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Quantum Primitives for Seure Two-party Computationsand Entanglement AttaksbyMinh-Dung DangB. S., Hanoi University of Tehnology, 2001M. S., Institut de la Franophonie pour l'Informatique, 2003
ABSTRACTIn this thesis, we are interested in the theory of unonditional seure two-party om-putations. The primitives of Oblivious Transfer (OT) and Bit Commitment (BC) are funda-mental in the design of these ryptographi appliations. The prinipal objet of this thesisrelates to the theory of the design of unonditional seure OT and BC.On one hand, my works are inspired from the framework of design of oblivious transferfrom noisy ommuniation hannels, pioneered by Cr�epeau, Morozov et al. [Cr�e97, CMW04℄.The priniple of this framework is to oneive, from the noisy hannels, an intermediateerasure model, the Binary Symmetri Erasure Channel, whih is a variant of oblivious trans-fer. We ontributed to this framework by proposing a more general intermediate model,the Binary Symmetri Multi-Error-Rate Channel, whih also an be built from almost noisyhannels. With this intermediate model, we an build a protool of oblivious transfer fromthe noisy hannels more e�etively.In addition, inspired from the motivating works of building noisy hannel for oblivioustransfer fromWiesner's quantum onjugate oding (QCC) [BBC+93, Cr�e94℄, we expose a asestudy on emulating noisy model by a quantum nonorthogonal oding (QNOC) sheme whihuses two non-orthogonal pure state for enoding two values of the lassial bit. We show thatQNOC is equivalent to QCC, and an only implement semi-honest oblivious transfer. Wealso show that the implementation of oblivious transfer from QNOC an be seure if we haveaess to a seure bit ommitment protool. An attempt to seure the implementation basedon a oin ipping protool is shown to be impossible by attaks using quantum entanglement.On the other hand, this researh are inspired from the no-go theorems of Mayers, Loand Chau on the implementation of oblivious transfer and bit ommitment in the frameworkof quantum information [May97, LC97, Lo97℄. However the theorems has been being onlyinterpreted in a pure quantum two-party model, and aused ontroversial disussions.We revise the quantum model for general two-party protools onerning lassial andquantum omputation and ommuniation. We state that in the general model, a lassialhannel is inevitably marosopi and its deoherene is so strong that quantum information isnot aepted to be transfered on it. Thus, the quantummodel for two-party protools beomesthree-party, onsisted of three physial omponents: the mahine of Alie, the mahine ofiii



Bob, and the environment oupled with the marosopi hannel whih should measure thelassial messages.One should then reonsider the no-go theorems in this general model. Indeed, withthe faithful interpretation of general protools in this three-party model, we reaÆrm thatthese two-party protools annot implement unonditionally seure oblivious transfer and bitommitment.Inspired from this three-party model, penalized by the no-go theorems, we an gofurther to apply these negative results to the protools using quantum trusted third-parties,named two-party orales, whih either do not store information entangled with informationin Alie's and Bob's mahines, or only make redundant opies of publi information of Alieand Bob. We see that this extended no-go result over Kent statement on oin-ipping basedprotools [Ken99℄, as with the model of two-party orale, one an easily implement a protoolof oin ipping.Moreover, this extension implies a orollary whih relates to the thermodynamis:implementations of unonditionally seure bit ommitment, oblivious transfer, and in generaltwo-party omputation, require the erasure of information and thus a dissipation of heat tothe external environment [Lan61℄.
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Chapter 1IntrodutionCryptography was reated as a disipline of hiding information in ommuniations. ClassialCryptography has been being onerned with the problem of seuring two-party ommunia-tions from the intereption of maliious third-parties. For many years, this is all there hadbeen to ryptography. However, ryptography had been onsidered rather as an art than asiene until Shannon's works shown how to prove the seurity of iphersystems, based oninformation theory [Sha49℄. Shannon's seurity is de�ned as the unertainty about the se-ret information, measured by the entropy haraterizing the randomness of the informationsoure. This leads to the notion of information-theoretial seurity or unonditional seurityas it does not depend on the omputational power of the adversary.An important mark for the beginning of Modern Cryptography was made by DiÆeand Hellman with their proposal of a key exhange protool. In their artile, the authorsintrodued the ideas of publi-key systems and of provable seurity based on omputationalomplexity, named omputational seurity [DH76℄. The omputational seurity is de�nedas it is reduible to a omputational problem ommonly adopted as hard : the adversaryan break the ryptosystem only if he has a omputer solving the underlying problem in areasonable time.This foundation of seurity is related to unproven assumptions of intratable problemson the underlying omputing model, i.e. Turing mahine. Thus, this foundation is notunonditional and bears potential threats: (i) the assumptions of intratable problems are notproven as one does not know whether eÆient algorithms may exist for these problems; andfurthermore, (ii) there may exist advaned omputational models beyond Turing mahines.Nevertheless, with this new omputational omplexity foundation, Modern Cryptog-raphy has motivated a signi�ant setion of researhers in the �eld of omputing sieneand beome an important part of this widespreading domain. Besides providing ommuni-ation seurity, suh as guaranteeing integrity and authentiity, as the entral goal, ModernCryptography has expanded to enompass many others more sophistiated and fasinatingappliations of information privay.One of the major ontributions of Modern Cryptography has been the implementationof advaned seurity of protools between distrustful users. These protools enable usersto eletronially solve many real world problems, play games, and aomplish very general1



