks a sequen
e of n random bits m and sends to Bob.37



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theorems5. Ali
e 
omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI
 � m),k1 = (rI1�
 �m).6. Bob uses s
 to 
orre
t errors in r0I0, 
omputes k
 = (r0I0 �m) and b
 = k
 � b̂
.The intuition behind Proto
ol 4.2 is that Bob 
an 
orre
t all errors in rI0 when he ishonest while, even though Bob is dishonest, the average error rate in both rI0 :rI1 is signi�-
antly greater and so a signi�
ant amount of error bits remains in at least one of rIi ; i 2 f0; 1g.The distribution of error rates re
eived by Bob 
an be illustrated as in Figure 4.1.
2N

error rate

2NpgjI0j = n jI1j = n
12
''0
Figure 4.1: Distribution of error rates re
eived by BobIn this 
onstru
tion, PC is the probability that honest Bob, who makes I0 as the indexsubset with the best average error rate, 
an 
orre
t all of the errors in r0I0 with syn(rI0). HBis the un
ertainty of k1�
 after the error 
orre
tion and the priva
y ampli�
ation phases, eventhough Bob is free to set I0; I1,HB = maxi=0;1 Xm22n p(m)H(rIi �m=r0Ii ; syn(rIi);m)! :We 
an have both PC ;HB asymptoti
ally 
lose to 1 with large values of N and an appropriate
hoi
e of n and the error 
orre
ting 
ode [CMW04℄.In Proto
ol 4.2, we 
hoose n = (pg + �)N with 0 < � < pg. As n < pg2N then Bob
an almost set I0 with error rate ' in r0I0 . Simply speaking the missing information of rI0is H(rI0=r0I0) = nh('). Then Ali
e sends s0; s1 ea
h of whi
h 
ontains at least nh(') bits ofinformation. Meanwhile, as 2n > pg2N , r0I0 :r0I1 a

umulates some re
eived bits an error ratesigni�
antly greater than '. The missing information of rI0 :rI1 isH(rI0 :rI1=r0I0 :rI1) � pg2Nh(') + (2n� pg2N)h('0)Then the 
oding theory permits to use 
odes withjs0j = js1j = H(rI0=r0I0)+H(rI0 :rI1=r0I0 :r0I1)� 2H(rI0=r0I0)4 = (n+pgN)h(')+(n�pgN)h('0)38



4.2. Building Oblivious Transfer from Noisy Channelsfor eÆ
iently 
orre
t r0I0 while there remain at least (n�pgN)(h('0)�h('))=2 bits of missinginformation in one of r0I0 ; r0I1 . Then, the priva
y ampli�
ation operation (rIi �m); i 2 f0; 1genhan
es the se
urity that prevents Bob from learning both b0; b1.Besides, Bob's sele
tion of index sets I0; I1 depends only on the probability distributionof �i that is uniform for all index i = 1; :::; N . Thus, Ali
e 
annot distinguish I0; I1 to gaininformation about 
.4.2.3 Non-trivial Dis
rete Memoryless ChannelA dis
rete memoryless 
hannel (DMC) is a statisti
al model des
ribing the 
ommuni
ationmedium with dis
rete input alphabets X = fx1; ::; xng , output alphabets Y = fy1; ::; ymg,and the 
urrent output re
eived by the re
eiver depends only on the 
urrent input of theemitter, 
orresponding to a probability distribution PX=Y .Informally speaking, a DMC is non-trivial if it 
annot be de
omposed into separatesub-
hannels ea
h of whi
h has 
apa
ity 0 or 1. [CMW04℄ states a spe
ial 
hara
ter of non-trivial DMC thatTheorem 4.1 (CMW theorem on DMC). There exist x1; x2 2 X su
h that1. PY=X=x1 6= PY=X=x2 ;2. there exist y 2 Y su
h that PY=X=x1(y) > 0; PY=X=x2(y) > 0;3. let, for �; �i 2 [0; 1℄, �PY=X=x1 + (1� �)PY=X=x2 =Xi �iPY=X=xithen �i > 0 implies that PY=X=xi = �PY=X=x1 + (1� �)PY=X=x2The �rst and the se
ond properties assume that there exists an input pair x1; x2 su
hthat we have some possibility to distinguish them but not 
on
lusively. Besides, the thirdproperty assumes that if the sender uses some other input symbols to simulate a randominput that takes only x1; x2 then these fake symbols must be redundant, and 
annot help thesender. Nevertheless, if the sender is supposed to use x1; x2, and if he does not respe
t byusing some non-redundant symbols, then the output probability distribution is modi�ed, and
an be dete
ted by statisti
s.A spe
ial 
ase of DMC is binary Symmetri
 Channel. This kind of noisy 
hannelshas been 
onsidered very early in [CK88, Cr�e97℄ for building oblivious transfer. �-BSC isdenoted for a binary symmetri
 
hannel with error rate �, i.e. it 
ips the bit sent on it withprobability �: ��BSC(x) = (x with probability �x with probability 1� �:We have a non-trivial BSC 
hannel when its 
apa
ity is neither 1 or 0, i.e. when � 62 f0; 1=2; 1g.We suppose that 0 < � < 1 be
ause when � > 1=2 we 
an 
ip the output and have the same
hannel with error rate 1� �. 39



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go TheoremsBuilding Binary Symmetri
 Erasure ChannelLet x1; x2 2 X be two input of the DMC satisfying the above properties, 
f. Theorem 4.1,we 
an implement a binary symmetri
 erasure 
hannel as follows:Proto
ol 4.3. PY=X ! (';'0; pg)�BSEC(r)1. Ali
e en
odes r = 0 as x1:x2, r = 1 as x2:x1 and sends them via the DMC.2. Bob outputs 8><>:r0 = 0;� = 0 if y1:y2 is re
eived,r0 = 1;� = 0 if y2:y1 is re
eived,r0 = best guess;� = 1 otherwise:where y1; y2 are 
hosen to minimize the error rate:' = min(y0;y1)2Y�Y PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0) (4.1)And pg is the probability of re
eiving this output pair whi
h minimizes the error rate:pg = PY=X=x1(y1)PY=X=x2(y2) + PY=X=x1(y2)PY=X=x2(y1):If there are many pairs (y1; y2) whi
h give the same error rate ', we should 
onsider all ofthem as good pairs, and pg is the sum of the probabilities of re
eiving these pairs. '0 is thende�ned as the se
ond lowest error rate realized by another output symbol pair (y01; y02).Cr�epeau [Cr�e97℄ had also proposed an equivalent 
onstru
tion, using repetition 
odefor BSC:Proto
ol 4.4. ��BSC ! (';'0; pg)�BSEC(r) [Cr�e97℄1. Ali
e en
odes r by the repetition 
ode r:r, and sends the two en
oding bits to Bob viathe �-BSC.2. If Bob re
eives r0:r0 then he outputs r0;� = 0; else he outputs � = 1 and r0 as random(or his best guess of r).Building Oblivious TransferIn the above 
onstru
tion of BSEC from DMC and BSC, Ali
e 
an a�e
t the probability thatBob 
onsiders as having got the good bit by violating the 
oding 
onvention:1. Ali
e sends forbidden input symbols x 62 fx1; x2g in the implementation of BSEC fromDMC.2. Ali
e uses x1; x2 but does not respe
t the 
onventional en
oding, i.e. she sends x1:x1 orx2:x2. For instant, in the implementation from BSC, 
f. Proto
ol 4.4, Ali
e sends r:r:p0g = 2�(1� �) 6= pg40



4.3. Oblivious Transfers from Quantum Conjugate ChannelIf we use these BSEC and Proto
ol 4.2 to implement an oblivious transfer, Ali
e 
an 
hange pgfor di�erent positions i = 1; :::; 2N and have some possibility to distinguish I
; I1�
 
onsideringthat the sending of ri via BSEC with a higher probability of non-erasure will make i havemore 
han
e to be put in I
.Fortunately, Theorem 4.1 states that the forbidden input symbols would 
ause a prob-ability distribution on output symbols di�erent from the determined pair x1; x2. Similarly,if Ali
e uses x1; x2 but does not respe
t the 
onventional en
oding, the distribution of out-put (y1; y2) also 
hanges. These 
heating behaviors 
an be statisti
ally dete
ted in a moreadvan
ed s
heme that requires a large number of exe
utions of Proto
ol 4.2 [Cr�e97, CMW04℄:Proto
ol 4.5. DMC ! OT (b0; b1)(
)1. Ali
e pi
ks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob pi
ks M random bits 
1; :::; 
M .3. For l = 1; :::;M , Ali
e and Bob run Proto
ol 4.2 that use the BSEC built from the DMC(
f. Proto
ol 4.3 or 4.4) with that Bob gets b0l with his 
hoi
e 
l.4. Bob 
he
ks the statisti
s of the 
hannel and aborts if Ali
e 
heats.5. Bob sends 
0 =LMl=1 
l � 
6. Ali
e 
omputes b̂0 =LMl=1 bl;
0 � b0, b̂1 =LMl=1 bl;(1�
0) � b1 and sends to Bob.7. Bob 
omputes b
 =LMl=1 b0l � b̂
.The idea is that Ali
e must atta
k all of M exe
utions of Proto
ol 4.2 by violating the
oding 
onvention to learn 
. In that 
ase, Bob 
an dete
t Ali
e's dishonesty with statisti
son outputs [Cr�e97, CMW04℄.4.3 Oblivious Transfers from Quantum Conjugate Channel4.3.1 Quantum Conjugate Coding ChannelQuantum 
onjugate 
oding was �rst proposed by Wiesner for implementing an appli
ation,named multiplexing 
hannel, similar to oblivious transfer [Wie83℄.We denote fj+i = (j0i+ j1i)=p2, j�i = (j0i � j1i)=p2g. The two bases, re
tangularbasis fj0i ; j1ig and diagonal basis fj+i ; j�ig, are said to be 
onjugate in the sense that themeasurement of a basis state in the other basis gives a maximally random output and vi
e-versa, e.g. the measurement of j+i in the re
tangular basis outputs j0i or j1i with probability1=2.Proto
ol 4.6. QCC(r)1. Ali
e randomly 
hooses one of two 
onjugate bases: re
tangular basis fj0i ; j1ig or diag-onal basis fj+i ; j�ig. 41



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theorems2. Ali
e en
odes the bit r by the 
orresponding basis state: j0i or j+i if r = 0; j1i or j�iif r = 1. Ali
e sends the en
oding state to Bob.3. Bob randomly 
hooses the re
tangular or diagonal basis to measure the in
oming state.Bob outputs r0.4.3.2 Quantum Binary Symmetri
 Erasure ChannelThis s
heme does not implement 
orre
tly an oblivious transfer proto
ol. It would ratherbe a Binary-Symmetri
 Channel with error rate equal to 1=4. Wiesner suggested also to usesome error-
orre
ting 
odes to establish a s
heme similar to what we 
all today one-out-of-twostring oblivious transfer. However Wiesner's 
onstru
tion was not 
omplete.A modi�
ation of Wiesner's 
onjugate 
oding 
hannel provides a binary symmetri
erasure 
hannel, used to implement quantum oblivious transfer [CK88, BBCS92, Cr�e94℄.Proto
ol 4.7. QCC ! BSEC(r)1. Ali
e randomly 
hooses one of two 
onjugate bases: re
tangular basis fj0i ; j1ig or diag-onal basis fj+i ; j�ig.2. Ali
e en
odes the bit r by the 
orresponding basis state: j0i or j+i if r = 0; j1i or j�iif r = 1. Ali
e sends the en
oding state to Bob.3. Bob randomly 
hooses the re
tangular or diagonal basis to measure the in
oming state.Bob outputs r0.4. Ali
e announ
es her basis to Bob.5. If Bob's basis mat
hes Ali
e's one, Bob outputs � = 0, otherwise Bob outputs � = 1.4.3.3 Quantum Oblivious Transfer based on Bit CommitmentWe state that Proto
ol 4.7 is no more an erasure 
hannel in 
ase Bob 
an store the quantumstate and do the measurement after having known Ali
e's basis. It was suggested to use abit 
ommitment proto
ol to for
e Bob doing the measurement before the announ
ement ofAli
e's basis. The 
anoni
al form of bit-
ommitment-based quantum oblivious transfer is:Proto
ol 4.8. BC and QCC ! OT (b0; b1; 
)1. Ali
e pi
ks N random bits ri, and N random bases �i 2 fre
tangular; diagonalg, i =1; :::; N . Ali
e en
odes ri by the 
orresponding state in basis �i, and sends the quantumstates to Bob.2. For ea
h ith in
oming state, Bob randomly 
hooses a basis �0i 2 fre
tangular; diagonalgto measure it, and output r0i.3. Bob makes the 
ommitment of �0i; r0i for all i = 1; :::; N to Ali
e.4. Ali
e randomly 
hooses an index set T; jT j = t, and sends to Bob.42



4.4. MLC No-go Theorems5. Bob opens the 
ommitment of �0i; r0i for all i 2 T . Ali
e tests if �0i = �i ) r0i = ri failsthen aborts.6. Ali
e announ
es �i for all i 2 I = f1; :::; Ng n T to Bob. Bob outputs �i = 0 if �i = �0i,�i = 1 otherwise.7. Bob makes two disjoint index sets I0; I1 � I, jI0j = jI1j = n, su
h that �i = 0 for alli 2 I0, and announ
es (I
; I1�
) to Ali
e.8. Ali
e 
omputes s0 = syn(rI0); s1 = syn(rI1) and sends to Bob.9. Ali
e pi
ks a sequen
e of n random bits m and sends to Bob.10. Ali
e 
omputes b̂0 = (rI0 �m)� b0, b̂1 = (rI1 �m)� b1 and sends to Bob.11. Bob uses s
 to 
orre
t errors in rI
, and 
omputes b
 = (rI
 �m)� b̂
The se
urity against Ali
e in this s
heme is trivial. Indeed, when Bob is honest, �idepends on the fa
t that �i �ts �0i. The probability distribution of �i is then uniform for alli 2 T and Ali
e 
annot distinguish I0; I1.Providing that the bit 
ommitment proto
ol is se
ure, Yao shown that the aboves
heme is se
ure even though Bob 
an do the 
oherent atta
k, i.e. he 
an atta
k on multiplequantum states [Yao95℄. It was expe
ted that a quantum bit 
ommitment proto
ol, 
laimedto be se
ure [BCJL93℄, 
an help to se
ure Proto
ol 4.8. However, [May97, LC97℄ state thatquantum bit 
ommitment is impossible.4.4 MLC No-go Theorems4.4.1 The Theorems for Pure Two-Party ModelsQuantum bit 
ommitmentWe 
an see any bit 
ommitment proto
ol as a two-phase 
omputation, jointly made by Ali
eand Bob. After the �rst phase - 
ommit phase, the 
omputation is interrupted, and then
ontinued in the se
ond phase - opening phase. The 
omputation has the prime input: Ali
ese
ret bit to be 
ommitted to Bob, and should output one of three values: 0 - if Bob is
onvin
ed that Ali
e's input is b = 0; 1 - if Bob is 
onvin
ed that Ali
e's input is b = 1; and? if any 
heating user is dete
ted by the other.As the dete
tion of Bob's 
heating would rather be made before the opening phase,we are only interested in the priva
y against Bob's (
on
ealment) and the dete
tion of Al-i
e's 
heating (binding), on
e the 
ommit phase has ended, i.e. the 
omputation has beeninterrupted.In the 
lassi
al deterministi
 
omputation model, we 
an easily show that su
h as
heme is impossible. Indeed, we 
onsider the 
omputation as an evolution in time of 
om-putational 
on�gurations or images that 
onsists of variables in Ali
e and Bob 
omputing43



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsma
hines, assigned with values. Following a deterministi
 algorithm, the 
omputation is de-s
ribed by a deterministi
 sequen
e of 
on�gurations Iinit, .., Ifinal. At ea
h step i, the 
on-�guration of the joint 
omputation is the state of all variables, divided into two parts: Ali
e'svariables and Bob's ones, i.e Ii = IAi �IBi where \�" denotes the 
on
atenation. For the 
ompu-tation of b, the 
omputational 
on�guration sequen
e following the algorithm will be fIi(b)gn.At the interrupted step int, the 
on�guration is Iint(b) = IAint(b) � IBint(b). For the proto
olbeing 
on
ealing, the partial 
on�gurations at Bob side must be identi
al: IBint(0) � IBint(1).Therefore, Ali
e 
an freely 
hange the 
omputation by repla
ing IAint(0) with IAint(1) or vise-versa before the opening phase. Thus, the proto
ol 
annot be both 
on
ealing and binding.In the quantum deterministi
 model, the joint 
omputation is the same as in theabove 
lassi
al model. However, the 
omputation is more physi
al like: the 
on�guration ofthe 
omputation at a moment is des
ribed by the state of all parti
ipating quantum systemsat that moment. The transition from one 
on�guration to another su

essive 
on�guration ismade by lo
al unitary transformations at Ali
e's and Bob's sides and by the 
ommuni
ationsbetween them. We would simply 
onsider a pure quantum proto
ol as a pair of Ali
e and Bobma
hines and quantum parti
les are faithfully brought from sender's ma
hine to re
eiver'sma
hine in 
ommuni
ations.Similarly to the 
lassi
al 
ase, a

ording to a deterministi
 algorithm, Ali
e and Bobmust prepare two quantum systems A and B, 
hara
terized by H = HA;init
HB;init, initiallyin some determined pure state j (b)initi = j (b)iA;init 
 j0iB;init. At step i, Ali
e and Bobrealize a joint 
omputation Ui = UA;i 
 UB;i on j (b)i�1i to get j (b)ii and 
ommuni
ateto ex
hange some subsystems, and then, the 
on�guration j (b)ii is split into two partsa

ording to the new de
omposition HA;i 
HB;i = H. The 
ommuni
ation is not restri
tedto be one-way. We see that H is invariant, but its de
omposition into Ali
e and Bob's partsvaries by 
ommuni
ations. The 
omputation is then a determined sequen
e of 
on�gurationsj	(b)initi ; ::; j	(b)finali.At step i, the 
orresponding 
on�guration j	(b)ii is split into two partial 
on�gura-tions at Ali
e and Bob sides: �A(b)i = trB;i(j	(b)ii h	(b)ij);�B(b)i = trA;i(j	(b)ii h	(b)ij):If the proto
ol is un
onditionally 
on
ealing then Bob has not to be able to distinguish �B(0)ifrom �B(1)i for all i � int where int is the interruption step, i.e. 8i � int; �B(0)i = �B(1)i.Here, it suÆ
es to be only interested in �B(0)i = �B(1)i at the interruption step i = int. Forsimplifying, we will useHA
HB instead ofHA;i
HB;i to impli
itly spe
ify the de
ompositionat the moment of speaking.We 
ould expe
t that Ali
e 
annot repla
e �A(0) with �A(1) and vi
e-versa be
ause ofthe entanglement in j	(b)i. Unfortunately, following [HJW93℄, in 
ase �B(0) = �B(1), thereexists a unitary transformation UA a
ting in HA that maps j	(1)i into j	(0)i, 
f. Theo-rem 3.3 on page 31. Therefore, Ali
e 
an repla
e the partial 
on�guration by the operatorsUA and U�1A . We would rather say that quantum entanglement does not help to se
ure bit
ommitment.More generally, quantum model allows a non-ideal un
onditional se
urity, i.e �B(0) ��B(1). The se
urity of Ali
e's bit 
an be measured by the distinguishability between �B(0)44



4.4. MLC No-go Theoremsand �B(1), for instan
e the �delity of quantum states:F (�B(0); �B(1)) = 1� �: (4.2)The extension of Uhlmann's theorem, 
f. Theorem 3.5 on page 32, states that there exists apuri�
ation j	0(0)i of �B(1) su
h thatj h	(0)j	0(0)� j = F (�B(0); �B(1)) = 1� �:Re
all that, as j	0(0)i and j	(1)i are two puri�
ations of �B(1), there exists a unitary trans-formation for Ali
e to swit
h between j	0(0)i and j	(1)i. Therefore, suppose that Ali
e hasbegan the 
omputation for b = 1, she 
an 
heat by transforming j	(1)i into j	0(0)i andde
laring b = 0. The opening phase will be 
ontinued with j	0(0)int+1i ; ::: j	0(0)finali underunitary transformations. So: j h	(0)finalj	0(0)final� j = 1� �:A measure for Bob a

epting Ali
e announ
ement is F (�B(0)final; �0B(0)final). FollowingUhlmann's theorem ([NC04℄ - theorem 9.4), we haveF (�(0)Bfinal; �0B(0)final) � 1� �: (4.3)Therefore, in a pure deterministi
 quantum model, we 
annot have a bit 
ommitmentproto
ol that is both 
on
ealing and binding. Moreover, the more a proto
ol is 
on
ealing,the more it is binding, by the measure of quantum �delity, 
f. Eqs. (4.2), (4.3).Quantum oblivious transferThe no-go theorem on bit 
ommitment implies the impossibility of oblivious transfer be
ausewe 
an implement quantum oblivious transfer from bit 
ommitment [Cr�e94, Yao95℄. Though,we revise here Lo's theorem for se
ure one-sided 
omputations, in
luding oblivious transfer,in a pure deterministi
 quantum model [Lo97℄.Se
ure one-sided two-party 
omputations is a sub
lass of se
ure two-party 
omputa-tions where Ali
e and Bob want to 
ompute a two-party fun
tion f(i; j). Ali
e holds inputi and Bob holds input j. At the end of the 
omputation, Ali
e has no information about j.Only Bob gets the result f(i; j) and learns no more information about i than what 
an belearned from his input j and the result f(i; j). For instan
e, oblivious transfer is a se
ureone-sided 
omputation of (1� 
)� b0 + 
� b1 where Ali
e inputs b0; b1, Bob inputs 
.To 
ompute f(i; j),Ali
e and Bob run together a unitary U transformation on Ali
e'sinput jii : i 2 fi1; ::; img joint with Bob's input jji : j 2 fj1; ::; jng. Other known lo
alvariables 
an be omitted without loss of generality. At the end, Bob 
an learn the result fromthe output state jviji = U(jiiA 
 jjiB). But Ali
e 
an entangle her input A with a privatequantum an
illa D, i.e. prepares system D 
A in the initial state 1pnPi jiiD 
 jiiA.If Bob inputs j1 then the initial state for the proto
ol is��u0�in = 1pnXi jiiD 
 jiiA 
 jj1iB ; (4.4)45