Chapter 1. Introdutionintriguing distributed tasks suh as zero-knowledge proofs, voting protools, and generallyseure multi-party omputations [Gol01, Gol04℄.In this thesis, we will fous on quantum primitive protools for seure two-partyomputations whih is a sublass of general seure multi-party omputations, onerningonly two distrustful users. This is a new interdisiplinary �eld that bridges quantum physis,omputer siene, and ryptography.1.1 Seure Two-party ComputationsIn a formal de�nition, a distributed n-party omputation is onerned with an n-ary fun-tionality F that maps n inputs (x1; :::; yn) to n outputs (y1; :::; yn) in a ontext where theinputs and outputs are distributed among n distrustful users in the distane. The seurityis for users' loal inputs in the sense that what is learned by a user i(1 � i � n) during theprotool an be learned by that user from his loal input xi and his �nal output yi of theomputation. This requirement is as though in an ideal setup where there exists an honestparty T , trusted by all users, who gathers all xi to loally ompute (y1; :::; yn) = F (x1; :::; xn)and sends bak eah yi to eah user i [Gol04℄.Seure two-party omputations are in a sublass of seure multi-party omputations,onerning only two distrustful users, named Alie and Bob.1.1.1 Founding on Oblivious TransferOne ommon approah in engineering and hene in ryptography engineering is to sepa-rate appliations from ultimate implementations by layering and introduing fundamentalintermediate primitives whih would be implemented with more freedom.The best that has been done so far is to prove theorems based on more gen-eral ryptographi assumptions, suh as \trapdoor funtions exist," rather thanspei� assumptions, suh as \fatoring is hard." [Kil88℄This bearing leads to the disovery of oblivious transfer whih is the most importantprimitive for building general seure two-party omputations. Oblivious transfer beomesthen one of the entral primitives and a foundation of Modern Cryptography.The �rst idea of oblivious transfer was issued in the 1970s by Wiesner, with a setting ofthe quantum hannel, named \quantum onjugate oding" or "multiplexing hannel" [Wie83℄.However, Wiesner did not go further for ryptographi appliations of his sheme. Then, the�rst proposal of oblivious transfer, with its name, is to Rabin for implementing advanedryptographi tasks [Rab81℄. Rabin's version is a transmission sheme where Alie sendsa bit to Bob who has only a probability 1=2 of reeiving it, and Bob knows whether he hasreeived the bit or nothing while Alie does not. Later, Even et al. proposed a sheme similarto Wiesner's one, permitting Alie to send two messages to Bob who an hoose to read outonly one message while Alie is unaware of Bob's hoie, for building more general seureomputation tasks [EGL85℄. This sheme is named \one-out-of-two oblivious transfer," andonsidered as the standard version of oblivious transfer. It was also shown that \one-out-of-two oblivious transfer" and Rabin's oblivious transfer are equivalent [Cr�e88℄.2



1.1. Seure Two-party Computations
Secure Two−party Computations

Oblivious Transfer

Bit Commitment

Zero−Knowledge Proofs Coin Flipping

Computational Primitives

Complexity TheoryFigure 1.1: Founding seure two-party omputations on oblivious transferIt was latter shown that oblivious transfer is suÆiently used as a building blok toonstrut seure two-party protools for general funtionalities [Yao86, Kil88, Gol01, Gol04℄.As a sketh: oblivious transfer an be used for building bit ommitment, oin ipping, zero-knowledge proofs; and the implementation of any seure two-party omputation an be madeupon these four primitives, f. Figure 1.1 [Gol04℄. Simply speaking:� Bit ommitment is a protool for ommitting the evidene of a serete value: Alie hasto ommit the value of a seret bit to Bob suh that Bob annot learn this value, butlater, when Alie is supposed to reveal the serete, she annot hange her mind.� Coin ipping is a protool for two users in the distane generating a random bit suhas no one an ontrol the probability distribution of the outome.� Zero-knowledge proofs are protools for a prover onvining a veri�er about the validityof an assertion while not revealing any knowledge beyond the validity of the assertion.1.1.2 Removing the Intratability AssumptionsReall that Modern Cryptography is built on the foundation of omputational omplexitytheory where the seurity is based on intratability assumptions. Oblivious transfer wasalso supposed to be built with onditional seurity [Kil88, Gol04℄, and beomes the utpoint on the links between two-party protools and the omputational foundation of ModernCryptography, f. Figure 1.1. However, these assumptions were not proven, and the threatsto this foundation had been realized very early by ryptographers [Kil88℄, before an expliitexample was made for famous RSA publi-key system [Sho94℄.An emerging approah for removing the intratability assumptions is to seek forinformation-theoretial implementations of oblivious transfer. Unfortunately, we annot3



Chapter 1. Introdutionbreak down the symmetry in trivial noiseless ommuniation for making suh asymmetri-al transmission shemes [Kil88, Mor05℄. Nevertheless, we an build unonditionally seureoblivious transfer with information-theoretial assumptions about transmission media. Theresearhes are motivated in two diretions:1. One goes bak to Rabin's oblivious transfer whih is de�ned as an information-erasinghannel: Alie sends a bit to Bob who reeives the bit with probability 1/2 otherwise anerasure symbol [Rab81℄. With this ommuniation point of view, one extends the familyof oblivious transfers with variants of erasure hannels by weakening the ondition onparameters suh that the standard OT is still reduible to these ousins [Cr�e88, CK88,Dan06℄.2. One looks for implementations of these weakened erasure hannels from real-life om-muniation models [CK88, BBCS92, Cr�e97, CMW04℄.
Secure Two−party Computations

Oblivious Transfer

Bit Commitment

Zero−Knowledge Proofs Coin Flipping

Computational Primitives

Complexity Theory Noisy Models

Information−theoretic Primitives

Figure 1.2: Seeking for information-theoretial realization of the assumptionsThe approah had muh interest in noisy models of ommuniation hannels for im-plementing the desired erasure hannels. A major result states that oblivious transfer anbe made from nontrivial noisy hannels: if Alie and Bob are onneted by a fair nontrivialnoisy hannel with known parameters then they an implement a seure oblivious transferprotool, exept with arbitrarily small failure probability, f. Figure 1.2 [CMW04, Mor05℄.It's also shown that we an build oblivious transfer with unfair noisy hannels for boundedontrol of Alie and Bob on the parameters of the hannels [Mor05℄.We say that oblivious transfer and then seure two-party omputations an be builtfrom almost any noisy hannel with unonditional seurity, exept with assumptions aboutnoisy model of the hannel itself. 4



1.2. Quantum Ere and No-go Results1.2 Quantum Ere and No-go ResultsBesides, the disovery of appliation of quantum mehanial onepts to information proess-ing has led to a new framework for both omputation and ommuniation [NC04℄.The omputational proesses have been reated as a mathematial abstrat invention.For long time, though there has been rigorous researhes on omputational models for de-sribing what an be omputed, the omputational models remain abstrat suh as Turingmahines, logial iruits, programming languages, et. Nevertheless, all of the real proesseshave to obey ultimate physial rules of Nature. Suh a �rst statement was made by Landauerin his priniple \the erasure of a bit of information would lead to the dissipation of an amountof kT ln 2 of heat," solving Maxwell's thermodynamial demon puzzle [Lan61℄.For a resume, lassial information proessing is onerned with applying transitionson disrete input information whih are normally enoded by sequenes of binary symbolsf0; 1g under Boolean Algebra. For the implementation, these two symbols are representedby the distinguishable states fj0i ; j1ig of any two-state physial system. The development ofeletroni devies with transistor tehnology has made omputers more and more powerfuleveryday. We are making denser and denser aurate devies with fewer ubi nanometersper unit. However, the physial implementation of this abstrat omputing model realizes therelation with physial laws as soon as atual omputers are made with atomi sale devieswhere quantum mehanial laws are involved. In the atomi sale, the physial systems atquite di�erently, for instane a two-state system an be in a superposition state, i.e. it anbe in any state a j0i+ b j1i where a; b are omplex numbers and jaj2+ jbj2 = 1. Moreover, thetransitions between quantum states are governed by the laws of quantum theory with newfeatures apart the lassial ones [Gri04, Per02℄.Most of all, this new ere has made signi�ant impats to the �eld of Cryptology(Cryptography and Cryptanalysis). These impats are twofolds. In one diretion, a newomputing model with robust algorithms [Sho94, Gro96℄ requires serious reonsideration ofthe omputational seurity based on lassial omputing models [PQC06℄. In the other one,the unertainty priniple and the non-loneability of quantum mehanial information givenew unonditionally seure ryptographi tools suh as random number generator [JAW+00℄,key exhange shemes [BB84, Eke91, Ben92℄.Motivated by this promoting framework, many researhes are direted to the onstru-tion of unonditionally seure primitives for seure omputations without any assumptionexept the postulates of ultimate laws of quantum theory.The �rst proposal is for a oin ipping protool whih leads nearly to a bit ommitmentprotool [BB84℄. However, this sheme is found to be awed by an attak whih exploits thespeial property of quantum entanglement. Later, despite many attempts to implementquantum seure two-party omputations' primitives [BCJL93℄, one ould �nally �nd someaws behind [May96℄.Furthermore, a more general attak was laimed, exploiting the entanglement in thetwo-party models, to aw all possible quantum bit ommitment protools [May97, LC97℄. Infat, in the proofs of Mayers and Lo-Chau, the impossibility of quantum bit ommitment issimply derived from a property of the pure bipartite quantum states whih leads to the fatthat if a bit ommitment protool is seure against Bob before the opening, then Alie an5
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?Figure 1.3: Seeking for quantum mehanis based realization of the assumptionsuse a loal transformation to hange her seret.A similar proof for the impossibility of quantum oblivious transfer protools was laterdesribed in [Lo97℄. Beause of the similarities between the no-go theorems for quantumbit ommitment and quantum oblivious transfer protools, one used to talk only about thetheorem of quantum bit ommitment.However, though the theorem is laimed to be valid for all general protools usinghybrid quantum and lassial ommuniation and omputation [May97, LC97℄, the inter-pretation for the generality remains unlear and auses researhers not to ease to eitherhallenge it [Yue00, Yue04, Che03℄, or on�rm it [Bub01b, Che05, Che06℄, or reestablishit [dKSW06℄.The obsession to this laim of generalization is that it is not lear to see how theproofs over all possible protools whih an onsist of1. lassial omputations with seret random variables,2. ommuniations via a lassial hannel that does not permit a pure two-party model.One ould say that the theorem on the impossibility of unonditionally seure quantumbit ommitment [LC97, May97℄, and the theorem on the possibility of unonditionally seurequantum key distribution [LC99, SP00℄, are among the most interesting subjets in the�eld of quantum ryptography. Moreover, these impossibility and possibility ould lead tophilosophial thoughts about quantum theory [Bub01b, CBH03, BF05℄.A related problem is to onsider the relation between ryptographi primitives in thequantum model of two-party protools. While it was lassially shown that bit ommitmentimplements oin ipping and is implemented by oblivious transfer [Kil88℄, oblivious transferan be built from bit ommitment by transmitting quantum information [Cr�e94, Yao95℄.6