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsand at the end, the output state isjvj1i = 1pnXi jiiD 
 U(jiiA 
 jj1iB):Similarly, if Bob inputs j2 then the output state isjvj2i = 1pnXi jiiD 
 U(jiiA 
 jj2iB):For the se
urity on Ali
e side, the partial 
on�gurations must be identi
al, i.e.trB(jvj1i hvj1 j) = trB(jvj2i hvj2 j);and then there exists a lo
al unitary transformation U j1;j2 on Bob lo
al system su
h thatjvj2i = U j1;j2 jvj1i :Therefore, be
ause D hij vji = 1pn jviji, the transformation U j1;j2 is universal for all Ali
einput i: jvij2i = U j1;j2 jvij1i :Bob 
an enter jj1i, 
omputes jvij1i and measures it to learn f(i; j1). However, to enable Bobto unambiguously get the result, jvij1i must be an eigenstate of Bob's �nal measurement andnot perturbed by this measurement. Bob 
an transform it to jvij2i by U j1;j2 , measure it tolearn f(i; j2), and so on. Thus, if the proto
ol is 
orre
t and se
ure against Ali
e, Bob 
an
ompute f(i; j) for any private input j.In a non-ideal proto
ol, Bob 
ould slightly modify jvij1i and therefore jvij2i, whenlearning j1, and 
ould learn j2 with a 
ertain a

ura
y. The errors are a

umulated in ea
hmeasurement step. The more the proto
ol is 
orre
t, the more Bob 
an 
heat with higha

ura
y.4.4.2 Interpretations for the generalityThe above 
anoni
al theorems for the impossibility of quantum bit 
ommitment and oblivioustransfer were made in a deterministi
 pure two-party quantum model where both parties(i) 
ommuni
ate by sending quantum signal via a quantum 
hannel, and (ii) do all of the
omputations at the quantum level, following a 
ertain deterministi
 algorithm.One may see that this proof is \too simple to be true" for all possible proto
olswhere Ali
e and Bob (1) do measurement on their quantum systems and pass to 
lassi
al
omputation; (2) introdu
e private se
rets; (3) 
ommuni
ate 
lassi
al information through ama
ros
opi
 
hannel that does permit to transmit quantum signal.Indeed, the proofs in Mayers' and Lo's - Chau's original papers [May97, LC97℄ didnot interpret in detail the physi
al operations for the generality of the theorem, 
larifyingthe above three fa
tors. A brutal redu
tion of the general algorithms to the pure quan-tum deterministi
 two-party model 
ould make people doubt its validity. The 
laim of the46



4.4. MLC No-go Theoremsgeneralization of the theorems 
aused troubled resear
hers to try to �nd a loophole behindit [Yue00, Yue04, Che03℄ although none of the 
ounter-examples is valid.Most of attention were paid to 
lassi
al variables in 
omputations [Yue00, Bub01b,Yue02, Yue04, Che03, Che05, Che06℄. Indeed, from a 
omputational viewpoint, the random
lassi
al variables are not evident in the deterministi
 quantum model.For this, it is stated that probabilisti
 
omputations 
an be implemented by invari-ant 
ir
uits with auxiliary random variables [Gol01℄, and any 
lassi
al 
omputation 
an berealized by equivalent quantum 
ir
uits throwing away some parts of outputs, named super-operators [BS98℄, 
f. Figure 4.2. The 
ommonly known argument in the main interpretationof no-go theorems is that the 
omputation 
an be kept at quantum level by not throwing anyprivate quantum system, 
f. Figure 4.3. This purifying a
tion on random 
lassi
al variablesis indeed semi-honest and 
annot be dete
ted. In su
h a 
ase, the joint 
omputation is de-terministi
 and the 
anoni
al proof eliminate the possibility of bit 
ommitment and oblivioustransfer proto
ols, 
f. Se
tion 4.4.1.
j0i Uj0i

Figure 4.2: SuperoperatorThe problem of se
ret variables was addressed in [Yue02, Yue04℄. As Ali
e's 
heatingtransformation is found for the model where Bob does the puri�
ation of these randomvariables, the feeling is that the global state 
ollapses to a se
ret state depending on Bob'sse
ret 
lassi
al results, and Ali
e 
annot know the 
orresponding transformation. This pointwas partially answered in [Bub01b, Che05, Che06℄, for ideal and nearly-ideal proto
ols.The 
lassi
al 
ommuni
ation is normally omitted with some assumptions on the 
om-muni
ation, expressed as \
lassi
al 
ommuni
ation 
an be 
arried out by quantum model, butwith some 
onstraints" [LC97℄. But what are the 
onstraints? From the physi
al viewpoint,the 
lassi
al 
hannel does not appear in this redu
ed two-party quantum model.What is the di�eren
e between a quantum 
hannel and a 
lassi
al one? A quantum
hannel is a medium that we 
an use to dire
tly transmit a quantum state without disturbingit. Nevertheless a 
lassi
al 
hannel, for transmitting dis
rete messages, permits only one froma 
olle
tion of dis
rete signal values whi
h 
an be ampli�ed by many quantum systems on47
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Uj0ij0i

Figure 4.3: Non-throwing superoperatorthe 
hannel, for instan
e a ma
ros
opi
 ele
tri
al wire with tension +5V for 0 and �5V for1. Imagine that in the spe
i�
ation of a proto
ol, at a 
ertain moment, a party S hasto measure some quantum state j iS with an apparatus with n degrees of freedom and
ommuni
ate this result to the other via a 
lassi
al 
hannel. This measurement will outputi 2 f1; ::; ng with probability p(i) and let the measured system in a state j iiS . Re
eivingthe 
lassi
al value i, the re
eiver R 
ould generate a basis state jiiR in a n-dimension spa
efor his further 
omputation.Of 
ourse, we 
an redu
e this 
ommuni
ation to a pure two-party quantum modelwhere the sender realizes a transformationU(j iS j0iR)! nXi=1pp(i) j iiS jiiRand the proto
ol will go on 
orre
tly be
ause the density-matrix des
ription of ea
h systemis the same as though a real measurement is done [BCMS97, LC97, Bub01b℄. The joint
omputation remains a unitary evolution of a pure two-pary state, and with su
h a quantumtwo-party joint 
omputation, bit 
ommitment is impossible as analyzed in Se
tion 4.4.1.However, the above redu
ed model for 
lassi
al 
ommuni
ations does not interpretwhat really happen in the physi
al world. It permits to 
onserve a two-party entanglementthat does not exist in the spe
i�
ation of the proto
ol with 
lassi
al 
ommuni
ation. Thistwo-party entanglement 
ould introdu
e some extra e�e
ts. For instan
e, it 
ould happenthat the re
eiver used the re
eived message to do a quantum 
omputation and sends ba
kthe result, then the sender would learn more information with entanglement atta
k by thee�e
t of super-dense 
oding [BW92℄.Indeed, the 
lassi
al 
hannel for
es the measurements to be done for making 
lassi
alsignals i.e. Ali
e and Bob have to really measure their quantum states to make 
lassi
al48



4.4. MLC No-go Theoremsmessages. In a generi
 proto
ol, the 
ommuni
ation of 
lassi
al messages for
es destroyingthe purity of two-party states. The real joint 
omputation with 
ommuni
ation by measuringand transmitting 
lassi
al values via a 
lassi
al 
hannel is not an evolution of a pure two-partystate. In other words, as the a
tion of measurements \
an never help a 
heater" [GL00℄, whyit does not prevent Ali
e from 
heating?We 
an say that a quantum proto
ol with 
ommuni
ation of 
lassi
al messages 
an be
orre
tly implemented in a pure quantum two-party model. Nevertheless, it is not obviousto emulate the proto
ol by a puri�ed two-party model for proving the inse
urity without a
onvin
ing interpretation. One may doubt that the redu
ed two-party model implements
orre
tly the proto
ol, not se
urely, and 
ould be used to prove the possibility [Yao95℄, notthe impossibility of two-party proto
ols.This point was only explained in Mayers' version where the measurements for making
lassi
al messages were 
onsidered [May97℄. Following Mayers, Ali
e and Bob would keep allof the operation at the quantum level, ex
ept for making 
lassi
al messages. Thus, for ea
h
lassi
al message 
, the quantum system is proje
ted to a 
ollapsed state 
orresponding tothe 
lassi
al out
ome and is in a known pure two-party state j b;
iAB. The trade-o� between
on
ealing and binding is separately treated for this state, i.e. the 
ollapsed proto
ol mustbe se
ure: F
 = F ��B
 (0); �B
 (1)�= F (trA(j 0;
i h 0;
 j); trA(j 1;
i h 1;
 j))� 1� � (4.5)and Ali
e has a unitary 
heating transformation UA;
 with possibility of su

essj h 0;
 jUA;
 j 1;
i j = F
 � 1� �: (4.6)
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Chapter 5Binary Symmetri
Multi-Error-Rate ChannelsThe material of this 
hapter, based on [Dan07℄, is 
on
erned with an extended noisy model:the binary symmetri
 multi-error-rate 
hannel (BSMERC). This 
hannel 
onsists of parallelbinary symmetri
 sub-
hannels with di�erent error rates.We see that Cr�epeau's et al.'s [CMW04, Mor05℄ 
onstru
tion s
heme from DMC im-plements indeed a BSMERC. In their 
onstru
tion, based on this BSMERC, they built abinary symmetri
 erasure 
hannel by separating the minimal error rate as good erasure fromthe others greater error rates. Then, one 
an exploit this gap to build an oblivious transferproto
ol where Bob 
an only re
eive one se
ret key from Ali
e, not both, based on error
orre
ting 
odes and ampli�
ation, 
f. Se
tion 4.2 on page 36.However, in some 
ases, this 
onstru
tion is not eÆ
ient as the gap is so tinny. Nev-ertheless, by 
onsidering the general BSMERC, we have the freedom to 
hoose a barriererror rate to make an extended erasure 
hannel whi
h implements oblivious transfer proto-
ol. With su
h an extension, we 
an improve the eÆ
ien
y of the redu
tion s
heme based onthe probability distribution of error rates.We expe
t also that this general intermediate model is 
onvenient for 
onsidering themore general noisy 
hannels, partifularly noisy 
hannels with 
ontinuous alphabets.5.1 Binary Symmetri
 Multi-Error-Rate Channel5.1.1 The ModelWe extend here the de�nition of binary symmetri
 erasure 
hannel to have a binary symmetri
multi-error-rate 
hannel (BSMERC) as a binary symmetri
 
hannel with di�erent error rates0 � '1 < ::: < 'm � 1=2 with a probability distributionPj p('j) = 1. For ea
h bit sent onit, the 
hannel 
hooses to e�e
t a 
ertain error rate 'j with probability p('j). When Bobre
eives the output bit, he also knows the a
tual error rate of the 
hannel while Ali
e doesnot ex
ept with the a priori probability distribution.We 
an imagine that the 
hannel 
onsists ofm parallel binary symmetri
 sub-
hannels51



Chapter 5. Binary Symmetri
 Multi-Error-Rate Channelswith di�erent error rates. For ea
h input bit, the 
hannel sele
ts a sub-
hannel j withprobability p('j) and passes the input via this sub-
hannel. In another way, the 
hannel is aspe
ial dis
rete memoryless 
hannel with input symbols set X = f0; 1g and output symbolsset Y whi
h 
an be partitioned intom disjoint binary subsets Y1[:::[Ym, Yj = fy0j ; y1j g wherethe 
onditional probability distribution over X � Yj is PY=X � p('j) � P'j�BSCY=X , obtainedby the probability distribution of a binary symmetri
 
hannel of error rate 'j ('j-BSC)multiplied by p('j).We denote the probabilist set of error rates as E = fp('j); 'jgj=1::m. We use alsoE = f'1; :::; 'mg when the probability distribution fp('j)g is impli
itly agreed. An asso
iatedBSMERC to E 
an be de�ned as follows:De�nition 5.1. E-BSMERC1. Ali
e sends a bit r.2. Bob re
eives r0 and the out
ome of the tossing of a probabilist variable e whi
h takesvalue in 'j with probability distribution fp('j)g whi
h indi
ates that Pr(r0 6= r) = 'j.This 
hannel 
an be faithfully emulated by a quantum 
oding s
heme: the sender en-
odes a bit by the parity of a sequen
e of random bits and sends the en
oding quantum statesof these bits to the re
eiver, where two values 0; 1 of a bit are en
oded by two nonorthogonalquantum states; the re
eiver uses the de
oding 
oherent measurement invented by [BMS96℄for dete
ting the parity of the sequen
e. We will expose this emulation in Chapter 6.5.1.2 Semi-honest BSMERC from Non-trivial DMCIndeed, based on a nontrivial DMC, the 
oding s
heme in Proto
ol 4.3 on page 40 with apair of input symbols x1; x2 satisfying Theorem 4.1 on page 39 
an be used to implement aE-BSMERC as follows:Proto
ol 5.1. PY=X ! E-BSMERC(r)1. Ali
e en
odes r = 0 as x1:x2, r = 1 as x2:x1 and sends them via the DMC.2. Bob re
eives y0:y1, sets r0 as the best guess of r and the 
orresponding error ratee = PY=X=x1(y1�r0)PY=X=x2(yr0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0) 2 E :where E is the set of all possible error rates over all pairs (y0; y1) 2 Y � Y with input pairx1; x2:E = ( PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y0)PY=X=x2(y1) ����� (y0; y1) 2 Y �Y)then for ea
h 'j 2 EYYj = ((y0; y1) 2 Y � Y ����� PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y1)PY=X=x2(y0) + PY=X=x1(y0)PY=X=x2(y1) = 'j)52



5.2. Building Oblivious Transfer from E-BSMERCand p('j) = X(y0;y1)2YYj(PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0)):5.1.3 A Chara
terizing Fun
tion of E-BSMERCSuppose that Ali
e sends to Bob N random bits via an E-BSMERC, and Bob is free to seta subset of n = Np re
eived bits, 0 � p � 1, we are interested in the almost lowest missinginformation of the bits in Bob's subset, assumed by Law of Large Numbers. For des
ribingthis average lowest missing information, we 
onstru
t a fun
tion � : [0; 1℄! [0; 1℄ as:� if p � p('1) then Bob almost re
eives a segment Np bits with error rate e1 and then�(p) = ph('1);� if p('1)+p('2) � p > p('1) then Bob 
an almost make the 
on
atenation of a segmentof Np('1) bits with error rate '1 and a segment of N(p � p('1)) bits with error rate'2, then the average entropy is �(p) = p('1)h('1) + (p� p('1))h('2);� and so on.An example with an E-BSMERC with 3 error rates is illustrated in Figure 5.1.

jI0jNp1 p2 1p3p1h('1)p1h('1) + p2h('2)
p1h('1) + p2h('2) + p3h('3)

Figure 5.1: Bob's optimal average error rate5.2 Building Oblivious Transfer from E-BSMERCWe propose an extended BSEC, denoted as (E ; j0)-BSEC, whi
h is de�ned as a E-BSMERCprovided a error rate threshold 'j0 2 E with 1 � j0 < m. We see that only (E)-BSMERCwith E having at least two di�erent error rates, i.e. m � 2 is interesting for building erasure
hannels. When E has only one error rate, the (E)-BSMERC be
omes in fa
t a BSC that 
anbe used to produ
e a BSEC, a BSMERC with two error rates, 
f. Proto
ol 5.1.53



Chapter 5. Binary Symmetri
 Multi-Error-Rate ChannelsProto
ol 5.2. E-BSMERC ! (E ; j0)-BSEC(r)1. Ali
e sends r via E-BSMERC, and Bob re
eives r0 and e = 'j.2. Bob sets � = 0 if e � 'j0, i.e. j � j0, and � = 1 otherwise.This binary symmetri
 erasure 
hannel haspg = Xj:'j�'j0 p('j) = Xj�j0 p('j): (5.1)Suppose that we have a E-BSMERC with a 
ertain interesting threshold 1 � j0 < mwhere m is the 
ardinality of the error-rate set E , we 
an inspire from Proto
ol 4.2 on page 37for building oblivious transfer.In our implementations of oblivious transfer, Ali
e sends 2N random bits r1; :::; r2Nto Bob via the (E ; j0)-BSEC with 1 � j0 < m. Bob should re
eive 2Npg of them as goodbits. Bob then 
an set two sequen
es I0; I1, ea
h of size n < 2Npg. With I0; I1, Bob hastwo 
orresponding sequen
es r0I0 ; r0I1 where r0I0 
onsists of good bits. Then, Ali
e sends error
orre
ting 
odes' syndromes syn(rI0); syn(rI1) for suÆ
iently 
orre
ting all of errors in r0I0 ,but not suÆ
ient for 
orre
ting all errors in r0I1 for any dishonest setting. We should use error
orre
ting 
odes with syndrome lengthjsyn(rI0)j = syn(rI1) = Hdis(rI0 :rI1=r0I0 :r0I1)=2 +Hhon(rI0=r0I0)2 (5.2)where Hdis is the missing information for any mali
ious setting of I0; I1 while Hhon is themissing information for honest setting. Thus, the missing information gap is 
ru
ial for�nding eÆ
ient error-
orre
ting 
odes, 
f. Theorem 2.3 on page 13:R = jsyn(rI0)j �Hhon(rI0=r0I0) = Hdis(rI0 :rI1=r0I0 :r0I1)� 2Hhon(rI0=r0I0)4 (5.3)Noti
e that, with our (E ; j0)-BSEC, r0I0 and r0I1 
onsist of bits sent via binary sym-metri
 
hannels with di�erent error rates. For instan
e, the bits in r0I0 are re
eived with errorrates '1; :::; 'j0 . We see that, for setting any sequen
e r0I0 :r0I1 of 2n-bits length, Bob 
an inbest have almost a segment of 2Np('1) bits with error rate '1, ..., and a last segment of2N (with  � p('k)) bits with error rate 'k su
h that 2N(p('1) + :::+ p('k�1) + ) = 2n,i.e. Hdis(rI0 :rI1=r0I0 :r0I1) = 2N�(n=N) (5.4)Besides, for the missing information in honest setting of I0, we 
onsider two honest settingsof I0 whi
h lead to two di�erent implementation s
hemes of oblivious transfer as follows.5.2.1 S
heme 1In this implementation s
heme, we use the exa
t fun
tion for missing information: Bob will
reate I0 as the 
on
atenation of segments of positions with error rates 'j ; 1 � j � j0, ea
hof length 2N(p('j)� Æj) with a bias Æj > 0; and Ali
e sends the syndromes syn(rI0); syn(rI1)whi
h are 
omputed by the 
on
atenations of syndromes 
orre
ting 2N(p('j)� Æj) uniformlydistributed errors with error rate 'j ; 1 � j � j0.54