1.3. Contributions and OutlineNevertheless, oin ipping, whih is also banned from being implemented in the sope ofquantum mehanis by other no-go results [LC98, Kit02℄, was shown to be stritly weakerthan bit ommitment in the two-party quantum model [Ken99℄.1.3 Contributions and OutlineThis thesis is onerned with and ontributes to the theory of unonditionally seure two-party primitives, with either positive or negative results, partiularly in the framework ofquantum mehanial model for two-party protools.In Chapter 4, we provide in detail our reviews on related works, mainly onerningthe onstrutions of oblivious transfer based on noisy hannels [CMW04, Mor05℄; the on-strutions of quantum variants based on Wiesner's quantum onjugate oding; and Mayers',Lo's and Chau's (MLC) no-go theorems on quantum primitives.In Chapter 5, we expose a development [Dan07℄ ontributing to the framework forthe onstrution of oblivious transfer based on noisy models. We propose to onsider morelosely the model of a binary symmetri multi-error-rate hannel whih is implemented fromdisrete memoryless hannels by the same onstrution of Cr�epeau et al. [CMW04℄. With thishannel, we an realize a general binary symmetri erasure hannel by providing an error-ratebarrier separating good from bad error rates. We present also an implementation of seureoblivious transfer from these extensions. Moreover, with suh onsideration of multi-error-rate hannels, we have freedom to separate two sets of good and bad for an improvementof eÆieny in building oblivious transfer, based on the probability distribution of the errorrates. We expet also that the introdution of the model of multi-error-rate hannel an helpto solve the open problem on building oblivious transfer from noisy hannels with ontinuousalphabets [Mor05℄. However, a quantitative analysis is left to further onsideration.In Chapter 6, we present a framework of building oblivious transfer variants based ona quantum oding sheme using two nonorthogonal quantum pure states. We show that thisframework is equivalent to the existing one based on quantum onjugate oding [BBCS92,Cr�e94, Yao95℄. We highlight also the neessary of onsidering quantum oherent attaks inprotool redution shemes using lassial ombination of subroutines. In many ases, weshould be areful with traditional tehnique of lassial privay ampli�ation and onsidergeneral attaks by quantum mahines.Finally, in Chapter 7, we present our reonsideration of general models for two-partyprotools. We show that in reality, a general two-party protool is onerned with a maro-sopi hannel and should not be interpreted as a quantum two-party system onsisting onlyof two users' mahines. We present then a faithful interpretation for the generality of Mayer'sand Lo's & Chau's no-go theorems in this general model whih is a quantum three-party quan-tum system, extended to inlude an environment system oupled with the lassial hannel.With this interpretation, we show that the theorems an be extended to over some partiu-lar orale based models. These partiular quantum orales do not hange the features of thethree-party model whih is penalized by the attaks of the theorems. We remark that theseorales are indeed in a lass of orales whih do not make erasure of information. This leadsto a disussion on the thermodynamial feature of two-party primitives, based on Landauer's7



Chapter 1. Introdutionpriniple [Lan61℄.For a preliminary on the bakgrounds of these works, the readers an refer to Chapter 2for basis of omputation theory, information theory and ryptography, and Chapter 3 forbasis of quantum information proessing.
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Chapter 2Probability, Computation, andCryptographyCryptography was an anient art of hiding information during ommuniations. Till nowa-days, it has been muh developed and onerned to over a larger domain of appliationsin whih the primordial goal of ryptography is to onstrut ryptosystems that will be ro-bust against maliious ating to make these shemes fail their presribed funtionality. Inthis ooperative ontext, the ryptosystems are required to be designed in aordane withKerkho�s' priniples [Ker83℄:\A ryptosystem should be seure even if everything about the system, exeptthe key, is publi knowledge."Forever, proteting the privay of seret information remains its main objet. Thequestion is \how muh an untrustful adversary an infer about the seret of the other(s)?" Ina more onrete argument, \how seure is the seret against the adversary provided gainedsupplementary information?" With this argument, one bases the privay on two requirements:1. The seret is perfetly seure, i.e. the knowledge about the seret is not a�eted by theavailable information. In terms of information theory, the seret must be statistiallyindependent from the supplementary information. This point of view is known asinformation based seurity.2. The seret is seure if it is diÆult to be omputed from the supplementary information,provided that omputational power of the adversary is well de�ned. This point ofview is known as omputational-based seurity, developed by Modern Cryptography inonnetion with Computational Complexity Theory.9



Chapter 2. Probability, Computation, and Cryptography2.1 Probability Theory and Information-Theoretial based Se-urity2.1.1 Probability TheoryProbability theory is a domain providing mathematial language for random phenomena thatlie beyond the limit of knowledge. A random phenomenon is assoiated to a randomness thatselets the outome from a set of possible values with assigned probabilities, representing thefrequeny of eah possible value when the phenomenon is subjet to a large number of trials.For the notation, a random variable X over a domain X takes any value xi 2 X withprobability Pr(X = xi) (or P (X = xi)). We denote by PX the probability distribution andPr(X = xi) an be replaed with PX(xi). By the normalization, Pxi2X PX(xi) = 1 fordisrete X or Rxi2X PX(xi) = 1 for ontinuous X .The relation between two random variables is desribed by their dependeny. Supposethat when variable X has taken value xi 2 X , a related variable Y will have a onditionalprobability distribution PY=X=xi where Y takes value yj in its domain Y with probabilityPY=X=xi(yj). In many ases it an be denoted as P (Y = yj=X = xi) or P (yj=xi). Y isindependent from X if and only if PY and PY=X=xi is idential for all xi 2 X .In the �eld of omputing and information theories, we are onerned with binaryvariables and Bernoulli probability distribution:PX(1) = p; PX(0) = 1� p:The probabilities manifest themselves when the number of trials is suÆiently large,following the Laws of Large Numbers. An useful law of large numbers for binary distributionis:Theorem 2.1 (Rompel's Law of Large Numbers). Let X1; :::;Xn be Poisson trials, i.e.independent trials with 1 � i � n; P (Xi = 1) = pi and P (Xi = 0) = 1 � pi. Then, forX =Pni=1Xi, � = E(X) =Pni=1 pi, and any �=n > Æ > 0:P � jX � �jn > Æ� � 2e�nÆ2=2In ase of Bernoulli trials, i.e., when p1 = p2 = ::: = pn, this redues to the well-knownBernstein's law of large numbers:Theorem 2.2 (Bernstein's Law of Large Numbers). Let X1;X2; :::;Xn be independent ran-dom variables following a Bernoulli distribution with p as the probability parameter. Thenfor any Æ > 0 P �����Pni=1Xin � p���� � Æ� � 2e�nÆ2=22.1.2 Information TheoryIn the 40s, Shannon proposed a foundation for information theory in whih an informationsoure is a statistial model for a physial entity that produes outputs alled messages in a10



2.1. Probability Theory and Information-Theoretial based Seurityrandom manner with some a priory statistial parameters [Sha48, CT91℄. We are normallyonerned with disrete soures whose messages take value in a set fx1; ::; xng with proba-bilities fpX(x1); ::; pX (xn)g. So, a message from this statistial soure is haraterized by arandom variable X that takes value xi with probability pX(xi).We are usually working with disrete and memoryless hannels, i.e. the transmissionof one message over the hannel is statistially independent from the previous ones. Basedon this probabilist model, the system is desribed by a disrete input symbols alphabet X =fx1; ::; xng, an output one Y = fy1; ::; ymg and a onditional probability distribution PY=Xwhere PY=X=xi(yj) spei�es the probability of reeiving output yj when input xi has been sent.When the hannel is noiseless, the probability distribution is trivial, i.e. PY=X=xi(yi) = 1 withX � Y. We work frequently with binary symmetri hannel (BSC) where X = Y = f0; 1gand the error probability is symmetri over X : pe = PY=X=0(1) = PY=X=1(0).Shannon introdued also the �rst idea of mathematially measuring the privay of aseret [Sha48℄. The main idea is to estimate the lak of information about a seret (messageor key) from the enrypted message, named iphertext. This is then rigorously treated bythe theory of information, based on probability theory and statistis.If a message, that must be assigned to some a priori known statistial soure, isunknown to a person, this person has no more knowledge about the message than the apriori statistial desription of its soure: a message X an be instant xi with a prioriprobability PX(xi). One measure of the knowledge an be expressed as the entropy of thesoure, quantifying unertainty about, or the privay of, the message:H(X) = � nXi=1 PX(xi) logPX(xi): (2.1)H(X) = 0 when one of PX(xi) = 1, i.e. the person is a priori ertain about the ourrene xiof X. H(X) is maximal when all the pi are equal, i.e. H(X) = logn, and we say the messageis perfetly seret. For binary distribution fp; 1 � pg, the binary entropy is denoted ash(p) = �p log p� (1� p) log(1� p) = h(1� p): (2.2)Here, the probability distribution is merely subjetive: if a message randomly hosenby a person A is kept seret from another person B then the probability distribution assignedto the message by A is trivial while the one by B is a at distribution.If another evidene y related to the message X is given to the onsidered person,this hanges the subjetive probability distribution assigned to X by the person, knownas onditional probability distribution: X takes value xi with probability PX=y(xi). Theunertainty about X is nowH(X=y) = � nXi=1 PX=y(xi) logPX=y(xi):If the evidene is also given as a random variable Y that takes value yj 2 fy1; :::; ymg withprobability pY (yj), then the unertainty about X of the person is averaged:H(X=Y ) = � mXj=1 PY (yj)H(X=yj) = � nXi=1 mXj=1 PX;Y (xi; yj) logPX=Y=yj (xi) (2.3)11