5.2. Building Oblivious Transfer from E-BSMERCProto
ol 5.3. (E ; j0)-BSEC ! OT(b0; b1)(
)1. Ali
e pi
ks 2N random bits ri, i = 1; :::; 2N , and sends to Bob via (E ; j0)-BSEC(ri).Bob re
eives r0i;�i; ei2. Bob makes two disjoint index sequen
es I0; I1, jI0j = jI1j = n = 2NPj0j=1(p('j) � Æj),su
h that� �i = 0 for all i 2 I0, i.e. ei � 'j0 ;� I0 is the 
on
atenation of segments 1 � j � j0 of 2N(p('j) � Æj) positions theerror rate is 'j.and announ
es (I
; I1�
) to Ali
e.3. Ali
e 
omputes and sends (s0 = syn(rI
); s1 = syn(rI1�
)) to Bob. Here, s0; s1 are madeby the 
on
atenation of 
odes with error rate 'j for segment 1 � j � j0 of 2N(p('j)�Æj)bits in rI
.4. Ali
e pi
ks a sequen
e of n random bits m and sends to Bob.5. Ali
e 
omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI
 � m),k1 = (rI1�
 �m).6. Bob uses s
 to 
orre
t errors in rI0, and 
omputes b
 = k
 � b̂
The idea is that Bob almost re
eives 2Np('j) bits with error rate 'j . So, a

ordingto the Law of Large Numbers, 
f. Theorem 2.1 on page 10, with81 � j � j0; 0 < Æj < p('j):Bob 
an almost produ
e a segment of 2N(p('j) � Æj) indexes where the error rates are 'j .The missing information to be �lled by error 
orre
tion for this segment is then 2N(p('j)�Æj)h('j). So the missing information to be 
orre
ted for the sequen
e r0I0 isHhon(rI0=r0I0) = j0Xj=1 2N(p('j)� Æj)h('j):Meanwhile, the almost lowest missing information of rI0 :rI1 for all setting of I0; I1 isHdis(rI0 :rI1=r0I0 :r0I1) = 2N�0�2 j0Xj=1(p('j)� Æj)1A :Lemma 5.1. Let error rate set E = f'1; :::; 'mg, for all 1 � j < m and for all � >p('1)+ :::+p('j) whi
h is de
omposed into � = �1+ :::+�j su
h that 81 � i � j; �i � p('i).We have jXi=1 �ip('i) < �(�):55



Chapter 5. Binary Symmetri
 Multi-Error-Rate ChannelsProof. Denote p = (p('1) + :::+ p('j)), we have�(�) � jXi=1 p('i)h('i) + (�� p)h('j+1)= jXi=1 p('i)h('i) + jXi=1 �ih('i+1)� jXi=1 p('i)h('i+1)= jXi=1 �ih('i+1)� jXi=1 p('i)(h('i+1)� h('i))and then �(�)� jXi=1 �ip('i) � jXi=1(�i � p('i))(h('i+1)� h('i)):As � > Pji=1 p(�i) and 81 � i � j; �i � p('i), there musts exist a 
ertain i su
h that�i > p(�i) and then �(�)� jXi=1 �ip('i) > 0:Theorem 5.1. Given a (E ; j0)-BSEC with 1 � j0 < m satisfying that there exist Æ1; :::; Æj0su
h that 81 � j � j0; 0 < Æj � p('j)=2 and Pj0j=1 p('j) < Pj0j=1 2(p('j) � Æj) � 1, thenProto
ol 5.3 implements oblivious transfer with failure probability negligible in N .Proof. As 0 < Æj � p('j), then Bob 
an almost honest set up I0; I1 where r0I0 is the 
on
ate-nation of segments, ea
h segment j = 1::j0 has 2N(p('j)� Æj) bits re
eived with error rate'j . Meanwhile, the missing information of rI0 :rI1 for any dishonest setting of I0; I1 is:Hdis(rI0 :rI1=r0I0 :r0I1) = 2N�0�2 j0Xj=1(p('j)� Æj)1A :As 81 � j � j0; 2(p('j)� Æj) � p('j), andPj0j=1 2(p('j)� Æj) >Pj0j=1 p('j), then a

ordingto Lemma 5.1:Hdis(rI0 :rI1=r0I0 :r0I1) > 2N j0Xj=1 2(p('j)� Æj)h('j) = 2Hhon(rI0=r0I0):Therefore, we 
an propose an error 
orre
ting 
ode, with syndrome length 
al
ulated by Eq.(5.2), that 
an 
orre
t eÆ
iently Hhon(rI0=r0I0) bits of missing information while there aresome remaining bits of missing information of one of rI0 ; rI0 .56



5.2. Building Oblivious Transfer from E-BSMERCThus, we have to 
hoose j0; Æ1; :::; Æj0 su
h that(81 � j � j0; 0 < Æj � p('j)=2;Pj0j=1 p('j) <Pj0j=1 2(p('j)� Æj) � 1 (5.5)In a 
onvenient way, we 
an 
hoose Æ1 = ::: = Æj0 = Æ and the 
onstraints be
ome(0 < Æ � minj=1;:::;j0fp('j)=2gPj0j=1 p('j) <Pj0j=1 2(p('j)� Æ) � 1 (5.6)5.2.2 S
heme 2In this 
onstru
tion, we 
onsider the re
eived bits in r0I0 as being sent via a BSC with theaverage error rate 'g = Pj0j=1 p('j)'jPj0j=1 p('j) (5.7)This 
hannel 
an be emulated as Bob forgets the a
tual error rate of ea
h re
eived bit in I0.Then the average missing information to be 
orre
ted is h('g).Proto
ol 5.4. (E ; j0)-BSEC ! OT(b0; b1)(
)1. Ali
e pi
ks 2N random bits ri, i = 1; :::; 2N , and sends to Bob via E ; 'j0-BSEC(ri).Bob re
eives r0i;�i; ei2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n = 2N(pg� Æ), su
h that �i = 0for all i 2 I0, i.e. ei � 'j0 and sends (I
; I1�
) to Ali
e.3. Ali
e 
omputes and sends (s0 = syn(rI
); s1 = syn(rI1�
)) to Bob. Here, s0; s1 made as
he
k 
odes for error rate 'g = Pj0j=1 p('j)'jPj0j=1 p('j)4. Ali
e pi
ks a sequen
e of n random bits m and sends to Bob.5. Ali
e 
omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI
 � m),k1 = (rI1�
 �m).6. Bob uses s
 to 
orre
t errors in rI0, and 
omputes b
 = k
 � b̂
.However, by this approa
h, Bob has lost information when forgetting the error rateof ea
h re
eived bit, as expressed by following inequality, based on the 
onvexity of entropyfun
tion: h('g) = h Pj0j=1 p('j)'jPj0j=1 p('j) ! � j0Xj=1 p('j)h('j)Pj0j=1 p('j) (5.8)where the right-hand formula is the average missing information when Bob keeps in mind theerror rate of ea
h re
eived bit. 57



Chapter 5. Binary Symmetri
 Multi-Error-Rate ChannelsNoti
e that I0; I1 are referred to as sets in Proto
ol 5.4 while as sequen
es in Proto-
ol 5.3. The di�eren
e is that, if I0 
ontains i1 < ::: < in then, in Proto
ol 5.3 Bob sends thesequen
e (i1; :::; in) while in Proto
ol 5.3 Bob sends the a permutation sequen
e (ij1 ; :::; ijn)depending on the error rates re
eived at ea
h position.Obviously, a dishonest Bob should always keep information about error rates, and we
annot apply the average error rate approa
h to r0I0 :r0I1 for the se
urity. So, for this imple-mentation we should guarantee a positive gap between missing information, 
f. Eq. (5.3),as: �(2(pg � Æ)) � 2(pg � Æ)h('g) > 0: (5.9)Simply speaking, we 
an assume that Proto
ol 5.4 implements an oblivious transferproto
ol with failure probability negligible in N with the 
onstraints(0 < Æ � pg; 2(pg � Æ) � 1;�(2(pg � Æ)) � 2(pg � Æ)h('g) > 0 (5.10)5.2.3 Veri�
ation of Sender's HonestyBesides, simply speaking, as the probability distributions of r0i;�i; ei are identi
al over allbits ri sent by Ali
e, from the view of Ali
e I0 and I1 
annot be distinguishable, and thus she
annot gain any information about Bob's 
hoi
e 
. So Proto
ols 5.3, 5.4 are se
ure againstAli
e. However, if we use the binary symmetri
 erasure 
hannel built from a dis
rete mem-oryless 
hannel as in Proto
ol 5.1, Ali
e 
an violate the en
oding 
onventions to 
hange theprobability distribution of r0i;�i; ei over ea
h ri in Proto
ols 5.3, 5.4 and then guess I0; I1 tolearn 
. For preventing this atta
k we 
an fortunately verify Ali
e's honesty by the statisti
alparameters of the DMC based solely on its output symbols, as in Proto
ol 4.5 on page 41,be
ause our extensions make only relaxations on the error-rate threshold for the intermediateerasure 
hannels and do not 
hange these parameters.Proto
ol 5.5. PY=X ! OT (b0; b1)(
)1. Ali
e pi
ks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob pi
ks M random bits 
1; :::; 
M .3. For l = 1; :::;M , Ali
e and Bob run a semi-honest OT proto
ol that use the extendedBSEC built from the DMC, 
f. Proto
ol 5.1, Bob gets b0l with his 
hoi
e 
l.4. Bob 
he
ks the statisti
s of the 
hannel DMC and aborts if Ali
e 
heats.5. Bob sends 
0 =LMl=1 
l � 
6. Ali
e 
omputes b̂0 =LMl=1 bl;
0 � b0, b̂1 =LMl=1 bl;(1�
0) � b1 and sends to Bob.7. Bob 
omputes b
 =LMl=1 b0l � b̂
. 58



5.3. Improvement of EÆ
ien
y based on Error-Rate Distribution5.3 Improvement of EÆ
ien
y based on Error-Rate Distribu-tionWe 
an see that CMW's 
onstru
tion s
heme is a spe
ial 
ase of Proto
ols 5.3, 5.4 wherej0 = 1. Then, this 
onstru
tion is based on the gap between the minimal error rate and these
ond least one. However, we see that this 
hoi
e is not the most eÆ
ient for building theoblivious transfer proto
ol.For instan
e, in the example illustrated in Figure 5.1, we have '1 � '2 and p1 � p2.In this 
ase, in the 
onstru
tion of oblivious transfer based in Proto
ols 4.3 on page 40, 4.2 onpage 37, we have to set all i 2 I0 with ri are re
eived with error rate '1 and then I0; I1 are onlymade with i where ri are re
eived with error rate '1 or '2. Thus, the missing informationgap, 
f. Eq. (5.3), is very small and 
auses diÆ
ulties in �nding e�e
tive error-
orre
ting
odes to make the oblivious transfer proto
ol 
orre
t and se
ure.Nevertheless, we 
an 
onsider all error rates below a 
ertain value 'j0 as good where'j0 is not ne
essarily the minimal error rate. With some 
onstraints, 
f. Eqs. (5.6), (5.10),we 
an also build an oblivious transfer proto
ol from this extended BSEC, 
f. Proto
ols 5.3,5.4. When we 
hoose j0 = 1, i.e. 'j0 = '1, these s
hemes turn into the above spe
ial 
ase.Moreover, depending on the distribution of error rates 
orresponding to the outputpairs, we would rather 
hoose 'j0 to regroup good pairs with good error rates below 'j0 .A

ording to Theorems 2.1 on page 10 and 2.3 on page 13, we should optimize (i) Æ forthe su

ess of honest setting of I0 and (ii) the un
ertainty gap between the average missinginformation of rI0 when Bob is honest and of rI0 :rI1 when Bob is dishonest, 
f. Eq. (5.3), foran eÆ
ient error 
orre
ting 
odes assuming the 
orre
tness and the priva
y of the proto
ol.� For the 
onstru
tion s
heme using Proto
ol 5.3, we would look for a good j0 � 1and a bias Æ that optimizes Æ and �(2(pg � j0Æ)) � 2Pj0j=1(p('j) � Æ)h('j), satisfying
onstraints in Eq. (5.6).� For the 
onstru
tion s
heme using Proto
ol 5.4, the optimization 
riteria for this 
on-stru
tion are then Æ and �(2(pg � Æ)) � 2(pg � Æ)h('g) with the 
onstraints in Eq.(5.10).In the above example, 
f. Figure 5.1, we would better regroup '1; '2 as good errorrates, and get a better gap between the missing information of rI0 , in honest setting, andof rI0 :rI1 , in dishonest setting, for �nding out eÆ
ient error 
orre
ting 
odes. With su
hdistribution, either Proto
ol 5.3 or 5.4 
an give a better eÆ
ien
y than the basi
 
onstru
tionof [CMW04℄.However, the eÆ
ien
y optimization problem in 
onstru
tion of oblivious transfer isa diÆ
ult problem. Our extended s
hemes 
an help to improve the eÆ
ien
y of buildingoblivious transfer but neither Proto
ol 5.3 nor 5.4 is an optimal 
onstru
tion.Imagine that there is a j0 with 81 � j � j0, 'j are very small, 8k > j0, 'k aresigni�
ant, and pg = Pj0j=1 p('j) = 1=2 � �, then we would think that j0 is a good 
hoi
e.Unfortunately, if there exists a j � j0 su
h that p('j) � 1 then Æ � p('j)=2 
annot beoptimized. So the 
onstru
tion in Proto
ol 5.3 is not good in this 
ase. Indeed, the 
onstraints59



Chapter 5. Binary Symmetri
 Multi-Error-Rate Channels0 < Æ � minj0j=1fp('j)=2g prevent us from seeking for a better threshold. In this 
ase,Proto
ol 5.4 is better. However, in 
ase of another distribution of error rates where 81 �j � j0, p('j) are so signi�
antly great that we 
an avoid the 
onstraint on Æ but 'j variesmu
h, then Proto
ol 5.3 is better be
ause the missing information in r0I0 is 
omputed morea

urately and the error 
orre
ting 
odes 
an be made more eÆ
ient.We should then swit
h between the two approa
hes for optimizing both Æ and the gapR, 
f. Eq. (5.3), depending on the probability distribution of the error rates of the BSMERC.We 
an also propose a 
ompromise between two approa
hes for a better exploitationof the error rate distribution of the BSMERC. We 
an make partitions over the error rates.Ea
h partition 
onsists of some su

essive error rates and is 
onsidered as in Proto
ol 5.4with the average error rate. The global s
heme resembles Proto
ol 5.3, but I0 is made from
on
atenation of segments 
orresponding to the partitions.Moreover, suppose that we are satis�ed with one of the 
onstru
tion, using eitherProto
ol 5.3 or 5.4, the optimization 
riteria are required to be quantitatively formulated. Forinstan
e, in 5.3 
onstru
tion, we should optimize both Æ and �(2(pg�j0Æ))�2Pj0j=1(p('j)�Æ)h('j). Therefore, what is the trade-o� between these to 
riteria? This 
an only determinedwhen we have exa
t parameters on the eÆ
ien
y of the error-
orre
ting 
odes, 
f. Theorem 2.3on page 13.5.4 Con
luding RemarksIn this 
hapter, we has generalized the 
onstru
tion of oblivious transfer based on a nontrivialdis
rete memoryless 
hannel by introdu
ing the model of a general binary symmetri
 multi-error-rate 
hannel, 
f. De�nition 5.1 and Proto
ol 5.1. With this extension, we have thefreedom to �nd a threshold for a binary erasure 
hannel whi
h 
reates a better gap betweenthe equivo
ation of rI0 to be �lled by error-
orre
ting 
odes and of rI1 to be 
ondensed bypriva
y ampli�
ation.By this extension, we 
an enhan
e the eÆ
ien
y, i.e. redu
e the number of bits sentvia the DMC, in 
omparison with the restri
ted 
onstru
tion based on the lowest error rate,
f. Proto
ol 4.3 on page 40. We see that if we 
an in
rease both Æ and the error rate gap bya fa
tor 
 > 1, then we 
an redu
e N to N=
 to have an oblivious transfer proto
ol with thesame failure probability. However, an eÆ
ient 
onstru
tion would depend on the probabilitydistribution of the error rates of the multi-error-rate 
hannel.Moreover, the 
onstru
tion of oblivious transfer from noisy 
hannels via intermediateBSMERC is more general. We expe
t that this approa
h 
an help us in 
onsidering theopen question about implementing OT from more general noisy 
hannels su
h as 
ontinuousalphabet 
hannels [Mor05℄. Intuitively, noisy 
ontinuous alphabet 
hannels 
an be used toimplement 
ontinuous error-rate set E-BSMERC. However, it should require further studiesfor a quantitative analysis of the implementation.
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Chapter 6Quantum Non-Orthogonal Coding
In this 
hapter, we are studying a quantum nonorthogonal 
oding s
heme using two nonorthog-onal quantum pure states. It is known that this 
oding s
heme is 
omparable to quantum
onjugate 
oding for building QKD proto
ols [Ben92℄. We present an alternative approa
hto the 
onstru
tion of variants of oblivious transfer, based on the quantum nonorthogonal
oding.If a sender uses this 
oding to send a 
lassi
al bit, then there is no quantum measure-ment apparatus for the re
eiver to su

essfully de
ode the signal. We expose that this 
odings
heme 
an be used to emulate the noisy transmission models: BSC, BSEC, BSMERC, men-tioned in Chapters 4 and 5. Our 
onstru
tions are optimal for semi-honest sender model,i.e. in ea
h 
onstru
tion, we expli
itly propose an quantum de
oding 
oherent measurementfor the re
eiver to obtain the optimal parameters. We emphasize the advantage of quantum
oherent measurements.Inspired from the previous work, we analyze the 
onstru
tion of an oblivious transferproto
ol based on the quantum BSEC with 
lassi
ally semi-honest sender. For the se
urityagainst the re
eiver, we should 
onsider the optimal 
oherent atta
ks, and abandon the usual
lassi
al priva
y ampli�
ation.Then, it's suggested that we 
an for
e the sender to be semi-honest by verifyingsender's honesty via statisti
al tests. A 
oin 
ipping based s
heme is raised from this idea.However, if the sender is supposed to possess a quantum 
omputer and permitted to keepthe quantum entanglement, then the sender 
an gain information about re
eiver's se
ret. Insu
h s
enario, we say that the sender is quantum semi-honest. Nevertheless, if we have a bit
ommitment proto
ol, we 
an for
e the sender to be 
lassi
ally semi-honest sender and builda se
ure oblivious transfer proto
ol.These results are 
omparable to what is obtained from the approa
h based on quantum
onjugate 
oding, 
f. Se
tion 4.3 on page 41. However, both of the approa
hes 
ould notissue a se
ure quantum oblivious transfer, as prevented by the no-go results of Mayers, Lo &Chau [May97, LC97, Lo97℄. 61



Chapter 6. Quantum Non-Orthogonal Coding6.1 Quantum Non-Orthogonal CodingWe de�ne a �-QNOC as a 
oding s
heme whi
h en
odes two possible values of a 
lassi
al bit(0 or 1) by two quantum nonorthogonal pure states:j 0i ; j 1i su
h that j h 0j 1i j = 1� �: (6.1)For example, we 
an 
hoose j 0i = �
os�sin��; j 1i = � 
os�� sin�� (6.2)with 
os 2� = 1� �. In terms of density matrix, these states are�0 = j 0i h 0j = �
2 
s
s s2� and �1 = j 1i h 1j = � 
2 �
s�
s s2 �where 
; s stand for 
os�; sin� respe
tively, or shortly�b = � 
2 �
s�
s s2 � (6.3)where the plus sign for b = 0 and the minus sign for b = 1. The parameter � 
an be seen asa measure of orthogonality of the 
oding s
heme: � = 1 when the two en
oding states �1; �2are orthogonal. Here, we are only interesting in QNOC with 0 < � < 1.6.2 Optimal Distinguishabilities and Emulated Noisy ModelsThis is an unusual 
oding be
ause there is no perfe
t de
oder [NC04℄. We 
an only usesome appropriate de
oding apparatus, expe
ting some kinds of distinguishability informa-tion [FvdG99℄.We expose here some related problems of distinguishability related to this en
odings
heme: the distinguishability of the two en
oding states themself, and the distinguishabilityof the parity of a bit sequen
e en
oded by the QNOC. For ea
h optimal quantum mea-surements for the distinguishabilities, the QNOC 
an be used to emulate interesting noisy
hannels.6.2.1 BSC based on QNOCThe �rst problem is 
on
erned with the distinguishability of the two en
oding non orthogonalpure states.For example, the distinguishability 
an be measured by the mutual information be-tween the en
oded bit b and the de
oding out
omes of a measurement E on the en
odingstates. This amount of information is bounded by Holevo's inequality [NC04, Yue97℄:I(b;E) � S(�)� �0S(�0)� �1S(�1) = S(�) (6.4)62