Chapter 2. Probability, Computation, and CryptographyThis quantity is used for the remaining unertainty, named equivoation by Shannon, aboutX knowing Y . It's onvenient that knowing Y always redues the unertainty about X:H(X=Y ) � H(X);and I(X;Y ) = H(X)�H(X=Y ) is the mutual information between X and Y that quanti�esthe average amount of information about X revealed by Y .Then, the privay of the seret message X of a ryptosystem, that sends some messageY to an adversary, against that adversary is haraterized by the amount of informationabout X revealed by Y , i.e. I(X;Y ). The system is perfetly seure only if I(X;Y ) = 0 orH(X=Y ) = H(X), i.e. X;Y are pairwise independent. Beause by de�nition, this seurityis assoiated to the randomness and independent of adversaries' omputational power, it isnamed unonditional seurity.The measure of entropy was then developed by Renyi with the de�nition of Renyientropy of order a, where a � 0.Ra(X) = 11� a log nXi=1(PX(xi))a! :When a approahes 1, Renyi entropy onverges to Shannon entropy:R1(X) = H(X):Speially, Renyi entropy of order 2 is usually used by for privay ampli�ation based onuniversal2 hashing [CW77, BBCM95℄:R2(X) = � log nXi=1(PX (xi))2! :2.1.3 One-Time-PadBy this measure, a simple ipher named Vernam's ipher has been proven to be perfetlyseure. Suppose we have a seret one-bit message desribed by random binary variable X:PX(1) = p = 1� PX(0). We hoose then a seret one-bit key K with PK(0) = PK(1) = 1=2,and exlusive-or X and K to produe iphertext Y = X �K:PY (1) = PX(0)pK(1) + PX(1)PK(0) = 1=2 = 1� PY (0):The onditional probabilities arePY=X=b(0) = PK(b) = 1=2 = 1� PY=X=b(1);PY=K=b(0) = PX(b) = 1� PY=K=b(1);PX=Y=0(b) = PX(b) = PX=Y =1(b);PK=Y=0(b) = PX(b) = PK=Y=1(b)12



2.1. Probability Theory and Information-Theoretial based Seurityfor b 2 f0; 1g. Thus, the onditional unertainties of the message and the key, given theiphertext, are H(X=Y ) = h(p) = H(X); H(K=Y ) = h(p) � H(K):Therefore, the message is perfetly seure while the key is not. The solution is that we useonly one key one for one message, i.e. for a sequene of n bits, we use a key of n randombits. This perfet ipher is so known as one-time-pad, and it is shown that any perfet iphermust be as onsuming in seret key as one-time-pad: H(K) � H(X) [Sha49, Sti95℄. Thus,unonditional seurity and Vernam's ipher is hard to be realized for ommuniating betweentwo users beause it requires a shared seret key of the same length as the message. Neverthe-less, one-time-pad is eÆiently used in the onstrution of redutions between ryptographiprimitives [Gol01, Gol04℄.2.1.4 Error Corretion and Privay Ampli�ationReall that the gap between knowledges of legitimate user and untrustful user upon a seretis ruial for ryptosystems. In the omputational point of view, this gap is expressed as theomputational easiness-diÆulty in one-way funtions [Gol01℄. In the information-theoretialpoint of view, this gap is measured by entropies: the situations are interesting when thelegitimate user has less unertainty about the seret than the maliious one. In suh ases,there exist mathematial tools for enhaning in one way the knowledge of the legitimate userand in the other way the unertainty of the maliious user: error orretion and privayampli�ation:1. while legitimate user, who has some advantageous knowledge, an produe the orretseret by error orreting odes [MS77℄,2. the remaining partial knowledge, after error orreting phase, of maliious user an beredued to be negligible by privay ampli�ation [BBCM95℄.These two tehniques are used in exploiting noisy models for unonditionally seure applia-tions suh as key agreement [Wyn75, BBB+92, Mau93℄, oblivious transfer [CMW04, Mor05℄.We ite here two important related asymptoti results for error orretion and privay am-pli�ation [BBCM95, Mor05℄:Theorem 2.3. For any ' > 0 there exists � > 1 suh that for all  < 1 � h(') andsuÆiently large N there exists a linear ode with the length N and a number of hek bitsat most (1� )N , failing to orret 'N uniformly distributed errors only with probability atmost �(�1+h('))N .Theorem 2.4. Let V be a uniformly distributed n-bit string and let W be generated byindependently sending eah bit of V over a '-BSC. Let, furthermore, syn : f0; 1gn ! f0; 1grbe a linear funtion and G be a random variable orresponding to the uniformly random hoieof a funtion from a universal lass of hash funtions2 f0; 1gn ! f0; 1gl. Then,I(G(W ); (G;V = v; syn(W ))) � 2�(R2(W jV=v)�l�r)= ln 2for all suÆiently large n. R2(W jV = v) > (h(') � )n for any �xed  > 0 and suÆientlylarge n exept probability exponentially small in n.13