6.2. Optimal Distinguishabilities and Emulated Noisy Modelswhere S(:) is Von Neumann entropy fun
tion, 
f. Eq. (3.1) on page 30, f�0 = p(b = 0); �1 =p(b = 1)g is the a priori probability distribution of b, and � = �0�0 + �1�1. It is shown thata proje
tive measurement in basis fj+i ; j�ig withj+i = 1p2�11�; j�i = 1p2� 1�1� (6.5)is an optimal measurement for the en
oding states in Eq. (6.2), gaining the mutual informa-tion bound. With this measurement basis, optimizing the mutual information, the QNOCimplements a BSC with error rate [BMS96℄pe = 1� 2
s2 (6.6)where I(b;E) = 1 � h(pe) for h(:) being binary Shannon entropy fun
tion, 
f. Eq. (2.2) onpage 11.Proto
ol 6.1. QNOC ! BSC(r)1. Ali
e uses the en
oding state 
orresponding to r, 
f. Eq. (6.2) and sends the qubit toBob.2. Bob measures the re
eived qubit in basis fj+i ; j�ig, 
f. Eq. (6.5) and sets r0 = 0 if theoutput state is j+i, r0 = 1 if the output state is j�i.6.2.2 BSEC based on QNOCOn the other hand, the distinguishability 
an tell us how well one 
an distinguish the twostates �0; �1 in terms of the 
on
lusive or deterministi
 information that we 
an get aboutthe en
oded bit from measurement out
omes.It appears �rst that we 
an use the proje
tions f�0; I � �0g,where I is the identityoperator a
ting on the Hilbert spa
e of j 0i ; j 1i, to have a 
on
lusive response: when theproje
tion I��0 has a
ted, then the entry state had to be �1. Thus, the probability of su

essis equal to 12 tr((I � �0)�1) = 12(1� j h 0j 1i j2).However, deeper studies shown that we would rather 
ouple the system with an an-
illa and do a proje
tive measurement in the joint spa
e to gain a better probability ofsu

ess [Iva87, Die88, Per88, JS95, Bus97℄. With an an
illa initialized to be in state j0i, the
omposite system is then in state(
 j0i � s j1i) j0i = 
 j00i � s j10iwhere the plus sign for j 0i and minus sign for j 1i. We apply the unitary transformationwhi
h is a rotation in the subspa
e spanned by j00i and j11i su
h thatj00i ! s
 j00i+r1� s2
2 j11i :Therefore, the �nal state is p
2 � s2 j11i+ s(j0i � j1i) j0i :63



Chapter 6. Quantum Non-Orthogonal CodingIf we measure the an
illa system in the basis fj0i ; j1ig and �nd it in state j0i, then theoriginal state 
an be 
on
lusively distinguished by the measurement on the original systemin the basis fj+i ; j�ig. The probability of a su

essful inferring is thenpmax = 2s2 = 1� jh 0j 1ij = �: (6.7)This measurement is shown to be optimal for a 
on
lusive inferring when j 0i ; j 1i are takenwith equal probabilities, and the probability in Eq. 6.7 is the optimal probability of su

ess.We see that this de
oding s
heme implements a BSEC with pg = �.Within the formalism of POVM, we propose a de
oding measurement for our �-QNOCwith whi
h we 
an su

essfully infer the en
oded bit with the maximal probability �:Ê = 8><>: Ê0 = 12�� (I � �1);Ê1 = 12�� (I � �0);Ê2 = I � Ê0 � Ê1 9>=>; : (6.8)where the measurement of system in state �1 
annot give Ê = 0 and the measurement ofsystem in �0 
annot give Ê = 1. In su
h a way, the en
oded bit is 
on
lusively dete
ted whenÊ = 0 or Ê = 1, and we have a binary symmetri
 erasure 
hannel:Proto
ol 6.2. �-QNOC ! BSEC(r)1. Ali
e sends to Bob the state �r en
oding r to Bob, using the �-QNOC.2. Bob uses the de�ned de
oding Ê, 
f. Eq. (6.8), to measure the state. Bob outputs:� � = 0 when Ê = 0 or Ê = 1; Bob sets r0 = Ê and so r0 = r.� � = 1 when Ê = 2; Bob sets r0 as random bit.Comparing with the BSEC based on quantum 
onjugate 
oding, 
f. Proto
ol 4.7 onpage 42, we state that� Proto
ol 4.7 be
omes a noiseless 
hannel if Bob 
an store the qubit for arbitrarilyduration. Nevertheless, Proto
ol 6.2 
annot be noiseless whatever Bob 
an do, i.e.there must exist some erasure of information.� In Proto
ol 4.7, Ali
e 
annot a�e
t the probability distribution of �. Nevertheless, inProto
ol 6.2, Ali
e 
an a�e
t the probability distribution of � by sending a state notbelonging to fj 0i ; j 1ig.6.2.3 The Parity Bit and BSMERC based on QNOCSuppose that a sender generates a sequen
e of random bits, en
odes ea
h of them by a qubitby the �-QNOC and sends the en
oding qubits to a re
eiver whi
h has to identify the parityof the original bit sequen
e.It appears �rst that the re
eiver 
an measure ea
h qubit, optimizing a 
ertain dis-tinguishability information as above, and 
ombining all of the results for determining the64



6.2. Optimal Distinguishabilities and Emulated Noisy Modelsparity bit. However, it is pointed out that the re
eiver 
an do better by using a 
oherentmeasurement on the whole of the sequen
e of qubits [BMS96℄.The density matri
es for the parity bit for a sequen
e of n qubits is 
omputed re
ur-sively as �(n)0 = 12(�(1)0 
 �(n�1)0 + �(1)1 
 �(n�1)1 )�(n)1 = 12(�(1)0 
 �(n�1)1 + �(1)1 
 �(n�1)0 )where the 
ase for a single qubit is exposed in Eq. (6.3):�(1)b = � 
2 �
s�
s s2 � :One de�nes two auxiliary matri
es �(n) = 12(�(n)0 + �(n)0 )�(n) = 12(�(n)0 � �(n)0 ):We have �(1) = �
2 00 s2� ; �(1) = � 0 
s
s 0�and �(n);�(n) 
an be 
omputed re
ursively as�(n) = �(1) 
 �(n�1); �(n) = �(1) 
�(n�1)Therefore, �(n) is a 2n�2n diagonal matrix in whi
h the diagonal members are 2n 
omponentsof the expansion of the tensor (
2 s2)
n, for instan
e (
2 s2)
2 = (
4 
2s2 
2s2 s4), and �(n)is a 2n � 2n anti-diagonal matrix in whi
h all of the anti-diagonal members are 
nsn. Thus,by the simple 
omputation �(n)b = �(n) ��(n);one has the general form of the density matri
es for the parity bit
�(n)b = 0BBBBBBBBB�


2n 0 0 ::: 0 0 �
nsn0 
2(n�1)s2 0 ::: 0 �
nsn 00 0 
2(n�1)s2 ::: �
nsn 0 0::: ::: ::: ::: ::: ::: :::0 0 �
nsn ::: 
2s2(n�1) 0 00 �
nsn 0 ::: 0 
2s2(n�1) 0�
nsn 0 0 ::: 0 0 s2n
1CCCCCCCCCA :

BMS's [BMS96℄ tri
k is then a smart re-arranging of rows and 
olumns of the matrix by
hanging the basis. The new basis ve
tors are 
omputed from the old ones, jii ; i 2 f0; 1gn,as ��i0� = ji=2i for even i; and ��i0� = j2n � (i+ 1)=2i for odd i:65



Chapter 6. Quantum Non-Orthogonal CodingWe have the parity density matri
es in a diagonal form�(n)b = 0BBB�B[j=1℄b 0 ::: 00 B[j=2℄b ::: 00 0 ::: 00 0 ::: B[j=2(n�1)℄b 1CCCA ;where ea
h diagonal member is a 2� 2 matrix in the form ofB[j℄b = �
2(n�k)s2k �
nsn�
nsn 
2ks2(n�k)� :For j from 1 to 2n: the �rst blo
k (j = 1) has k = 0; there are �n1� blo
ks whi
h have k = 1;there are �n2� blo
ks whi
h have k = 2; et
. This 
ontinues until k = (n� 1)=2 for odd n. Foreven n, we adjust only 12�nk� blo
ks of k = n=2.Ea
h of these blo
ks is of the same form as in Eq. (6.3) and so stands for a QNOCs
heme with two pure statesjbi[k℄ = � 
0[k℄�s0[k℄�; for 
0[k℄ = 
n�kskp
2(n�k)s2k + 
2ks2(n�k) ; s0[k℄ = 
ksn�kp
2(n�k)s2k + 
2ks2(n�k)whi
h en
ode dire
tly the values of the parity bit b. We will be interested in the optimalmutual information, and ea
h QNOC in a subspa
e j 
orresponding to blo
k j is seen as aBSC sub-
hannel with error rate, 
f. Eq. (6.6):p[k℄e = 1� 2
0[k℄s0[k℄2 :We see that, the en
oding s
heme randomly sele
ts one of 2n�1 orthogonal 2-dimensionsubspa
es j = 1; :::; 2n�1 (spanning the basis ve
tors 
orresponding to B[j℄b ) with probabilityq[k℄ = tr(B[j℄b ) = (
2(n�k)s2k + 
2ks2(n�k))and uses two pure states in ea
h subspa
e to en
ode to parity bit b whose en
oding densitymatrix is B[j℄b =tr(B[j℄b ).The optimal measurement for the mutual information of the parity is then (i) a loss-less proje
tive measurement whi
h determines the en
oding subspa
e j and (ii) an opti-mal measurements for the QNOC using two orthogonal pure states with density matri
esB[j℄b =tr(B[j℄b ); b 2 f0; 1g, gaining the optimal mutual information I2(p[k℄e ) = 1 � h(p[k℄e ) with
orresponding value k of ea
h sub-
hannel j.The optimal mutual information for distinguishing the parity values of the n-bit se-quen
e, with a determined �-QNOC, is then a fun
tion that we name by the �rst letters ofits authors Bennett, Mor and Smolin:BMS�(n) = (P(n�1)=2k=0 �nk�q[k℄I2(p[k℄e ) for odd nP(n�1)=2k=0 �nk�q[k℄I2(p[k℄e ) + 12� nn=2�q[n=2℄I2(p[n=2℄e ) for even n : (6.9)We see that this en
oding and de
oding s
hemes implements a binary symmetri
 multi-error-rate 
hannel, 
f. De�nition 5.1 on page 52: 66



6.3. Semi-honest-Sender Oblivious Transfer based on QNOCProto
ol 6.3. QNOC ! E-BSMERC(r)1. Ali
e generates a sequen
e of n random bits r1; :::; rn su
h that r1 � :::� rn = r.2. Ali
e en
odes ea
h ri with a qubit via the QNOC, and sends the qubit sequen
e to Bob.3. Bob does the above optimal 
oherent measurement, sets r0 as the �nal guess of r andregisters the 
orresponding error rate p[k℄e .Thus, E = fp[k℄e jk = 0; :::; bn=2
gThe probability of the error rate p[k℄e is then the sum of the usage probabilities of all
hannels j of the same k:p(p[k℄e ) = (�nk�(
2(n�k)s2k + 
2ks2(n�k)) for 1 � k � (n� 1)=212�nk�(
2(n�k)s2k + 
2ks2(n�k)) for k = n=2 with even n : (6.10)6.3 Semi-honest-Sender Oblivious Transfer based on QNOC6.3.1 Dis
ussion on Proto
ol Redu
tionIn the previous se
tion, we have presented how QNOC is used to build several semi-honest-sender noisy 
hannels: BSC, BSEC, BSMERC. We expli
itly presented ea
h of 
onstru
tionsof BSC, BSEC and BSMERC from QNOC with an optimal quantum de
oding 
oherentmeasurement for the optimal parameters. With su
h 
hannels, we 
an implement oblivioustransfer via the 
lassi
al redu
tion s
heme, 
f. Chapters 4, 5.The �rst question is that why did we 
ompli
ate things, be
ause a BSC is suÆ
ientfor implementing all of the others semi-honest 
hannels by the 
lassi
al redu
tion s
hemes,
f. Proto
ols 4.4 on page 40, 4.3 on page 40.However, as shown in Se
tions 6.2.2, 6.2.3, Bob 
an use 
oherent quantum measure-ments with higher 
apa
ity beyond 
lassi
ally 
ombining individual measurements. So, insu
h 
lassi
al redu
tion s
hemes, we should re-examine the possible 
oherent measurementswhi
h would give Bob more advantage.6.3.2 Constru
tion of OT from Quantum BSECWe present here the 
onstru
tion of a semi-honest sender oblivious transfer proto
ol from thequantum BSEC, 
f. Proto
ol 6.2, and highlight the pre
aution about priva
y ampli�
ationin the presen
e of quantum 
oherent atta
ks. We use the same redu
tion s
heme as inProto
ol 4.2 on page 37 for an oblivious transfer proto
ol:Proto
ol 6.4. QNOC !dOT (b0; b1)(
)1. For i from 1 to N , Ali
e pi
ks a random bit ri and sends it to Bob via the BSEC proto
olbased on �-QNOC; Bob outputs (r0i;�i).2. Bob randomly builds two disjoint index subsets I0; I1 � f1; :::; Ng su
h that jI0j = jI1j =n, and 8i 2 I0;�i = 0. 67



Chapter 6. Quantum Non-Orthogonal Coding3. Bob sends the ordered pair (I
; I1�
) to Ali
e, a

ording to his 
hoi
e 
.4. Ali
e, re
eiving (I
; I1�
), sends ba
k (b̂0 = b0�k0; b̂1 = b1�k1) to Bob where k0 = Li2I
ri,k1 = Li2I1�
ri.5. Bob de
iphers b
 = b̂
 � Li2I0r0i.We analyze �rst the 
orre
tness PC and Ali
e's priva
y HB.All that Bob re
eives are a sequen
e of qubits in a state �B and the 
iphertexts of b0; b1with the keys k0; k1: b̂
 = b
 � k
, b̂1�
 = b1�
 � k1�
. The equivo
ations of the plaintextsH(b
=b̂
; �B) = H(k0=�B), H(b1�
=b̂1�
; �B) = H(k1=�B) depend on Bob's measurements ofthe qubits �B and his setting of I0; I1 [Sha49℄.In a 
lassi
al thinking, we 
an assume the 
orre
tness and Ali
e's priva
y of Proto-
ol 6.4 with 
lassi
al arguments as for Proto
ol 4.2.For the 
orre
tness, yes, we 
an use the same argument as Ali
e and Bob who arehonest 
an make the s
heme as in a 
lassi
al s
enario. PC is obviously the probability thatBob gets at least n bits in N rounds of BSEC, when Bob is honest.However, we 
annot assume the priva
y by these arguments. Following these 
lassi
alarguments, Bob measures ea
h qubit individually, and 
ombines the results to guess the paritybits of 2n-bit substrings. Thus, the average error rates in su
h substrings 
an help to se
urethe parity based on the 
lassi
al priva
y ampli�
ation. Nevertheless, in the quantum world,dishonest Bob is supposed to use quantum ma
hine with unbounded power. With su
h ama
hine Bob 
an implement quantum algorithms and 
oherent measurements over the wholeof the qubits to gain information. It was shown that in many 
ases 
oherent atta
ks gainmu
h more information than in
oherent atta
k.For the 
onvenien
e in our proofs, we adopt a measure of Ali
e's priva
y on Bob sideas HB = H(b0 � b1=Y ) (6.11)where Y stands for all intermediate information that Bob 
an get, and � denotes theex
lusive-or operator. Su
h a measure is reasonable be
ause in many appli
ations builtfrom OT, the se
urity is based on the se
urity of b0 � b1 [Cr�e89℄. Ali
e's priva
y HB =H(b0 � b1=b̂0; b̂1; �B) = H(k0 � k1=�B) is the minimal equivo
ation of the parities of the2n-bit substrings of (r1; ::; rN ), given the en
oding qubits.In [BMS96℄, Bennett et al. have proposed the optimal 
oherent measurement to gaininformation about the parity of a bit sequen
e given the non-orthogonal en
oding states.However, it's not the same problem as gaining the optimal information about the parity ofany of substrings with �xed length. Indeed, we see that when the substrings' length is 2n and2n < N�, we 
an almost guess the parity of one of them. Figuring out how good a quantumalgorithm 
an guess the parity of any of 2n-bit substrings of a N -bit string, given the QNOCstates, would be 
omplex and out of s
ope of this thesis.For 
onvenien
e, we 
an simply 
on�gure with 2n = N , and reuse BMS's fun
tion, 
f.Eq. (6.9), for the optimal a

essible information that Bob 
an get about k0 � k1 from the68



6.3. Semi-honest-Sender Oblivious Transfer based on QNOCqubits. This amount of information is less than 1 and de
reases with N when � < 1 [BMS96℄.Then, H(k0 � k1=�B) = 1�BMS�(N) is greater than 0 and in
reases with N .For instan
e, when we 
hoose � = 35o, thus have � � 0:658, then BMS�(N) is ade
reasing fun
tion as in Figure 6.1.
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Figure 6.1: Optimal mutual information of the parity bit with 0.658-QNOCIn an asymptoti
 manner, we have a proto
ol that is almost both 
orre
t and se
ureagainst Bob:Theorem 6.1. Given any �1; �2 > 0, we 
an 
on�gure Proto
ol 6.4 with 1=2 < � < 1; 2n = Nand there exists N0 su
h that 8N � N0PC � 1� �1; andHB = H(k0 � k1=�B) � 1� �2:Proof. (Sket
h). When Ali
e and Bob are honest, with � > 1=2, Bob will re
eive in average�N > N=2 = n good ri, i.e. with �i = 0. Thus, Bob 
an set I0 with no error in r0I0 andsu

essfully de
ipher b
. The probability that Bob re
eives less than n < �N good ri 
an benegligible in N .Besides, HB = H(k0� k1=�B) = 1�BMS�(N) where BMS�(N) is also negligible inN when � < 1.Therefore, we 
an 
hoose 1=2 < � < 1 for PC and HB are both arbitrarily 
lose to 1with parameter N .Ali
e is supposed to be semi-honest, i.e. she respe
ts the QNOC s
heme, but wantsto re
ord all intermediate information to guess Bob's 
hoi
e. When Bob is honest, i.e. herespe
ts the de
oding s
heme, then the probability distribution of �i are identi
al for allposition i, and Ali
e 
annot distinguish I0; I1 to gain information about 
.69



Chapter 6. Quantum Non-Orthogonal CodingIn 
on
lusion, in 
ase Ali
e is semi-honest, we 
an 
on�gure the proto
ol with 1=2 <� < 1, n = N=2 with even N , Proto
ol 6.4 implements an oblivious transfer with failureprobability arbitrarily small in N .6.4 Quantum OT based on Coin Flipping and EPR Atta
kWe see that Proto
ol 6.4 does not implement a se
ure oblivious transfer proto
ol againstAli
e who is a
tive. Indeed, Ali
e 
an violate the QNOC s
heme to 
ontrol the probabil-ity distribution of � of the BSEC. Then, simply speaking, the distributions of I0; I1 overf1; :::; Ng are di�erent: a position i with a greater p(�i) = 0 has a greater probability to beput in I0. Ali
e 
an then gain information about 
.For the simple 
ase when the qubit sequen
e is in state �B = NNi=1 �i, i.e. all �i atposition i are not entangled ea
h with the others, then the exe
ution of ea
h ith BSEC roundis independent of the others: p(�i = 1=�i) = tr(Ê2�i), whereÊ2 =  2�2�2�� 00 0 !Thus, Ali
e 
annot de�nitively for
e �i to be 1 as tr(Ê2�i) � tr(Ê2) = 2�2�2�� . We havemin�i tr(Ê2�i) = 0 when �i = j1i h1j (6.12)max�i tr(Ê2�i) = 2� 2�2� � when �i = j0i h0j (6.13)With su
h a 
ontrol of probability distribution of �i; i = 1; :::; N , Ali
e 
an guess I1 as theset with more indi
es for input �i = j0i h0j and less indi
es for input �i = j1i h1j.The idea inspired from the implementation of OT from DMC, 
f. Proto
ol 4.5 onpage 41, is that Bob should ask Ali
e to reveal some ri in Proto
ol 6.4 to test the en
oding.If Ali
e is supposed to reveal ri 2 f0; 1g, Bob 
an measure �i by the proje
tion �ri = j rii h ri jto verify. If the qubit is not j rii, then Ali
e has a non zero probability of being dete
ted.We should have a proto
ol as follows:Proto
ol 6.5. QNOC ! OT (b0; b1)(
)1. Ali
e pi
ks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob pi
ks M random bits 
1; :::; 
M .3. For l = 1; :::;M ,� Ali
e pi
ks N + T random bits ri and sends it to Bob via �-QNOC.� Bob 
hooses T random indexes j and announ
es to Ali
e.� Ali
e reveals rj; Bob measures jth qubit with proje
tion �� rj� 
 rj �� and aborts if itfails. 70



6.4. Quantum OT based on Coin Flipping and EPR Atta
k� Bob uses the de�ne measurement Ê to 
omplete the BSEC rounds, and Ali
e andBob implement dOT (bl;0; bl;1)(
l).4. Bob sends 
0 =LMl=1 
l � 
.5. Ali
e 
omputes b̂0 =LMl=1 bl;
0 � b0, b̂1 =LMl=1 bl;(1�
0) � b1 and sends to Bob.6. Bob 
omputes b
 =LMl=1 b0l � b̂
.Ali
e has to 
heat all of M dOT rounds to learn Bob's 
hoi
e 
. If in ea
h round,dishonest Ali
e has a non zero probability of being dete
ted, then we 
an prevent Ali
e from
heating with large value of M .With large value ofM , we see that the tests assume that ea
h qubit sent by Ali
e is instate j ri with a random bit r. This state 
an be des
ribed by ��0+(1��)�1. The intuitionis that if the ith qubit sent in Proto
ol 6.4 is in state �i = ��0 + (1 � �)�1; � 2 [0; 1℄ thenp(�i = 0) = �. We would dedu
e from the 
lassi
al 
ase that if the probability distributionsof all �i are identi
al, then Ali
e 
annot dis
over 
.Nevertheless, Bob 
an use his advantage to 
heat in ea
h dOT round: he measures allof the N + T qubits and ask Ali
e to reveal rj with whi
h the result is bad while using goodresult to set I0; I1. Bob 
an 
heat one of M dOT rounds to 
aw the proto
ol. However, wewould expe
t a good 
on�guration of M and N to make Proto
ol 6.5 highly se
ure againstboth Ali
e and Bob as in [Mor05℄.Based on the same idea, we would 
on
lude that, if Ali
e and Bob have a

ess toa 
oin 
ipping proto
ol, e.g. a bla
k box that generates pairs of random bits, then Bob'sadvantage is removed. We would imagine an oblivious transfer proto
ol based on 
oin 
ippingas follows:Proto
ol 6.6. CF and QNOC ! OT(b0; b1)(
)1. For i from 1 to (M + 1)N , Ali
e pi
ks a random bit ri and sends to Bob a quantumstates en
oding ri with �-QNOC s
heme.2. Ali
e and Bob use 
oin 
ipping to generate N random log(M + 1)N -bit numbers tosele
t U � f1; :::; (M + 1)Ng with jU j = N .3. For i 2 T = f1; ::; (M +1)Ng nU , Ali
e unveils ri to Bob; Bob veri�es ri by measuringthe ith qubit �i with the proje
tion j rii h ri j and abort if it fails.4. Ali
e and Bob 
ontinue with Proto
ol 6.4 on N remaining qubits indexed in U .Unfortunately, this 
lassi
al reasoning is true only if the state ��0+(1��)�1 is preparedby a statisti
 ensemble 
onsisting of j 0i with probability � and j 1i with probability 1� �.In the s
ope of quantum me
hani
s, this statisti
al ensemble 
an be prepared as the state ofa subsystem entangled with another system.In general 
ase, Ali
e prepares a bipartite state �AB , and sends to Bob N qubits inthe state �B = trA(�AB):71



Chapter 6. Quantum Non-Orthogonal CodingFor instan
e, Ali
e 
an violate the en
oding 
onvention by preparing ea
h qubit as half B ofa pair in state p� j0iA 
 j 0iB +p1� � j1iA 
 j 1iBand sends the qubit B to Bob. This preparation is indeed quantum semi-honest be
ause thedensity matrix of the qubit B is the same as when Ali
e is honest. When Bob measures thequbit B with the de�ned Ê for implementing Proto
ol 6.2, the probability distribution of �does not 
hange, p(�=�B = 0) = �. However, Ali
e 
an measure the system A with someapparatus EA to gain some mutual information I(�;EA) about � based on the 
orrelationprodu
ed by quantum entanglement. Ali
e 
an then use I(�i;EA) about �i in ea
h ith roundto guess the di�eren
e between I0 and I1.We expose here an example of su
h EPR atta
ks on Proto
ol 6.6. By similarity, thisatta
k also 
aws Proto
ol 6.5. Assume thatj 0i =r1� �2 j0i+r�2 j1i ; j 1i =r1� �2 j0i �r�2 j1i :then 12�0 + 12�1 = � 1� �2 00 �2 � = (1� �2 ) j0i h0j+ �2 j1i h1jThis matrix 
an be prepared as an ensemble of j0i with probability (1 � �2 ) and j1i withprobability �2 . We see that these states maximally violate the �-QNOC and have the bestdistinguishability of the probability distributions of �, 
f. Eq. (6.12), (6.13).Therefore, a dishonest Ali
e 
an make a bipartite state���0� =r1� �2 j0iA j0iB +r�2 j1iA j1iBand sends qubit B to Bob. Observe that the density matrix of Bob's part is the same as thedensity matrix of Bob's part of j�i = (j0iA j 0iB+ j1iA j 1iB)=p2, and there exists a unitarytransformation UA on Ali
e side that transforms j�0i to j�i: (UA 
 IB) j�0i = j�i. We have���0� =r1� �2 j0iA j0iB +r�2 j1iA j1iB=r1� �2 (j+iA + j�iA)p2 j0iB +r�2 (j+iA � j�iA)p2 j1iB= 1p2 j+iA 
 r1� �2 j0iB +r�2 j1iB!+ 1p2 j+iA 
 r1� �2 j0iB �r�2 j1iB!= 1p2(j+iA 
 j 0iB + j�iB 
 j 1iB)and thus UA is indeed the Hadamard gateUA = H = 1p2 �1 11 �1�Therefore: 72



6.5. Quantum OT based on Bit Commitment� If the state j�0i is sele
ted to be tested, Ali
e 
an apply UA on her side to have j�iand measures the system A in the basis fj0iA ; j1iAg. This is equivalent for Ali
e tomeasure in basis fj+iA ; j�iAg. Ali
e reveals r = 0 if the output is j0iA leaving Bob'spart in state j 0iB , r = 1 if the output is j1iA leaving Bob's part in state j 1iB . Ali
e
an then su

essfully pass the test.� If the state j�0i is used for OT proto
ol, Ali
e measures the system A in the basisfj0iA ; j1iAg. If Ali
e outputs j0iA, Bob is left with the state j0iB that has a higherprobability of giving � = 1; if Ali
e outputs j1iA, Bob is left with the state j1iB that hasa lower probability of giving � = 1. We remark that Ali
e's and Bob's measurements
ommute in the sense that, if Ali
e measures after Bob does, Ali
e gain the sameinformations, i.e. Bob has re
eived � = 1 with a higher probability if Ali
e outputsj0iA and Bob has re
eived � = 1 with a lower probability if Ali
e outputs j1iA.With su
h an advantageous information about probability distribution of �i; i 2 U ,given I
; I1�
, Ali
e 
an guess I1 as the set with more indi
es for output j0iA and less indi
esfor output j1iA. Therefore, the tests 
annot help us to prevent Ali
e from 
heating, and theabove quantum oblivious transfer proto
ols, even though based on 
oin 
ipping, are 
awedby EPR atta
ks.6.5 Quantum OT based on Bit CommitmentWe see that Proto
ol 6.4 is se
ure against Ali
e only if Ali
e is supposed to respe
t theen
oding 
onvention in the �-QNOC s
heme. We 
an for
e Ali
e to do this with help of a bit
ommitment proto
ol. Re
all that 
oin 
ipping 
an be built from bit 
ommitment [CK88℄.Proto
ol 6.7. BC and QNOC ! OT(b0; b1)(
)1. Ali
e pi
ks (M + 1)N random bits ri and 
ommits all of ri to Bob via BC proto
ol.2. Ali
e sends to Bob quantum states en
oding ri with �-QNOC s
heme for all i =1; :::; (M + 1)N .3. Ali
e and Bob use 
oin 
ipping, whi
h 
an be built from BC, to generate N randomlog((M + 1)N)-bit numbers to sele
t U � f1; :::; (M + 1)Ng with jU j = N .4. For i 2 T = f1; ::; (M + 1)Ng n U ,� Ali
e unveils ri to Bob.� Bob veri�es ri in the 
ommitment and aborts if it fails.� Bob measures the ith qubit with the proje
tion j rii h ri j and abort if it fails.5. Ali
e and Bob 
ontinue with Proto
ol 6.4 on N remaining qubits indexed in U .The main di�eren
e between the test with a 
ommitment of r and the one without a
ommitment as in Proto
ols 6.5, 6.6 is that a 
ommitted bit r, with the proje
tion j ri h rj,determines only the pure state j ri while a random bit r with the proje
tion j ri h rj is a73



Chapter 6. Quantum Non-Orthogonal Codingmixed state des
ribed by � j 0i h 0j+(1��) j 1i h 1j. Then, the former 
ase does not permitAli
e to send the en
oding qubit di�erent from the 
onventional pure state j ri while thelater permits a violation of �-QNOC by part of a bipartite entangled state. In other words,the 
ommitment of r for
es Ali
e to be 
lassi
ally semi-honest.Therefore, in Proto
ol 6.7, if dishonest Ali
e violates the �-QNOC 
onvention for somerounds of BSEC in U to have some 
han
e to distinguish I0; I1 � U , then she will be dete
tedwith large value of M . If Ali
e pass the tests then Ali
e musts almost respe
t the en
oding
onvention. Thus following Theorem 6.1, she gains little information about 
.Could EPR atta
ks help Ali
e to 
heat in a general way: Ali
e prepares �AB and sendsthe qubit sequen
e in state �B = trA(�AB) to Bob; after the sele
tion of U , Ali
e operateson �A in su
h a way that Bob's part in U violates the �-QNOC and helps Ali
e to guess 
,
f. Se
tions 6.6 and 6.4, while Bob's part not in U , named U , passes the tests? We see thatwith a large value of M , almost qubits in U must respe
t the �-QNOC. So, there may existU 0 � U; jU 0j = jU j su
h that the qubit sequen
e in U 0 respe
ts the QNOC, i.e. is in stateNi2U 0 j rii h ri j and so �B =  Oi2U 0 j rii h ri j!
 �U 0As U 0 and U are equivalent under the random sele
tion, Ali
e's operation would also workwith U 0 as U . However, for any of Ali
e's lo
al transformations, �B remains the same, i.e.the qubit sequen
e in U 0 is in stateNi2U 0 j rii h ri j that respe
ts the �-QNOC and does nothelp Ali
e.Theorem 6.2. Given �1; �2; �3 > 0, we 
an 
on�gure Proto
ol 6.7 with 1 > � > 1=2, N=n = 2and there exists N0 su
h that 8N � N0PC � 1� �1; and HB � 1� �2;and there exists M0 depending on N su
h that 8M �M0HA � 1� �3Proof. (Sket
h) Following Theorem 6.1 we 
ould 
on�gure Proto
ol 6.4 and 
hoose �rst alarge value of N0 to have an oblivious transfer proto
ol strongly 
orre
t and se
ure againstBob: PC � 1� �1; and HB � 1� �2Then, we 
hoose M large enough to assume that at the 
on
lusion of Proto
ol 6.7, Ali
e hasto almost respe
t the �-QNOC and gains an amount of information about 
 below �3.6.6 Building Weak Oblivious TransferWe will show that Proto
ol 6.4 satis�es De�nition 4.1 on page 36 with PC > 0;HB > 0;HA >0. The 
orre
tness parameter PC is 
onsidered, given that Ali
e and Bob are both honest.We see that PC =PN�a�n �Na ��a(1��)N�a. Thus PC > 0 when 0 < � < 1. Besides, Ali
e's74



6.6. Building Weak Oblivious Transferpriva
y HB is 1�BMS�(N) when we 
hoose n = N=2 for even N . And then, HB > 0 when� < 1. We 
onsider now the se
urity on Ali
e side, i.e. Bob-priva
y when Bob is honest. Wedenote D, the probability distribution of N BSEC rounds e = (�1; :::;�N ) 2 f0; 1gN , knownto Ali
e when Bob is honest. In fa
t, Ali
e 
an 
ontrol the probability distribution D ofexe
ution of BSEC rounds e = (�1; ::;�N ) by sending a sequen
e of qubits in any state.HA = minfH(
=D) : for all D that Ali
e 
an generate by sending the quantum sequen
egGiven a distribution D, Ali
e has an equivo
ation of Bob's 
hoi
e as the averageentropy HA = H(
=D) = XW2W p(W=D)H(
=W;D); (6.14)for W being the set of all ordered pairs of disjoint subsets of n indexes, i.e.W = fW = (W0;W1) :W0 \W1 = ;; jW0j = jW1j = ng;and H(
=W;D) = h(p(
 = 0=W;D)) being the 
onditional entropy of 
 when Ali
e re
eivesW 2 W. Thus: p(
 = 0=W;D) = p(W=
 = 0;D)p(
 = 0=D)p(W=D)= p(W0 = I0;W1 = I1=D)2p(W=D)= Pe pD(e)p(W0 = I0;W1 = I1=e)2Pe pD(e)p(W=e) ;p(
 = 1=W;D) = p(W=
 = 1;D)p(
 = 1=D)p(W=D)= p(W1 = I0;W0 = I1=D)2p(W=D)= Pe pD(e)p(W1 = I0;W0 = I1=e)2Pe pD(e)p(W=e)where p(I=e) is the probability that Bob returns W to Ali
e, knowing an o

urren
e e of theexe
utions with the probability pD(e) 
ontrolled by Ali
e.The probability that Bob returns W = (W0;W1), given the exe
ution e, is 
omputedby the formula p(W=e) = 1Xk=0 p(Wk = I0;W1�k = I1=e):We suppose that honest Bob, knowing an exe
ution e = (�1; ::;�N ), randomly sele
tsI
 as any subset of L indexes from Zero(e) = fi 2 f1; ::; Ngj�i = 0g, and �lls I1�
 with theremaining indexes in Zero(e), then with indexes randomly sele
ted from One(e) = f1; :::; NgnZero(e). 75



Chapter 6. Quantum Non-Orthogonal CodingFor W = (W0;W1) 2 W, we havep(W0 = I0;W1 = I1=e) = 8>><>>:�jZero(e)j2n ��1 if W � Zero(e)�jZero(e)jn ��1� jOne(e)j2n�jZero(e)j��1 if W0 � Zero(e) ^ Zero(e) �W0 otherwise.We denote EW = fe : p(W0 = I0;W1 = I1=e) > 0g i.e. W 2 Zero(e) or W0 � Zero(e) ^Zero(e) �W . For 0 � a � N , we use ea to denote any o

urren
e of e su
h that Zero(e) = a.The 
ardinality of EaW = fea 2 EW g is thenjEaW j = 8><>:�N�2aa�2n� if a � 2n1 if n � a < 2n0 otherwise:We havep(W0 = I0;W1 = I1=D) = PN�a�0Pea p(ea=D)p(W0 = I0;W1 = I1=ea)= PN�a�0 Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)= PN�a�2n Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)+ P2n>a�n Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)We see that, only a ith qubit with a priori probability known by Ali
e p(�i = 1) = 1 
angive Ali
e the 
on
lusive information about 
 when i is put into I1 by Bob.However, when Bob uses the de
oding measurement Ê for the �-QNOC with � > 0,p(�i = 1=�i) � 2�2�2�� < 1 for all quantum states �i sent to Bob, 
f. Eq. 6.13. Therefore, forall 
heating qubits sent to Bob, Ali
e has nonzero un
ertainty about 
, i.e. HA > 0.In brief, as analyzed above, Proto
ol 6.4 satis�es De�nition 4.1 when 0 < � < 1. Theparameters N;n and � 
an be 
alibrated to have some degree of weak 
orre
tness and weakse
urity on both sides. We enter then in a two-party game where the more advantage we giveto a party, the more this party 
an 
ontrol the game and 
heat.We omit a quantitative analysis for the 
on�guration of our WOT be
ause of the
omplexity on Ali
e side. Intuitively, the smaller � is, the larger Ali
e-priva
y HB is, but thesmaller Bob's priva
y HA is be
ause Ali
e has larger gap in the probability distribution of�i : 0 � p(�i = 1) � 2�2�2�� . Besides, the smaller N is, the smaller Ali
e-priva
y HB is, butthe larger Bob-priva
y HA is be
ause it is harder for Ali
e to distinguish I0 and I1.We expe
t that if the proto
ol is 
on�gured to be 
orre
t and se
ure on Bob side,Ali
e will be able to generate a distribution D to guess 
 with a high a

ura
y. Indeed, aquantum oblivious transfer that is 
orre
t and se
ure on both sides is eliminated by the no-gotheorems ([May97, LC97, Lo97℄) that we will expose in the next 
hapter.
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Chapter 7No-go Theorems: Reinterpretationand ExtensionThe material of this 
hapter is 
on
erned with the general model of quantum two-partyproto
ols. Su
h proto
ols should 
onsist of 
ommuni
ation of quantum information via aquantum 
hannel and 
lassi
al information via a ma
ros
opi
 
hannel. With the presen
eof su
h ma
ros
opi
 
hannel, a quantum proto
ol is no more a purely quantum two-partymodel 
onsisting of users' quantum ma
hines. The measurements for making 
lassi
al signalstransmitted via this 
hannel would 
reate entanglements between users' quantum systemswith a third party system, un
ontrollable by the users and thrown to the environment. Thema
ros
opi
 
hannel is as a publi
 measurement apparatus whi
h is trusted by both Ali
eand Bob.With this three-party model in
luding an environment party 
oupled with the 
lassi
al
hannel, we present a faithful interpretation of general quantum proto
ols for building bit
ommitment and oblivious transfer proto
ols. With the puri�ed model, we show that theno-go theorems are valid for both ideal and non-ideal primitives.Based on this interpretation for general two-party proto
ols, showing 
ertain featuresof the models penalized by the theorem, we extend the no-go theorem for some parti
ulartrusted two-party ora
le based models whi
h do not hide information from the views of Ali
eand Bob. A no-go result on 
oin-
ipping based bit 
ommitment proto
ols similar to Kent'sone [Ken99℄ 
an be easily obtained from these extensions.A 
orollary from these extensions is that a quantum two-party ora
le for implementingun
onditionally se
ure bit 
ommitment and oblivious transfer must involve an erasure ofinformation from the views of Ali
e and Bob. This remark suggests us to dis
uss the no-gotheorems from a thermodynami
al point of view, due to Landauer's prin
iple [Lan61℄.7.1 Reinterpretation for No-go TheoremsA major obje
tion to MLC no-go theorem is that it is \too simple to be true" for all possibleproto
ols where Ali
e and Bob1. do measurement on their quantum systems and pass to 
lassi
al 
omputation;77



Chapter 7. No-go Theorems: Reinterpretation and Extension2. introdu
e private se
rets;3. 
ommuni
ate 
lassi
al information through a ma
ros
opi
 
hannel that does not permitto transmit quantum signal.Most of attention were paid to 
lassi
al variables in 
omputations [Yue00, Bub01b,Yue04, Che03, Che06℄. And these were su

essfully explained in these supplement works.The problem of se
ret variables, addressed in [Yue02, Yue04℄, was also treated for ideal andnearly ideal proto
ols by some related results in [Bub01b, Che06℄.The 
lassi
al 
ommuni
ation is normally omitted with some assumptions on the 
om-muni
ation, expressed as \
lassi
al 
ommuni
ation 
an be 
arried out by quantum model, butwith some 
onstraints" [LC97℄. But what are the 
onstraints? From a physi
al viewpoint,the 
lassi
al 
hannel does not appear in this redu
ed two-party quantum model.What is the di�eren
e between a quantum 
hannel and a 
lassi
al one? A quantum
hannel is a medium that we 
an use to dire
tly transmit a quantum state without disturbingit. Nevertheless a 
lassi
al 
hannel, for transmitting dis
rete messages, permits only one froma 
olle
tion of dis
rete signal values whi
h 
an be ampli�ed by many quantum systems onthe 
hannel, for instan
e a ma
ros
opi
 ele
tri
al wire with tension +5V for 0 and �5V for1. Imagine that in the spe
i�
ation of a proto
ol, at a 
ertain moment, a party S hasto measure some quantum state j iS with an apparatus with n degrees of freedom and
ommuni
ate this result to the other via a 
lassi
al 
hannel. This measurement will outputi 2 f1; ::; ng with probability p(i) and let the measured system in a state j iiS . Re
eivingthe 
lassi
al value i, the re
eiver R 
ould generate a basis state jiiR in a n-dimension spa
efor his further 
omputation.Of 
ourse, we 
an redu
e this 
ommuni
ation to a pure two-party quantum modelwhere the sender realizes a transformationU(j iS 
 j0iR)! nXi=1pp(i) j iiS 
 jiiRand the proto
ol will go on 
orre
tly be
ause the density-matrix des
ription of ea
h systemis the same as though a real measurement is done [LC97, Bub01b℄. The joint 
omputationremains an unitary evolution of a pure two-party state, and with su
h a quantum two-partyjoint 
omputation, bit 
ommitment is impossible as analyzed in Se
tion 4.4.1.However, the above redu
ed model for 
lassi
al 
ommuni
ations does not interpretwhat really happen in the physi
al world. It permit to 
onserve a two-party entanglementthat does not exist in the spe
i�
ation of the proto
ol with 
lassi
al 
ommuni
ation. Thistwo-party entanglement 
ould introdu
e some extra e�e
ts. For instan
e, it 
ould happenthat if the re
eiver uses the re
eived message to do a quantum 
omputation and sends ba
kthe result, the sender 
ould learn more information with entanglement atta
k by the e�e
tof super-dense 
oding [BW92℄.We 
an say that a quantum proto
ol with 
ommuni
ation of 
lassi
al messages 
an be
orre
tly implemented in a pure quantum two-party model. Nevertheless, it is not obviousto emulate the proto
ol by a puri�ed two-party model for proving the inse
urity without a78