Chapter 2. Probability, Computation, and Cryptography2.2 Computation Theory and Computational Complexity basedSeurityThe theory of omputation is onerned with the automation of omputing by algorithmiproesses of desribing and transforming information. The fundamental question is \whatan be (eÆiently) automated?"In 1936, Turing proposed the Turing mahine (TM) as a model of omputation. It isan abstrat mahine for deterministially manipulating symbols, equipped with a state thatis in any of a �nite set of states, an in�nite tape of ells that hold symbols from a �nitealphabets, and tape-head that sans the tape. In eah step, following a �nite set of rulesalled program, the mahine reads the symbol in the positioned ell, hanges the state andmoves the tape-head to left or right. The mahine has a speial state for whih the mahinehalts, known as halting state. For some input string, whih is the initial ontent of the tape,the mahine an terminate with halting state after a �nite number of steps or run forever. Ifthe mahine halts, the ontent of the tape is the output omputed by the mahine.In terms of languages, the set of input strings on whih a Turing mahine halts isnamed \language reognizable by" that mahine.Although its simpliity, one believes the assumption that this mahine is the model forany possible lassial omputation, known as Turing thesis. The modern theory of omputa-tion is indeed the theory of what an be omputed by Turing mahine [HMU01℄. Moreover,the major objet of omputing theory is onerned with the eÆieny of Turing mahinesfor omputational problems. Beside many easy problems whih an be eÆiently omputedby TM (in polynomial time), there are many diÆult problems believed to not be eÆientlyomputed (in polynomial time), named as intratable problems. Two important lasses ofeasy and believably diÆult problems are:� P: lass of languages that an be reognizable by a polynomial-time Turing mahine.� NP : lass of languages L that is assoiated with a witness language Y and a verifyinglanguage RL � L� Y :1. 8x 2 L;9y 2 Y suh as (x; y) 2 RL,2. if x 62 L then 8y 2 Y; (x; y) 62 RL,3. RL is reognizable in polynomial-time in measure of length of x.NP has an important sublass known as NP-omplete with the property that any NPproblem p1 an be reduible to a NP-omplete problem p2 in polynomial-time. Then afamous theorem of Cook proved that the boolean satis�ability problem is NP-omplete([HMU01℄, Theorem 10.9).Then, modern ryptography is related to the theory of omputational omplexitywhere the seurity of serets is based on assumptions of diÆult problems. For instane, theseurity of the famous RSA publi-key system is based on the diÆulty of fatoring largeintegers. 14



2.3. Seure Two-party Computations' PrimitivesEvidently, the seurity based on hard problems is onditional and dependently relatedto the unproven assumptions of their diÆulty, e.g. P 6= NP or fatoring large integers ishard, as well as the omputing model, i.e. Turing mahine is the model for any possible om-putation. This onditional seurity an be threatened by potential advanes in algorithmior omputing models. In fat, new onepts of quantum omputing permit to fator integersin polynomial time [Sho94℄, breaking RSA system, or speed up exhaustive searhes of witnessfor NP problems [Gro96℄.Nevertheless, founded on omputational omplexity, modern ryptography has madedrasti advanes where the embraed gap between easy and diÆult problems leads to asym-metrial ryptosystems of fruitful appliations [Gol04℄.2.3 Seure Two-party Computations' Primitives2.3.1 The Essential PrimitivesOblivious TransferThe �rst proposal of oblivious transfer to be used in onstrution of ryptographi applia-tions was made by Rabin [Rab81℄, in whih the sender sends a bit and the reeiver has onlyprobability 1=2 for reeiving it while the sender does not know what has happened. Later,another version was proposed by Even et al. [EGL85℄, known as hosen one-out-of-two obliv-ious transfer, and preferred as a standard oblivious transfer. In this standard version, thesender sends two bits and the reeiver seretly selets to reeive one and only one of sender'sbits. Moreover, the two versions are equivalent [Cr�e88℄.In terms of two-party funtionality, oblivious transfer is de�ned as an one-sided map-ping f0; 1g2 � f0; 1g 7! ; � f0; 1g where the sender introdues two bits (b0; b1), the reeiverintrodues a hoie bit , and at the end the reeiver reeives b0 � (1 � ) + b1 �  while thesender learned nothing.Bit CommitmentSimply speaking, bit ommitment is a protool where Alie ommits the evidene of the valueof a seret bit to Bob who annot disover Alie's seret, but then if Alie is supposed toreveal the seret, she must prove its value and Bob an detet if Alie heats.In terms of information-theoretial seurity, the protool must hold� The onealment: Bob gains no information about Alie's bit with the ommittedinformation.� The binding: At the opening phase, if Alie hanges the seret value, Bob an suess-fully detet it.It has been stated that a bit ommitment protool an be built, provided an oblivioustransfer protool [Cr�e89℄:Protool 2.1. OT ! BC(b) 15



Chapter 2. Probability, Computation, and Cryptography� Commitment phase:1. Alie prepares a sequene of n random bits x1; :::; xn and generates another se-quene y1; :::; yn suh that 8i(1 � i � n); xi � yi = b. Bob prepares a sequene ofrandom bits 1; :::; n.2. For 1 � i, Alie and Bob exeute OT (xi; yi)(i), and Bob reeives then a sequenez1; :::; zn.� Opening phase:1. Alie reveals b and sends all of (x1; :::; xn), (y1; :::; yn) to Bob.2. Bob aepts if and only if 81 � i � n; zi = xi(1� i) + yii and xi � yi = b.We see that the protool is onealing beause for eah pair xi; yi Bob an reeive onlyone bit, and annot determine the x-or of them. Besides, the binding an be assumed exeptwith probability exponentially small in n.Coin FlippingInformally, oin ipping is a protool for Alie and Bob agree on a truly random bit.If they are present at the same loation, it is trivial for one user to toss a fair oinwith the observation of the other. However, if the two are far apart the one from the otherthen they annot realize the above sheme as the tossing user an lie about the outome. Inthat ase, it is not trival to generate a random bit of whih the probability distribution isindependent from the intentions of Alie and Bob with noiseless ommuniation hannels.However, if we have a bit ommitment protool, we an easily implement a protoolfor Alie and Bob ipping a random bit:Protool 2.2. BC ! CF1. Alie prepares a random bit a and sends the ommitment (a) to Bob.2. Bob prepares a random bit b and sends it to Alie.3. Alie opens the ommitment a with (a) and Bob veri�es. Then eah user omputesr = a� b.Moreover, muh of interests in seure omputation are onerned with the situation inwhih one user has to generate random bits to be kept seret but the other one would ratherhas ommitment of the values [Gol04℄. Simply, we an slightly modify the above sheme tohave suh an augmented oin ipping protool:Protool 2.3. BC ! augmented-CF1. Alie prepares a random bit a and sends the ommitment (a) to Bob.2. Bob prepares a random bit b and sends to Alie who omputes r = a� b.16