7.1. Reinterpretation for No-go Theorems
onvin
ing interpretation. We have right to doubt that the redu
ed two-party model mayimplement 
orre
tly the proto
ol, not se
urely. The pure quantum two-party model 
ould beused to prove the possibility [Yao95℄, not the impossibility.Indeed, the 
lassi
al 
hannel for
es the measurements to be done for making 
lassi
alsignals i.e. Ali
e and Bob have to really measure their quantum states to make 
lassi
al mes-sages. And in a generi
 proto
ol, the 
ommuni
ation of 
lassi
al messages for
es destroyingthe purity of two-party states. The real joint 
omputation with 
ommuni
ation by measuringand transmitting 
lassi
al values via a 
lassi
al 
hannel is not an evolution of a pure two-partystate. In other words, as the a
tion of measurements \
an never help a 
heater", why it doesnot prevent Ali
e from 
heating?This point was only explained in Mayers' version where the measurements for making
lassi
al messages were 
onsidered [May97℄. Following Mayers, Ali
e and Bob would keep allof the operation at the quantum level, ex
ept for making 
lassi
al messages. Thus, for ea
h
lassi
al message 
, the quantum system 
ollapsed with the 
orresponding 
lassi
al out
omeis in a known pure two-party state j b;
iAB , and the trade-o� between 
on
ealing and bindingis separately treated for this state, i.e. the 
ollapsed proto
ol must be se
ure:F
 = F ��B
 (0); �B
 (1)�= F (trA(j 0;
i h 0;
 j); trA(j 1;
i h 1;
 j))� 1� � (7.1)and Ali
e has a unitary 
heating transformation UA;
 with possibility of su

essj h 0;
 jUA;
 j 1;
i j = F
 � 1� �: (7.2)However, a proto
ol that is se
ure against Bob is not ne
essarily se
ure for all possible
ollapsed proto
ols 
orresponding to all possible 
lassi
al ex
hanged messages, 
f. Eqs. (7.1)and (7.2), but on average. For example, F
 
ould be small for some 
 but the o

urringprobability of 
 is small. Moreover, it 
an happen that the o

urring probabilities of 
 forthe 
ommitment of 0 and 1 are di�erent, i.e. p0(
) 6= p1(
). Could we relax more themeasures of average 
on
ealment and binding?In this se
tion, we present a faithful interpretation for the no-go theorem, 
onsideringall physi
al systems appearing in a general bit 
ommitment proto
ol. The similarity 
an beapplied to oblivious transfer proto
ols. This interpretation will 
larify the troubles with thetwo points:� Classi
al 
omputations with se
rets: We show that EPR atta
ks of Ali
e is general inspite of the fa
t that honest Bob really uses 
lassi
al se
ret variables and does themeasurements in his 
omputation. This interpretation, inspired from Lo's argumentsin [Lo97℄, is simpler and more a

essible than [Bub01b, Che06℄. Moreover, our detailedinterpretation leads to the possibility of a mental game on Bob's se
rets when thenumber of values of these se
rets is very large in 
omparison with the 
on
ealmentparameter, 
f. Se
tion 7.3.� Classi
al 
ommuni
ations: We show that the se
urity and the 
heating 
an be analyzedfor a puri�ed proto
ol in a global view 
onsidering a ma
ros
opi
 
hannel for transmit-ting 
lassi
al message within the 
on
epts of de
oheren
e in quantum measurements.79



Chapter 7. No-go Theorems: Reinterpretation and ExtensionThis puri�ed model shows a more general view on average 
on
ealment and bindingthan Mayers' one whi
h 
onsidered these parameters only for individually ea
h historyof the proto
ol 
orresponding to one quantum 
on�guration 
ollapsed to one 
lassi
almessage sequen
e [May97℄.7.1.1 Augmented model purifying private randomness and se
retsWe 
onsider the se
urity of quantum bit 
ommitment with private se
rets and lo
al measure-ments in an augmented model whi
h puri�es all these 
lassi
al variables. For simplifying, wesuppose that Ali
e and Bob 
ommuni
ate only quantum information. The 
ommuni
ationvia a 
lassi
al 
hannel will be 
onsidered later.Suppose that Ali
e and Bob possess two quantum ma
hines with unlimited resour
e.Using these ma
hines, Ali
e and Bob 
an realize all 
omputations at the quantum level bythe purifying a
tion des
ribed as follows.Suppose that following the algorithm, at some step, a user X 2 fA;Bg prepares ase
ret value whi
h is a random variable jii, 
hosen from a �nite set fj1i ; ::; jnig with equalprobabilities 1=n, and introdu
es it to a quantum 
ir
uit that 
omputeUX(jiiX j (b)iAB)where j (b)iAB is used for the remaining quantum system of the proto
ol. This probabilis-ti
 
omputation 
reates in fa
t a quantum statisti
al ensemble of possible 
on�gurations:f1=n; UX (jiiX j (b)iAB)g. User X 
an instead prepare the entangled statenXi=1p1=n jiiX jiiDX ; (7.3)keeps the quantum di
e DX for the puri�
ation and uses part X for the quantum algorithmas in the honest 
ase. The 
omputation is then kept at the quantum levelnXi=1p1=n jiiDX UX(jiiX j (b)iAB):Suppose that at some steps, a user X 2 fA;Bg has to measure the quantum statej (b)iAB by an apparatus with n degrees of freedom. A

ording to the output i 2 f1; ::; ng andthe 
ollapsed state j i(b)iAB with probability pb(i), this user realizes a quantum 
omputationUX 
ontrolled by i, i.e. he/she produ
es a state jiiX j i(b)iAB for i = 1; :::; n, and appliesUX(jiiX j i(b)iAB). The user 
an instead introdu
e a n-dimension quantum system in X,and a n-dimension quantum di
e in DX for the puri�
ation. He 
ouples these with j (b)iABand transforms them to nXi=1ppb(i) jiiDX jiiX j i(b)iAB ; (7.4)Then he applies UX to the system in HX as in the honest 
ase, i.e. the output will benXi=1ppb(i) jiiDX UX(jiiX j i(b)iAB):80



7.1. Reinterpretation for No-go TheoremsThe above behaviors 
an be seen as semi-honest. Su
h semi-honest a
tions are notdete
table be
ause the density matri
es of all systems are the same as in a honest s
heme, andmust be allowable be
ause the both users have quantum ma
hines with unlimited resour
e. Infa
t, ea
h user respe
ts the spe
i�ed algorithm but keeps the multiverse of the 
omputations
orresponding to private 
lassi
al variables [Deu℄.

jjiDA DBA Bjii
Figure 7.1: Global model purifying private 
lassi
al variablesTherefore, the joint 
omputation is an unitary evolution a
ting on HDA 
HA
HB
HDB where DA;DB are Ali
e and Bob's di
es whi
h are se
ret and do not appear in theexe
ution of the proto
ol for honest users. The 
on�guration at any moment 
an be expressedas j	(b)i =Xi;j ppb(i; j) jiiDA jjiDB j i;j(b)iAB (7.5)where i; j represent all possible values of 
lassi
al se
rets and measurement results that Ali
eand Bob would have produ
ed, and j i;j(b)iAB is the 
ollapsed quantum state a

ordingto the 
lassi
al values i at Ali
e lo
ation and j at Bob lo
ation when both are honest 
f.Figure 7.1.But the users 
an throw their di
es to the quantum ma
hines and fully 
ontrol themas normal 
omputational system in A;B. Then, the proto
ol must be 
on
ealing against thispuri�
ation be
ause DB is fully 
ontrolled by Bob's ma
hine, i.e:�B;DB (0) = �B;DB(1) (7.6)where �B;DB (0) = trA;DA(j	(0)i h	(0)j), �B;DB (1) = trA;DA(j	(1)i h	(1)j).Then, as exposed in Se
tion 4.4.1, the theorem for the puri�ed two-party system81



Chapter 7. No-go Theorems: Reinterpretation and Extensionassumes that Ali
e �nds a 
heating unitary transformation a
ting in HA 
HDA su
h thatUA(j	(1)i) = j	(0)i :The most 
ommon feeling is that, Bob may not ne
essarily follow the puri�ed s
heme.When honest Bob really does the measurements and uses 
lassi
al random se
rets, the two-party entanglement is destroyed. For the sake of simpli
ity, we throw the di
es in DA to A,and the puri�ed state 
an be expressed as j	(b)i =PNj=1ppb(j) jjiDB j j(b)iAB . A

ordingto his 
lassi
al private values j 2 f1; ::; Ng, the global puri�ed state is proje
ted into the
ollapsed states j j(b)iAB whi
h may not be known to Ali
e. Ali
e 
ould not �gure out the
orresponding 
heating transformation.However, if Bob does not purify his 
omputations by throwing DB away, he hasno advantage. In any way, we 
annot weaken the 
ondition in Eq. (7.6), and be
auseppb(j) j j(b)i = DB hjj	(b)i, the transformation UA is universal for all of Bob's se
rets, i.e.UA(j j(1)i) = j j(0)i : (7.7)Even in a non-ideal 
ase where F (�B;DB (0); �B;DB (1)) = 1 � �, as shown in Se
tion 4.4.1,there exists a puri�
ation j	0(0)i of �B;DB (1) satisfying j h	0(0)j	(0)i j = 1 � �, and Ali
e
an �nd UA: ��	0(0)� = UA(j	(1)i) =Xj pp1(j) jjiDB UA(j j(1)iAB)=Xj pp1(j) jjiDB �� 0j(0)�ABAli
e 
an use this unitary transformation to 
heat. Here, in spite of the fa
t that there mayexist some 
lassi
al output j with it, Ali
e fails to 
heat be
ause j h j(0)j 0j(0)E j � 1, butthe probability of produ
ing su
h 
lassi
al value j must be small and the average of Ali
e'spossibility of su

ess when Bob is honest 
an be measured by:Xj pp0(j)pp1(j) ��
 0j(0)�� j(0)��� � j 
	0(0)��	(0)� j= 1� �:In 
on
lusion, if a quantum proto
ol with lo
al random variables and measurementsis 
on
ealing against Bob, given that Bob has an unlimitedly powerful quantum ma
hine,then it is not binding when Ali
e has an unlimitedly powerful quantum ma
hine. In fa
t,as all of these lo
al 
lassi
al values 
an be puri�ed by quantum ma
hine, 
f. Figure 4.3, itis required to analyze the proto
ol in the puri�ed two-party model where the 
omputationsbe
ome quantum deterministi
. The 
omputation with 
lassi
al variables and measurementsof one user is as throwing some lo
al systems away from the global puri�ed model, 
an only
ause losses of information and never help that user.However, the 
hoi
e for values of se
ret variable is subje
tively random, not obje
tively,i.e. user X is free to 
hoose the se
ret in Eq. (7.3) as any jii, even as any probabilitydistribution P for a puri�
ation PipP (i) jiiDX jiiX . A 
on
rete analysis of a mental gameon Bob's se
rets will be provided in Se
tion 7.3.82



7.1. Reinterpretation for No-go Theorems7.1.2 Augmented model purifying 
lassi
al messagesAbove, we showed that lo
al random variables and private measurements 
an be puri�ed inAli
e's and Bob's quantum ma
hine. And in su
h a 
ase, the bit 
ommitment is impossiblebe
ause of a property of two-party pure states. Moreover, Bob's honest strategy, that doesnot take the puri�
ation step, and does not help to eliminate Ali
e's 
heating strategy thatpuri�es all of Ali
e's lo
al random variables and measurements.However, in a general proto
ol, Ali
e has to do the measurements be
ause of thepresen
e of a 
lassi
al 
hannel. As measurements \
an never help a 
heater" [GL00℄, why themeasurements for making 
lassi
al messages do not prevent Ali
e from 
heating?Mayers' proof 
ould respond to this question. By the same arguments as above,Mayers pointed out that Ali
e and Bob may purify all measurements ex
ept for making
lassi
al messages. And the proto
ol 
on�guration is proje
ted to a 
ollapsed state, indexedby the ex
hanged 
lassi
al message and then known by both Ali
e and Bob. The 
on
ealmentand binding are then treated by the no-go theorem for bit 
ommitment on this sub-proto
ol
on�guration whi
h is a pure state, 
f. Se
tion 4.4.2.In the sequel, we will interpret the 
lassi
al 
ommuni
ations in a faithful puri�edmodelby the 
on
epts of de
oheren
e in quantum measurements for making ex
hanged messages.This makes us on
e more return to a global model purifying all 
lassi
al messages ex
hangedbetween Ali
e and Bob. In this model, the average parameters for 
on
ealment and bindingare more relaxed than in Mayers' 
ase, and thus more general.It is natural to think that in reality a 
lassi
al 
hannel is 
oupled with the environ-ment where the de
oheren
e is so strong that the messages transmitted on the 
hannel aremeasured by a CNOT-like gate, 
opied, and ampli�ed by an in�nite quantum systems in theenvironment, i.e. a basis qubit jii be
omes jii 
 jiiE [Zur91, BS98℄.In [Yao95℄, Yao de�ned a quantum two-party proto
ol as a pair of quantum ma
hinesintera
ting through a quantum 
hannel. The proto
ol is exe
uted on a joint system 
onsistingof Ali
e's ma
hine HA, Bob's ma
hine HB , and the quantum 
hannel HC . The exe
ution isalternating rounds of one-way 
ommuni
ations. For ea
h round, one parti
ipant D 2 fA;Bgperforms a unitary 
omputation in the joint spa
e of his private system HD and the messagesHC . The messages will be taken to the lo
ation of the other for the next round, 
f. Figure 7.2.This model has been used as a standard for analyzing quantum 
ommuni
ations inquantum proto
ols, e.g. the 
omplexity of quantum 
ommuni
ations [Kre95, dW02℄ andquantum intera
tive proofs [Wat99℄. It was also used in the Lo & Chau's proof of theinse
urity of quantum proto
ol for bit 
ommitment [LC97, Bub01b℄.If we use Yao's model for two-party proto
ols, the model should be generalized as apair of quantum ma
hines intera
ting through a quantum 
hannel and ne
essarily a 
lassi
al
hannel. The model 
onsists of two ma
hines HA;HB , a quantum 
hannel HC for bothquantum and 
lassi
al messages and a trusted measurement ma
hine M with an
illas HE.The measurement is in fa
t a CNOT-like gate whose 
ontrolling inputs are in the spa
e of thesender's \
lassi
al messages" and targets are an
illas in the ma
ros
opi
 environment spa
eHE , 
f. Figure 7.3. In ea
h 
ommuni
ation round, a parti
ipant D 2 fA;Bg does an unitary
omputation on HD 
 HC ; the trusted ma
hine applies the CNOT gate to the \
lassi
almessages" in HC and the environment of the 
lassi
al 
hannel HE. The quantum messages83
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UB;2
j00::0iA j00::0iBj00::0iCUA;1

UA;3
Figure 7.2: Quantum two-party modeland \
lassi
al messages" in HC are taken to the other lo
ation for the next round.But, as the quantum 
ommuni
ations do not play an important role in the proof, it isnot ne
essary to separate quantum 
ommuni
ation systems from quantum 
omputation ones.The presen
e of the HC would be redundant. Indeed, in [LC97℄, the authors must assumethat the 
hannel after the 
ommitment phase is in a pure state juiC . This assumption is notevident, and may trouble the readers if provided without expli
ation. For instan
e, we 
anuse a EPR-pair 
hannel for teleporting quantum states [BBC+93℄, and the EPR-pair 
hannelmusts be separated from the other 
omputational systems to guarantee that these EPR pairsare used only for the 
ommuni
ation of quantum signals by teleportation. In [Bub01b℄,the 
hannel systems C must be split into two parts in possession of Ali
e and Bob. Wewould rather faithfully 
onsider the 
ommuni
ation of quantum signal as quantum parti
lesare brought from sender's ma
hine to re
eiver's ma
hine. As analyzed in Se
tion 4.4.1, the
ommuni
ations of quantum messages make only repartitions of quantum systems in Ali
eand Bob's ma
hines. Nevertheless, we will separately analyze the 
ommuni
ation of 
lassi
almessages via a ma
ros
opi
 
hannel.Suppose that the pro
ess of 
ommuni
ation of 
lassi
al message via a 
lassi
al 
hannelas follows:1. The sender S 2 fA;Bg has to measure some quantum state j iAB with an apparatus84
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UB;2
j00::0iA j00::0iBj00::0iC j00::0iEUA;1

Figure 7.3: Quantum proto
ol with a 
lassi
al 
hannelwith n degrees. This measurement will output i 2 f1; ::; ng with probability p(i) andlet the measured system in a state j iiAB :j i !Xi pp(i) j iiAB jiiS jiiE;Swhere HE;S is for the ma
ros
opi
 part in the measurement devi
e lost to the environ-ment that 
auses the impurity of sender's state.2. The sender sends the signal i via a ma
ros
opi
 
hannel where the signal 
an be in�nitelyampli�ed by the environment E: jiiS ! jiiS 
 jiiE :3. The signal is ampli�ed, and propagates to the re
eiver's devi
e, where the 
orrespondingquantum state jii will be generated for the re
eiver's quantum ma
hine R = fA;Bg nfSg: jiiE ! jiiE 
 jiiR :Therefore, we 
an see this pro
ess a
ts on a pure state, but in a larger spa
e 
overingAli
e's, Bob's ma
hine and the environmental systems amplifying the signals:j iAB j0iS;R;E� ! nXi=1pp(i) jiiS jiiE� jiiR j iiAB85



Chapter 7. No-go Theorems: Reinterpretation and Extensionwhere E� denotes all systems of the environment, and S;R denote the 
ontrollable quantumsystems in Ali
e's and Bob's ma
hines. The initial states of systems storing the 
lassi
almessages in this pro
ess are not important, and denoted by j0iS;R;E�. So, by introdu
ingthe environment systems E�, the exe
ution of the proto
ol is seen as a deterministi
 unitaryevolution of the global three-party state lying in HA 
HB 
HE�.Here, HE� is not 
ontrolled by any parti
ipant, and the 
on�gurations of the proto
olare not pure states lying in a two-party spa
e for quantum systems in Ali
e' and Bob'sma
hines anymore. Nevertheless, it's a three-party model where the systems in E� play apassive role via the CNOT gates, make us have to leave the puri�ed model, 
f. Figure 4.3and turn ba
k to the superoperator model, 
f. Figure 4.2.Therefore, the proto
ol is seen as a deterministi
 
omputation on a three-party spa
eand the 
on�guration of the proto
ol at any moment 
an be des
ribed by a known pure statein the form of j	(b)i = NXi=1ppb(i) jiiE� jiiA jiiB j i(b)iAB (7.8)where i is any possible 
lassi
al message, and jiiA ; jiiB appear for the fa
t that Ali
e andBob 
an dupli
ate and keep a re
ord of the 
lassi
al messages forever in their ma
hines.

F2
A BE*j1i
jNi F1Figure 7.4: Entanglement 
onne
tions via 
lassi
al messagesFor the se
urity on Bob's side, the proto
ol has to assumeF (�B(0); �B(1)) � 1� �where �B(b) = trE�(trA(j	(b)i h	(b)j)). 86



7.1. Reinterpretation for No-go TheoremsOf 
ourse, Ali
e 
an only 
ontrol the quantum systems in his ma
hine HA andF (�B;E�(0); �B;E�(1)) � F (�B(0); �B(1)) (7.9)where �B;E�(b) = trA(�(b)). The inequality happens when information are lost during 
om-muni
ation via the 
lassi
al 
hannel. Unfortunately, the environment has only honestly am-pli�ed the signals and the equality is obtained:F (�B;E�(0); �B;E�(1)) = F (�B(0); �B(1))� 1� �be
ause in the des
ription of j	(b)i, jiiE� is exa
tly the same as jiiA. Therefore, there existsan unitary transformation UA su
h thatj h	(0)jUAj	(1)ij � 1� �In Figure 7.4, we represent ea
h entanglement 
onne
tion via a 
lassi
al message i bya line. The frontier F1 at the limit of Ali
e's 
ontrol gives Bob the same information as at F2.The 
lassi
al 
hannel is noiseless and does not help Bob, 
f. Eq. (7.9). We 
an re
all that anoisy 
hannel 
ould enable us to build un
onditionally se
ure primitives [Cr�e97, CMW04℄.The above puri�ed model exists only if we a

ept the 
on
ept of de
oheren
e thatleads to the Many Worlds Interpretation of quantum me
hani
s where the pure global stateexists as the multiverse of 
lassi
al realms 
orresponding to the 
ollapsed state [S
h04℄. Thispure state may not exist in reality a

ording to the Copenhagen Interpretation, be
ause Ali
eand Bob should be in one of N situations, provided a 
ollapsed state jiiA jiiB j i(b)iAB withthe 
orresponding probabilities pb(i), i.e. we are provided instead a statisti
al ensemblefpb(i); jiiA jiiB j i(b)iABg.In that 
ase, Ali
e's average 
heating possibility over all o

urren
e of ex
hanged
lassi
al messages 
an be measured byNXi pp0(i)p1(i)j h i(0)j hijUA jii j i(1)i j � jh	(0)jUAj	(1)ij� 1� �We see that these 
ollapsed states are the same as j b;
i in Mayers' version for i = 
.The above average 
heating possibility of Ali
e suggests to extended the average 
on
ealmentfor the proto
ol from Mayers' individual 
ollapsed proto
ols asCONC 0 =X
 pp0(
)p1(
)F
Of 
ourse, if we 
ould measure the average 
on
ealment asCHEAT 0 =X
 pp0(
)p1(
)j h 0;
 jUA;
 j 1;
i j=X
 pp0(
)p1(
)F
87



Chapter 7. No-go Theorems: Reinterpretation and ExtensionMoreover, as a standard, the 
on
ealment 
an be measured byCONC = F  X
 p0(
)�B
 (0);X
 p1(
)�B
 (1)! :Normally CHEAT 0 � CONC ([NC04℄ - theorem 9.7), but as Bob keeps a re
ord of 
las-si
al message 
 in his quantum state �B
 (b) the two measures of 
on
ealment are identi
alCONC 0 = CONC and then CHEAT 0 = CONC.Logi
ally, we are allowed to redu
e this three-party model to a pure quantum two-party model by making jiiE� disappear as this is only a redundant 
opy of jiiA jiiB. However,this redu
ed pure quantum two-party model only emulates the real proto
ols logi
ally, notphysi
ally. The redu
tion 
ould not so be evident without a physi
al interpretation.7.1.3 Summary
DBClassi
al 
hannel's di
es

F2F1
A Bjki jjijii E*DA

Figure 7.5: The global puri�ed modelIn summary, the global puri�ed model whi
h was obtained by the puri�
ation of lo
alrandom variables, 
f. Eq. (7.5), and ex
hanged 
lassi
al messages, 
f. Eq. (7.8), 
an beillustrated as in Figure 7.5 whi
h des
ribes the 
on�guration of the proto
ol at any givenmoment. This 
on�guration is in a pure state:j	(b)i =Xk;i;jppb(k; i; j) jkiABE� jiiDA jjiDB j k;i;jiABThe exe
ution of the proto
ol is a sequen
e of deterministi
 unitary transitions betweensu

essive 
on�gurations. It is a parallel exe
ution of many honest s
hemes. For instan
e,the real 
on�guration of the proto
ol 
orresponding to Ali
e's private out
ome i, Bob's privateout
ome j and ex
hanged 
lassi
al message k is represented by the bold line in the �gure.As Ali
e and Bob have the possibility to keep their di
es in their quantum ma
hines,we would throw DA to A and DB to B and the no-go theorem is applied to the model asanalyzed above. 88



7.2. Extensions of the No-go TheoremsNote that, if the puri�
ation of lo
al variables jii and jji is really possible as Ali
e'sand Bob's throw the private di
es DA;DB to their quantum ma
hines, the puri�
ation of ex-
hanged 
lassi
al messages jki is more abstra
t. It is a quantum parallelism of 
ollapsed 
oun-terparts 
orresponding to ex
hanged 
lassi
al messages as in Mayers' interpretation [May97℄:the 
on�guration 
orresponding to the 
lassi
al message k lies in the region marked by thedot line in Figure 7.5.Nevertheless, this global puri�
ation des
ribes the real exe
ution of a proto
ol if theNature follows the theory of De
oheren
e and Many Worlds Interpretation. In any way, it isa 
onvenient model for analyzing the average values of 
on
ealment and binding of generalproto
ols with 
lassi
al 
ommuni
ations.7.2 Extensions of the No-go TheoremsWe fall into the same situation as in the 
lassi
al world sin
e 
lassi
al proto
ols were alsoimpossible. We 
ould be satis�ed to use a trusted third party for un
onditionally se
ure
omputations. It is trivial when we have a trusted third party for implementing these pro-to
ols. For instan
e, in an oblivious transfer proto
ol, Ali
e sends b0; b1 and Bob sends 
 toTrent who is honest; Trent sends b
 to Bob. We 
all this as a trusted two-party ora
le model,i.e. we 
onstru
t a trusted two-party 
ir
uit for any desired 
omputation, with some inputsfrom Ali
e and Bob, and some outputs ba
k to Ali
e and Bob. The exe
ution time of the
omputation done by the ora
le is an elementary unit, and we 
an 
onsider as it immediatelyreturns the results to the parti
ipants.In this Se
tion, we present an extension of the impossibility of quantum bit 
ommit-ment and oblivious transfer for some parti
ular two-party ora
le models.7.2.1 Short-Term Ora
leDe�nition 7.1. We de�ne a Short-Term Ora
le (ST-O) as a trusted two-party ora
le thatimplements any spe
i�ed algorithm, using some lo
al variables. At the end of the 
omputation,the ora
le splits all the �nal values of all variables, in
luding lo
al one, and sends ba
k onepart to Ali
e, one part to Bob.For instan
e, a simple 
lassi
al 
ir
uit for oblivious transfer with 2 input wires fromAli
e for fb0; b1gA, 2 input wires from Bob for f
; xgB , is built with logi
 gates for thetransition fb0; b1gAf
; 0gB ! fb0; b1gAf
; b
gB (7.10)and redire
ts output wires A to Ali
e, B to Bob. The input wire initialized to 0 is for Bobstoring the re
eived bit.A quantum ST-O is illustrated as in Figure 7.6: it re
eives quantum signal for inputsfrom Ali
e and Bob; initializes ne
essary lo
al variables to j0i; applied the required 
ompu-tation to these inputs; and at the end splits all of the outputs, in
luding the lo
al variables,into two parts, redire
ts one part to Ali
e, and one part to Bob.We 
an extend the no-go theorems to a more general quantum quantum based onST-O: 89
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Figure 7.6: The quantum Short-Term Ora
leTheorem 7.1 (Extension of no-go theorems). We 
annot build se
ure Quantum bit 
ommit-ment, oblivious transfer proto
ol based quantum ST-Os.Proof. (Sket
h). In fa
t, when the ora
le uses only pure states as lo
al input, and immediately,splits and sends all of the qubits that parti
ipate to the 
omputations to Ali
e and Bob,the global state at any 
onsidered moment is in some known pure state, a

ording to thealgorithm, in a two-party spa
e relating only Ali
e and Bob sides. Therefore, the no-gotheorems remain valid.For example, we prove the impossibility of one-sided se
ure 
omputation. As shown inSe
tion 7.1, the average of se
urity and 
heating possibility of general proto
ols with randomvariables, se
rets variables, and 
lassi
al 
ommuni
ations, 
ould be analyzed in a deterministi
puri�ed model. It is then suÆ
ient to prove the theorem for this redu
ed model.We start with Eq. (4.4). Atta
hing a pure state j0iA0B0 , lo
ally prepared by the ora
le,the initial state is ��u0�in = 1pnXi jiiP 
 jiiA 
 jj1iB 
 j0iA0B0 �At the end of the 
omputation, with help of the ora
le, the 
ombined system is in statejvj1i = 1pnXi jiiP 
 U(jiiA 
 jj1iB 
 j0iA0B0)where system A0 is set to A, system B0 is set to B after the split. Therefore, the remainingarguments of Lo's proofs 
an be followed, 
f. Se
tion 4.4.1.90



7.2. Extensions of the No-go Theorems7.2.2 Trivial Ora
le ModelIn our interpretation of MLC nogo theorems, we dis
overed that quantum bit 
ommitmentand oblivious transfer are impossible even with the presen
e of an un
ontrollable third partysystems su
h as the ma
ros
opi
 
hannel. The ma
ros
opi
 
hannel for Ali
e and Bob 
om-muni
ating 
lassi
al information plays the role of an trusted ora
le whi
h publi
ly measuresthe quantum states in Ali
e and Bob ma
hines. The measurements for making 
lassi
al mes-sages are indeed non information-erasing in the joint view of Ali
e and Bob. We 
an extendthe no-go theorems to quantum proto
ols based on su
h trivial ora
le.De�nition 7.2. We de�ne a Quantum Trivial Ora
le as a trusted two-party ora
le whi
h
an implement the 
omputation of any two-party fun
tion. The ora
le 
an be 
oupled withan environment quantum system O un
ontrollable by Ali
e and Bob. The ora
le does anymeasurement in publi
, i.e whenever the ora
le throws some information to O, it makes two
opies of the information, and sends one to Ali
e, one to Bob.Then, more generally:Theorem 7.2 (Extension of no-go theorems). We 
annot build se
ure Quantum bit 
ommit-ment, oblivious transfer proto
ol based on Quantum Trivial Ora
les.For the sket
h, we 
an throw all of systems in O to the global third party environmentE�, then the global 
on�guration of any proto
ol based on trivial ora
les at any moment isof the same form as Eq. (7.8):j	i = NXi=1ppb(i) jiiE� jiiA jiiB j iiAB (7.11)In this three-party model involving Ali
e's ma
hine, Bob's ma
hine and the systems in E�,at any time the global state of a proto
ol 
an be des
ribed by the form as in Eq. (7.11), andthus� The systems in E� do not hide information from Bob in a bit 
ommitment s
heme. It
ould be then seen as a two-party model HA
 (HE�
HB) where HE�
HB is for whatBob 
an learn about Ali
e's se
ret and HA is for what Ali
e 
an fully 
ontrol to 
heat.� The systems in E� do not hide information from Ali
e in an oblivious transfer s
heme.It 
ould be then seen as a two-party model (HA 
HE�)
HB where HA 
HE� is forwhat Ali
e 
an learn about Bob's se
ret and HB is for what Ali
e 
an fully 
ontrol to
heat.7.2.3 A 
ase-studyLet verify a quantum ST-O for implementing oblivious transfer proto
ol with some familiarquantum gates. 91



Chapter 7. No-go Theorems: Reinterpretation and ExtensionInspired from Bennett et al. [BDSW96℄, we use the notations:��� e00E = j�+i = (j00i+ j11i)=p2;��� e01E = j��i = (j00i � j11i)=p2;��� e10E = j	+i = (j01i+ j10i)=p2;��� e11E = j	�i = (j01i � j10i)=p2�Our ST-O uses three lo
al qubits. The �rst and the se
ond lo
al qubits are preparedin entangled state ��� e00E. The third qubit is initialized to j0i.Let b0; b1 be the two bits that Ali
e want to send and 
 be Bob's 
hoi
e. The trustedparty does a 
ontrolled � rotation Rb0b1 on the �rst qubit, a

ording to b0; b1:R00 = I;R01 = �z; R10 = �x; R11 = �y�The �rst and se
ond qubits are obtained in state ���gb0b1E. Next, in 
ase 
 = 1 the trustedparty applies the bilateral �=2 rotation By to the �rst and se
ond qubits [BDSW96℄:��� e00E!By ��� e00E ;��� e01E!By ��� e10E ;��� e10E!By ��� e01E ;��� e11E!By ��� e11E �The trusted party applies then the CNOT gates 
omputing the parity of the �rst and these
ond qubits and the target is the third qubit. Then, the trusted party undoes the rotationBy 
ontrolled by 
 and the bilateral rotation Rb0b1 . The 
omputation done by the ST-O is aquantum 
ir
uit a
ting on 6 qubits: two for Ali
e's inputs, three for the lo
al qubits, one forBob's input. Finally the ST-O splits the outputs ends ba
k the two �rst qubits to Ali
e andfour last qubits to Bob, 
f. Figure 7.7.Simply speaking, if Ali
e and Bob are subje
ted to send b0; b1; 
 to T as 
lassi
alsignals jb0i ; jb1i ; j
i 2 fj0i ; j1ig, the quantum ST-O implements a O-OT gate:jb0b1iA ��� e00ET j0iT j
iB !Rb0b1 jb0b1iA ���gb0b1ET j0iT j
iB!By jb0b1iA ���b̂
b1�
ET j0iT j
iB!CNOTs jb0b1iA ���b̂
b1�
ET jb
iT j
iB!By ;Rb0b1 jb0b1iA ��� e00ET jb
iT j
iB!split jb0b1iA ��� e00EB jb
iB j
iB �92



7.2. Extensions of the No-go TheoremsAli
eRb0b1 Rb0b1ByByj�+iTjb0b1iA
j0iTj
iB BobFigure 7.7: A Short-term Ora
le for O-OT proto
olIn 
ase Ali
e and Bob 
ommuni
ate with ST-O via quantum 
hannels, they 
an send quantuminputs dire
tly. Suppose that Ali
e prepares inputs as a superposition12(j00i+ j01i + j10i+ j11i)�The global input state is thenjini = 12(j00iA + j01iA + j10iA + j11iA) ��� e00ET j0iT j
iB �If Bob sends j
i = j0i then the 
omputation isjini !Rb0b1 12 hj00iA ��� e00ET + j01iA ��� e01ET + j10iA ��� e10ET + j11iA ��� e11ET i j0iT j0iB!CNOTs 12 hj00iA ��� e00ET j0iT + j01iA e01T j0iT + j10iA ��� e10ET j1iT + j11iA ��� e11ET j1iT i j0iB!By;Rb0b1 12 h(j00iA + j01iA) ��� e00ET j0iT + (j10iA + j11iA) ��� e00ET j1iT i j0iB!split 12 h(j00iA + j01iA) ��� e00EB j0iB + (j10iA + j11iA) ��� e00EB j1iBi j0iB �If Bob sends j
i = j1i then the 
omputation isjini !Rb0b1 12 hj00iA ��� e00ET + j01iA ��� e01ET + j10iA ��� e10ET + j11iA ��� e11ET i j0iT j1iB!By 12 hj00iA ��� e00ET + j01iA ��� e10ET + j10iA ��� e01ET + j11iA ��� e11ET i j0iT j1iB!CNOTs 12 hj00iA ��� e00ET j0iT + j01iA ��� e10ET j1iT + j10iA ��� e01ET j0iT + j11iA ��� e11ET j1iT i j1iB!By;Rb0b1 12 h(j00iA + j10iA) ��� e00ET j0iT + (j01iA + j11iA) ��� e00ET j1iT i j1iB!split 12 h(j00iA + j10iA) ��� e00EB j0iB + (j01iA + j11iA) ��� e00EB j1iBi j1iB �93



Chapter 7. No-go Theorems: Reinterpretation and ExtensionThe partial 
on�gurations are then�A0 =0BB�14 14 0 014 14 0 00 0 14 140 0 14 141CCA ; �A1 = 0BB�14 0 14 00 14 0 1414 0 14 00 14 0 141CCAWe see that the redu
ed density matri
es at Ali
e's lo
ation are di�erent for the two 
ases,�A0 6= �A1 , and so 
 is not se
ure against Ali
e. For instan
e, Ali
e 
an measure the �rstand the se
ond qubit with the proje
tion (h00j � h01j + h10j � h11j)=2, and has a nonzeroprobability of getting a positive result when 
 = 1.
ST-O

jb0b1iAj�+iTj0iTj
iBj000iM

Ali
e

M
Bob

Figure 7.8: Classi
al 
hannels hiding informationWe re
onsider the 
ase where Ali
e and Bob 
ommuni
ate with the ST-O via 
lassi
al
hannels. It is done as though the quantum 
hannels are equipped with measurement devi
esas in Figure 7.8. The inputs will be measured and proje
ted onto the 
omputational basis.Using the de�ned model for the 
lassi
al 
hannel, Ali
e sends her inputs throughCNOT gates whose targets are in the measurement ma
hine M of the 
lassi
al 
hannelbetween Ali
e and the ST-O. The output is entangled with M . In 
ase Ali
e prepares anysuperposition of inputs a j00i+ b j01i+ 
 j10i+ d j1i, the �nal states of the 
omputations for
 = 0 and 
 = 1 arejout0i = (a j00iA j00iM + b j01iA j01iM ) ��� e00EB j00iB + (
 j10iA j10iM + d j11iA j11iM ) ��� e00EB j10iB ;jout1i = (a j00iA j00iM + b j10iA j10iM ) ��� e00EB j01iB + (
 j01iA j01iM + d j11iA j11iM ) ��� e00EB j11iB :The redu
ed matri
es of three qubits at Ali
e lo
ation are gained by tra
ing out M part andB part, and be
ome �B0 = �B1 = 0BB�jaj2 0 0 00 jbj2 0 00 0 j
j2 00 0 0 jdj21CCA :
94



7.2. Extensions of the No-go TheoremsThus, the proto
ol is se
ure against Ali
e. By the similar analysis, we see that the proto
ol isse
ure against Bob 
heating. In fa
t, the de
oheren
e on the 
lassi
al 
hannel between Ali
eand the ST-O 
reates an entanglement with the environment M whi
h hides informationfrom Bob, while the de
oheren
e on the 
lassi
al 
hannel between Bob and the ST-O 
reatesan entanglement with the environment M whi
h hides information from Ali
e. The 
lassi
al
hannels do not publi
 measurements any more.7.2.4 Coin Flipping based proto
olsAs a 
orollary of Theorem 7.2, we 
on
lude thatCorollary 7.1. Coin Flipping based Quantum Bit Commitment and Quantum ObliviousTransfer are impossible.In [Ken99℄, Kent showed a similar result. In his paper, he established a relativistmodel to implement 
oin 
ipping. With an assumed quantum trusted party, we made themodel more 
omprehensible from a non-relativist point of view.Proof. In an indire
t manner, we 
an state that 
oin 
ipping is weaker than bit 
ommitmentand oblivious transfer. Indeed, we suppose that Ali
e and Bob have a

ess to a ST-O that
reates a pair of qubits in Bell state j�+i = (j0iA j0iB+ j1iA j1iB)=p2 and sends ea
h part toa user. With su
h a ST-O, Ali
e and Bob have a fair quantum 
oin that 
an realize 
lassi
al
oin 
ipping: Ali
e and Bob measure j�+i in the same basis fj0i ; j1ig to share a randombit. However, quantum bit 
ommitment and oblivious transfer are not realizable with thisST-O, as shown by Theorem 7.2.We make here a more dire
t proof for proto
ols based on 
lassi
al 
oin 
ipping. Sup-pose that Ali
e and Bob have a

ess to a subroutine that 
an generate 
lassi
al random 
oinsand send two 
opies to Ali
e and Bob. The 
lassi
al 
oins is then an probabilisti
 ensembleof j0iA j0iB ; j1iA j1iB with probabilities 1=2; 1=2:�AB = (j0A0Bi h0A0B j+ j1A1Bi h1A1B j)=2The 
oins 
an be represented by a pure state in an augmented model as though they areentangled with a third-party system T .jCi =p1=2(j0iA j0iB j0iT + j1iA j1iB j1iT )Suppose that a quantum proto
ol implemented between Ali
e and Bob requires Ali
e and Bobto share random 
oins at some steps. Re
all that just before the �rst 
all to the subroutine,the quantum 
on�guration of the proto
ol, realized by normal 
ommuni
ation between Ali
eand Bob, is in a state of the penalized form j	i =PNi=1ppb(i) jiiE� jiiA jiiB j iiAB , 
f. Eq.(7.8). After re
eiving a 
oin, the 
on�guration be
omesj	i 
 jCi = Xi=1::N;j=0::1ppb(i)=2 jijiE� jijiA jijiB j iiABwhere T is thrown to E�. We see that this formula is also of the penalized form, 
f. Eq.(7.11). Therefore, by indu
tion, with any su

essive unitary transformation on A;B ands95



Chapter 7. No-go Theorems: Reinterpretation and Extensionrequest for random 
oins to the ora
le, the global 
on�guration of the proto
ol remains in thepenalized form. Therefore, quantum bit 
ommitment and oblivious transfer based on 
oin
ipping are impossible.To one who sti
ks to the Copenhagen Interpretation of quantum me
hani
s, the quan-tum 
on�guration of joint 
omputation just before a request to the 
oin 
ipping subroutineis a proje
ted state j iiAB whi
h is known to Ali
e and Bob a

ording to the ex
hanged mes-sages i. Now, the 
oin 
ipping subroutine provides either j0iA j0iB or j1iA j1iB with equalprobability. However, on
e the 
oins are provided, Ali
e and Bob know whi
h 
oin they have,and the global state is a

ordingly a known state j iiAB 
 j0iA j0iB or j iiAB 
 j1iA j1iB.And the no-go theorems 
an be applied to ea
h of these 
ollapsed pure states, as in Mayers'proof [May97℄.7.3 Subje
tive Se
rets and a Game on Se
ret Parameters ?Re
all that, in the augmented model purifying Bob's private 
lassi
al variables, Bob's se
retvariables are analyzed by assigning to them a probability distribution, 
f. Eq. (7.3), normallya 
at distribution. But these variables are \subje
tively" random, not \obje
tively" randomas in a measurement in Eq. (7.4). We 
onsider only the di
es in DB that purify these\subje
tively" random variables, and the di
es purifying \obje
tively" random results ofmeasurements are thrown to B. DA is also thrown to A as Ali
e keeps all of her di
es in thequantum ma
hine. The 
omputational 
on�guration in Eq. (7.5) is thenj	(b)i = NXj=1p1=N jjiDB j j(b)iAB ;where N is the number of all possible values of Bob's se
ret variables used in the 
omputation.The theorem for deterministi
 model assumes that we 
an �nd a unitary UA for Ali
e 
heatingwith threshold 1� �: Xj 1N j h j(0)jUAj j(1)ij � 1� � (7.12)However, in reality Bob is free to 
hoose these variables, i.e. Bob 
an 
hoose anydistribution over f1; :::; Ng. The 
on�guration would be in a statej	!(b)i = NXj=1pp!(j) jjiDB j j(b)iABwhere ! 2 
 � [0; 1℄N is for denoting the probability di�usion over f1; :::; Ng 
reated by Bob.Of 
ourse, for the se
urity on Bob's side, the proto
ol must hold8!; F (�B! (0); �B! (1)) � 1� �;96



7.3. Subje
tive Se
rets and a Game on Se
ret Parameters ?and then for ea
h de
ision of Bob on !, Ali
e has a 
orresponding 
heating unitary transfor-mation UA;!: Xj p!(j)j h j(0)jUA;!j j(1)i j � jh	!(0)jUA;!j	!(1)ij� 1� �: (7.13)The question is: \Is there a proto
ol that is se
ure against Bob, but Ali
e 
an not �nd theuniversal 
heating unitary be
ause of !?"When the proto
ol is ideally se
ure, then the answer is No, be
ause Ali
e's transfor-mation is universal, 
f. Eq. (7.7). For non-ideal 
ase, inspired from [Lo97℄, we treat also twofollowing 
ases.7.3.1 Case 1: N� = Æ � 1We see that, Ali
e's 
heating transformation for the 
at distribution satis�es Eq. (7.12).Therefore, for all se
ret value j,j h j(0)jUAj j(1)ij � 1�N� = 1� Æand then, for any distribution used by Bob, the Ali
e's possibility of 
heating is:Xj p!(j)j h j(0)jUAj j(1)i j � 1� Æ:Cheung showed also a similar result [Che06℄.7.3.2 Case 2: �� 1 � N�It may happen that, for any transformation UA;! for Ali
e, there exists a distribution !0 su
hthat Bob 
an dete
t Ali
e 
heating with a signi�
ant probabilityj h	!0(0)jUA;! j	!(1)i j�Xj pp!0(j)p!(j)j h j(0)jUA;!j j(1)i j� 1; (7.14)in 
ontrast to Eq. (7.13). If su
h a proto
ol exists, satisfying both Eqs. (7.13) and (7.14), weare in a non stable game on Bob's se
ret variables:� If Ali
e �xes a transformation UA;!, then Bob 
an 
hoose an distribution !0 to dete
tAli
e's 
heating with a signi�
ant probability, 
f. Eq. (7.14). There may be a 
olle
tionf!1; ::; !kg for Bob.� But, if Bob determines his distribution !0, Ali
e 
an �nd a 
heating transformationUA;!0 with high probability of not being dete
ted by Bob, 
f. Eq. (7.13). Even if Bob97



Chapter 7. No-go Theorems: Reinterpretation and Extensionuses a random 
olle
tion of distribution f!1; ::; !kg, Ali
e 
an treat it as a pure stateby 
onsidering that Bob's introdu
e some extra di
es t:j0i = kXt=1p1=k jtiD 
 j	!t(0)ij1i = kXt=1p1=k jtiD 
 j	!t(1)iAnd as the proto
ol must be se
ure against Bob, i.e. F (trA(j0i h0j); trA(j1i h1j)) � 1��,Ali
e 
an �nd an unitary U�A with the average of possibility of 
heatingXj  kXt=1 p!t(j)=k! j h j(0)jU�Aj j(1)i j � j h0jU�Aj1i j� 1� �: (7.15)In fa
t, the 
heating transformation UA;!� for !� being the mean distribution of !1; ::; !k,i.e. p!�(j) =Pkt=1 p!t(j)=k, satis�es Eq. (7.15) and 
an be used as U�A.Nevertheless, we do not know whether or not a quantum proto
ol exists for su
h anon stable mental game on se
ret variables, satisfying that for all distribution !� there exists a transformation UA su
h thatXj p!(j)j h j(0)jUA;!j j(1)i j � 1� �� and for this UA, there exists a distribution !0 su
h thatXj pp!0(j)p!(j)j h j(0)jUA;!j j(1)i j � 1:7.3.3 SummaryWe see that in the 
ase where Bob has a se
ret S for whi
h Bob 
hooses the value from a setf1; :::; Ng, Ali
e 
an assign to this variable a 
at distribution, i.e. pX(i) = 1=N , and emulatethe puri�ed proto
ol to �nd a 
heating unitary transformation as in Eq. (7.12). When itrequires that the 
on
ealment is ideal, then Ali
e's 
heating is universal for all values of Bob'sse
ret. However, we are normally in a non-ideal 
ase where the 
on
ealment is permitted tobe measured by 1�� with a negligible value of � > 0. Here, we say that the proto
ol is nearlyideal if N� � Æ � 1. In su
h a 
ase Ali
e's 
heating transformation is also universal withwhi
h Ali
e has a 
heating possibility in order of 1�Æ for any 
hoi
e of se
ret S. Nevertheless,when the number of possible values of S is large in order of �, i.e. N� � 1, then there willbe an open problem on the possibility of a non stable game on Bob's 
hoi
e of the se
ret.The response to the question that whether su
h a game really exists should require further
onsideration. 98



7.4. Dis
ussion on Irreversibility and Reversibility7.4 Dis
ussion on Irreversibility and ReversibilityThe topi
s of reversible 
omputation are mostly studied in relation with Landauer's prin
ipleof thermodynami
al reversibility when resolving the paradox of \Maxell's demon" aboutwhether an intelligent being 
ould violate the se
ond law of thermodynami
s: the erasure ofone bit of information in a 
omputational devi
e is ne
essarily a

ompanied by a generationof kT ln 2 heat [Lan61, Ben82, Bub01a, Ben03℄.A remarkable result from Theorem 7.2 is that, un
onditionally se
ure oblivious transferand bit 
ommitment 
an only be made with help of a trusted third party whi
h hides someinformation from Ali
e and Bob. Theorem 7.2 implies that we have to have a trusted thirdparty whi
h 
auses an logi
al erasure of information and so, similar to Maxell's Demon,generates heat, 
f. Figure 7.9. It is 
onvenient to see that the third party has limitedresour
e, and if Ali
e and Bob invoke the request for many times, it begins to erase itsprivate memory by reset all to j0i or to overwrite its memory and thus generate heat.Corollary 7.2 (Irreversibility of OT and BC). Any quantum implementation un
onditionallyse
ure oblivious transfer and bit 
ommitment requires erasure of information from the jointviews of Ali
e and Bob, and thus 
auses thermodynami
al reversibility and leads dissipationof heat to the environment.It was shown that any logi
ally reversible 
omputation 
ould be thermodynami
allyreversible and implemented without heat dissipation, and vi
e versa, any thermodynami
allyreversible 
omputing pro
ess must be logi
ally reversible [Ben82, Ben00℄. Moreover, it wasshown that any 
omputation 
ould be logi
ally reversible, by Turing ma
hine model [Ben73℄or by logi
 
ir
uit models [Tof80, FT82℄.This result is intuitively 
onformed to the impossibility of implementation of oblivioustransfer and bit 
ommitment, as the all of two-party proto
ols are logi
ally invertible:� In a 
lassi
al proto
ol, Ali
e and Bob 
an do any lo
al 
omputation reversibly [Ben73℄,for instan
e by using universal reversible gates instead of normal irreversible gates AND,OR, ... [Tof80, FT82℄. Therefore, the joint 
omputation is a reversible pro
ess over allvariables at Ali
e and Bob lo
ations.� In a quantum proto
ol, we expe
t that measurements will a
hieve some erasure ofinformation. However, Ali
e and Bob 
an keep all of 
omputations at the quantumlevel without measurement even the �nal measurements be
ause in an ideal proto
ol,the users should learn the results with 
ertainty.Then in the end of the proto
ols, Ali
e and Bob 
an make a 
opy of the results, and undo allof the operations to reestablish the thermodynami
al 
ondition. So the impossibility of su
ha non-erasing proto
ol for oblivious transfer and bit 
ommitment is intuitive.Of 
ourse, when the users deny this behavior by throwing private information thenthe erasure appears and we have an oblivious transfer proto
ol. For instan
e, the privatemeasurements for making Ali
e's and Bob's private 
lassi
al variables 
ould lead to a logi
alerasure of information, and therefore we 
an implement oblivious transfer by for
ing Bob tomeasure the quantum signals [Cr�e94, Yao95℄.99



Chapter 7. No-go Theorems: Reinterpretation and ExtensionObviously, it is not that the erasure of information is suÆ
ient for implementing se
ure
omputations. As analyzed in Se
tion 7.1.2, the measurements for making 
lassi
al messages
an be logi
ally seen as unne
essarily 
opying some information to the external environment.In real proto
ols, we make lot of unne
essary ampli�
ation of information to the environmentand 
ause unne
essary dissipation of heat.
BobAliceFigure 7.9: Se
ure two-party 
omputations must be logi
ally information-erasing?A question is that: Are pro
esses implementing un
onditionally se
ure oblivious trans-fer and bit 
ommitment logi
ally irreversible?An intuitive response from Corollary 7.2 is Yes. There are many positive symptomsfor this answer. For instan
e, in a general two-party quantum proto
ol with 
lassi
al 
ommu-ni
ation, the global pro
ess is then logi
ally reversible, though physi
ally irreversible as Ali
eand Bob 
annot 
ontrol the external environment and then 
annot implement bit 
ommit-ment and oblivious transfer. Impli
itly, Rabin's oblivious transfer is equivalent to a logi
alerasure 
hannel. Thus, any logi
al pro
ess that emulates Rabin OT would require the logi
alerasure of information. And oblivious transfer may not be implemented by any logi
allyreversible 
omputing pro
ess in the joint view of Ali
e and Bob.However, it's interesting to analyze the two-party ora
le based proto
ols.For proto
ol using quantum ora
les, the response 
omes immediately from Corol-lary 7.2. We see that quantum two-party ora
le based proto
ols for oblivious transfer and bit
ommitment required some entangled information, hidden or erased from the views of Ali
eand Bob.We realize surprisingly that we 
an build a 
lassi
al ora
le for oblivious transfer, andso bit 
ommitment, 
an be made with unitary transitions. Indeed, the ora
le implementingoblivious transfer 
an be made with a unitary one:fb0; b1gAf
; xgB ! fb0; b1g1f
; x � b
gBwhere x is an auxiliary input for Bob to store the re
eived bit. This transition is one-to-oneand so there exists a reverse transition for it. Suppose that Ali
e and Bob send the inputsto the ora
le, get the outputs, make a 
opy of the result, and send the outputs to an otherora
le with the reverse transition whi
h would reestablish the thermodynami
al 
ondition forthe �rst ora
le. So, 
ould Ali
e and Bob realize oblivious transfer and bit 
ommitment for100



7.5. Con
luding Remarksfree, i.e. without dissipation of heat, by this way? Could 
lassi
al world beats the quantumone in this thermodynami
al battle?The response'd rather be no, be
ause the ultimate laws of ma
ros
opi
 behaviors aregoverned by quantum theory. Here, we must assume that the 
lassi
al ora
le re
eives 
lassi
alsignals and treat them by a unitary transformation. In other words, the 
lassi
al ora
le isne
essarily 
lassi
al, a
ting in the 
lassi
al world, not quantum superposition one.However, a pro
ess is ne
essarily 
lassi
al only if it is 
ollapsed to the a
tual state ofthe environment. From this quantum view, a logi
al ne
essarily 
lassi
al bit is ne
essarilya binary state entangled with and ampli�ed by the environment. As in our Case-Study, 
f.Se
tion 7.2.3, a 
lassi
al ora
le 
an be build from a quantum one if it observes by measuringthe signals. This observation leads some information to be stored somewhere in the memoryof the ora
le, and must be therefore erased as in the quantum ora
le.7.5 Con
luding RemarksIn summary, we have proposed a detailed interpretation of general quantum two-party proto-
ols where the exe
ution is seen as a deterministi
 unitary evolution of a pure state 
overingall quantum systems in
luding Ali
e's and Bob's quantum di
es purifying random variablesand lo
al measurements, and environment's di
es when a ma
ros
opi
 
hannel is used fortransmitting 
lassi
al information.Thus, the global state is a pure three-party state, not two-party state, where theenvironment's di
es are not 
ontrollable by neither Ali
e nor Bob. However, this impuritydoes not help to se
ure bit 
ommitment and oblivious transfer proto
ols. Indeed, the three-party state is in the formj	iABE� = NXi=1ppb(i) jiiE� jiiA jiiB j iiABTherefore, the environment does not hide information from Bob in a bit 
ommitment proto
ol,and from Ali
e in an oblivious transfer proto
ol. The state 
an be then seen as a two-partyone where E� is given to the observer, while the other part 
an be fully 
ontrolled by the
heater.Obviously, se
ure two-party 
omputations' primitives 
an be trivially built with helpof a trusted third-party, 
onsidered as two-party ora
les. However, we have shown that the no-go theorems 
an also be applied to proto
ols that use trusted quantum ora
les that 
omputeany two-party fun
tion for Ali
e and Bob but splits and redire
ts all output quantum statesto Ali
e and Bob, either without measurement at all or with publi
 measurements i.e. themeasurements out
omes are known by Ali
e and Bob. Nevertheless, 
oin 
ipping belongsto this 
lass of trivial ora
les. These works implied that two-party ora
les for implementingun
onditionally se
ure 
omputations are required to hide or erase information and 
onsideredas dissipation of heat.On
e more, we have to be satis�ed by the fa
t that the implementation of two-party se-
ure 
omputation's primitives 
an only be made with either 
onditional se
urity that is basedon assumptions on the limitation of the 
omputing model [DFSS05, KKNY05, LMF06℄, or101



Chapter 7. No-go Theorems: Reinterpretation and Extensionwith assumptions about trusted third-parties su
h as fair noisy 
ommuni
ation media [Cr�e97,CMW04℄.
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Chapter 8Con
lusionIn this thesis, we have investigated the 
onstru
tion of oblivious transfer, the 
entral primitiveof se
ure two-party 
omputations, in the frameworks of noisy models and quantum me
hani
almodels.The �rst part of the thesis is inspired by the framework developed by Crepeau, Mo-rozove et al. for building oblivious transfer as erasure models from noisy 
hannels. We havemade a 
ontribution to this framework with the introdu
tion of Binary Symmetri
 Multi-Error-Rate Channel whi
h is a general erasure model intermediating between noisy 
hannelsand oblivious transfer. Indeed, we 
an exploit a gap between a set of small error rates, asgood set, and a set of greater error rates, as bad set, of the BSMERC to eÆ
iently buildoblivious transfer. This extended approa
h helps to make use of the probability distibutionof error rates for gaining a more eÆ
ient 
onstru
tion of oblvious transfer than the existingones based only on the gap between the minimal error rate as the best, and the other greatererror rates.Moreover, we 
an go further to 
onsider the 
onstru
tion of BSMERC from DMC:what input pair x1; x2 of the DMC should be used for implementing oblvious transfer withoptimal eÆ
ien
y? Here, x1; x2 would be sele
ted for good distribution of error rates of theBSMERC and for eÆ
ient veri�
ation of Ali
e honesty via statisti
al test [Mor05℄.However, this approa
h to su
h improvement of eÆ
ien
y is ad-ho
 and depends onthe probability distribution of error rates, 
f. Chapter 5. An open problem is left for further
onsideration of the optimal 
onstru
tion of oblivious transfer proto
ol from the BSMERC.We are motivated to do further resear
hes on the eÆ
ien
y optimization in this framework.Besides, we expe
t that, the 
onsideration of this general intermediate model will be extendedto 
ontinuous error-rate set BSMERC and then to general noisy 
ontinuous alphabet 
hannels.It also requires further works to be investigated for quantitative analysis of implementationof oblivious transfer from these 
ontinuous 
hannels.Relatedly to this framework of noisy models, we proposed a 
ase-study on a quan-tum nonorthogonal 
oding with two orthogonal pure quantum states, in 
omparison withthe largely exploited quantum 
onjugate 
oding. We exposed that the QNOC 
an be usedto emulate the desired noisy model. In ea
h of su
h emulation s
heme, we analyzed the ap-pli
ation of quantum 
oherent measurements for optimal parameters for the re
eiver. These103



Chapter 8. Con
lusionanalyses emphasize the pre
aution of quantum 
oherent atta
k for se
urity parameters inproto
ol-redu
tion s
hemes whi
h 
ombine existing proto
ols as subroutines to build othersproto
ols. We should 
onsider the se
urity parameters of 
omposite proto
ol under quan-tum 
oherent atta
ks whi
h are realized on the global quantum system on adversary side.However, the quantum 
oding is unfair be
ause the sender 
an 
hange the parameters ofthe emulated noisy models. We 
ould so implement only weak oblivious transfer with non-ideal parameters. Nevertheless, while proposing a me
hanism for for
ing Ali
e to behave assemi-honest, based on 
oin 
ipping and bit 
ommitment subroutines, we presented also howa quantum atta
k using two-party entanglement 
ould be seen as quantum semi-honest butnot 
lassi
ally semi-honest. Thus, our proposal for 
oin-
ipping based proto
ol is 
awed andthe one for bit-
ommitment based proto
ol is se
ure.The se
ond part of this thesis is inspired by the no-go theorems of building quantumoblivious transfer and bit 
ommitment proto
ols, issued by Mayers and Lo-Chau [May97,LC97, Lo97℄. We proposed a reinterpretation of the quantum model for two-party proto
ols,
larifying the problems of private 
lassi
al variables and the 
ommuni
ation of 
lassi
al infor-mation via a ma
ros
opi
 
hannel. We exposed that the general model is indeed a three-partysystem 
onsisting of Ali
e's ma
hine, Bob's ma
hine and the environment systems 
oupled tothe 
lassi
al 
hannel. This proto
ol 
on�guration is no more a pure two-party quantum stateto whi
h the theorems referred. However, the theorems remain valid on this model. Withthis faithful interpretation, we 
ould extend the theorems to ora
le based proto
ols with some
onstraint features of the ora
les to be used. We pointed out that if the quantum ora
lesdo not erase information then they 
annot help to build quantum oblivious transfer and bit
ommitment proto
ols. Thus, 
oin 
ipping 
annot be used to build oblivious transfer or bit
ommitment proto
ol.With these generalizations, we state that, with two-party 
oinsp1=2(j0A0Bi+j1A1Bi)and many-party 
oinsp1=2(j0A0B0:::i+j1A1B1:::i), un
onditionally se
ure two-party bit 
om-mitment and oblivious transfer remain impossible. Nevertheless, we 
an do many interestingtasks with these 
oins: establishing se
ret key [BB84℄, redu
ing 
ommuni
ation 
ost [BW92℄,teleporting unknown quantum state [BBC+93℄, sharing se
rets [HBB99℄, anonymously trans-mitting information [CW05℄, ...Moreover, we 
ould assert that un
onditionally se
ure oblivious transfer is by de�ni-tion an information-erasing pro
ess whi
h 
an only be implemented with help of a trustedthird party with erasure of information, for instan
e noisy 
hannels [Cr�e97, CMW04℄. Thisresult implied a dissipation of heat to the environment in implementations of un
ondition-ally se
ure two-party 
omputations. Nevertheless, a 
lassi
al proto
ol based on an ora
le
an be logi
ally reversible, and thus thermodynami
ally reversible [Ben73℄. This absurditysuggested that we have to re
onsider what are ne
essarily 
lassi
al information and 
ompu-tation. An information is ne
essarily 
lassi
al only if it is entangled with and ampli�ed bythe environment, and thus impli
itly requires to be erased.After all, this thesis has been primarily 
on
erned with the physi
s of information and
omputation, a new inspiring dis
ipline for 
omputer s
ientists and physi
ists.\Information, after all, is something that is en
oded in the state of a physi
alsystem; a 
omputation is something that 
an be 
arried out on an a
tual physi
ally104



realizable devi
e. So the study of information and 
omputation should be linkedto the study of the underlying physi
al pro
esses." [Pre℄The formalism of 
omputational pro
esses in the physi
al framework be
omes less ab-stra
t than the 
lassi
al one su
h as Turing ma
hine. Indeed, any 
omputation is a transitionfrom an initial state to a �nal state of a physi
al system, 
f. Figure 3.1 on page 21. This 
ouldhelp us to remove the assumption about the 
omputing model based on Turing's abstra
tma
hine. This physi
al-like formalism makes thus a �rmer foundation for 
omputer s
ien
e.Parti
ularly, when the physi
al devi
es' diameters attain the atomi
 s
ale, their be-haviors should be quantum me
hani
al. The works at this interfa
e of quantum physi
s andinformation is promotive for both information pro
essing and 
ommuni
ation. It lets opendoors into fruitful new dis
iplines of Algorithmi
s, Computational Complexity, Comuni
ationComplexity, Information Theory, ... that would wel
ome an motivated resea
hers.
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