2.3. Seure Two-party Computations' PrimitivesZero-Knowledge ProofsThe zero-knowledge proofs were introdued into the �eld of ryptography with muh interest.The �rst servie is for proving assertions, ommonly as \instane x belongs to language L"in terms of omputing theory, without dislosing any additional knowledge than the validityof the assertions. The seond is that, its formulation gave the idea of a simulator mahinewhih is widely used as standard formalism for proving protool seurity.An interative proof system onsists of two interative mahines, P for prover andV for veri�er, where the prover want to onvine the veri�er the validity of an assertionommonly expressed as \a string x belongs to a language L." The two mahines have aommon input x and �nally V produes 1 if x 2 L and 0 otherwise. The introdutionof probabilist omputation would weaken this ondition with some negligible probability oferror. An interative proof system (P; V ) for language L is zero-knowledge if for every veri�erV � , there is a simulatorMV � suh that for x 2 L, the distribution of output byMV � on inputx is indistinguishable from the distribution of output by V � interating with P on input x.An important result states that [Gol01℄:Theorem 2.5. Given bit ommitment protool, zero-knowledge proofs exist for all languagesin NP The idea for this statement is a onstrution for the 3 � SAT language, known asNP-omplete, and then any other NP language an be redued to that, f. Setion 2.2.2.3.2 RedutionsSeure Two-Party ComputationsWe present here a sketh of the deomposition of seure two-party omputations.Any funtionality an be deomposed into a logial iruits onsisting of AND andXOR gates, provided inputs and random tapes whih is distributed to Alie and Bob. Onebuild then an oblivious evaluation protool that replaes eah gate by an augmented gatethat works on the shares instead of the plaintext-data: given the plaintext a then the sharesare aA hold by Alie and aB by Bob suh that aA�aB = a, where � denotes the exlusive-or(x-or) operator. In fat, we an implement evaluation gates with help of a 1-to-4 oblivioustransfer protool, f. Protools 2.4, 2.5.Protool 2.4. Gate XOR: (aA; bA); (aB ; bB)! (a� b)A; (a� b)B.� Alie omputes (a� b)A = aA � bA� Bob omputes (a� b)B = aB � bBthen (a� b)A � (a� b)B = aA � bA � aB � bB = (a� b).Protool 2.5. Gate AND: (aA; bA); (aB ; bB)! (a:b)A; (a:b)B17



Chapter 2. Probability, Computation, and Cryptography� Alie prepares a random bit r, and a table of 4 membersi; j 2 f0; 1g;Xij = (aA � i):(bA � j)� r� Alie sends Bob the table via 1-to-4 OT where Bob an hoose to reeive only one ofthe members. Bob enters aBbB as his hoie to reeive XaBbB .� Alie holds r as (a:b)A and Bob hold XaBbB as (a:b)B .then (a:b)A � (a:b)B = r � ((aA � aB):(bA � bB)� r) = a:b.Suppose that Alie and Bob want to ompute a funtion f(x; y), and Alie holds inputx, Bob holds input y. Initially, Alie generates a random key xA as a share; omputes andsends the other share xB = x � xA to Bob. Bob does the same for the shares yA; yB of y.Then, with the evaluation protool based on augmented gates for funtion f , Alie and Bobompute with the shares and then get the shares of the �nal results of f . They are requiredonly a round for ombining the �nal shares to obtain the derypted results.However, the above onstrution is seure only if Alie and Bob are semi-honest i.e.eah user respets the protool but wants to learn the other's seret. In reality, the usersan be maliious with unlimited behaviours, for instane they generate unfair random tapes,substitute the intermediate results. Thus, it's more diÆult to onstrut a seure protoolin suh a maliious model. It was showed that with help of ommitment, oin ipping andzero-knowledge protools, we an fore maliious user to at as semi-honest [Gol04℄. Thegeneral ompilation for the maliious model an be sketh as follows:1. Eah user makes the ommitment of the inputs to the other.2. Eah user makes random tapes with augmented oin ipping protool giving the om-mitment to the other.3. The users realize the oblivious evaluation protool, but at eah ommuniation step,the sender has to prove the orretness of the output message by zero-knowledge proofs.It's beause the orretness of the next message, whih is deterministially produedfrom ommitted data and the previous inoming messages, is a NP statement.Besides, given oblivious transfer, we an build bit ommitment, and then oin ippingand zero-knowledge proofs for NP languages. In summary, the redution shemes show thatthe seure omputation of any two-party funtionality an be built from oblivious transfersolely. In other words, seure two-party omputations an be founded on oblivious transfer,f. Figure 1.1.Proof of SeurityIn many irumstanes, we expet building new, more interesting protools upon existingprotools served as subroutines. This tehnique is named redution or protool redution.In a formal way, the subroutines are treated as ideal orales that implement thespei�ed funtionalities of the subroutines, and the omposed protool invokes these orales18



2.3. Seure Two-party Computations' Primitiveswhen neessary. Ideally, we would expet that the omposite protool is itself implementedby an ideal orale for the spei�ed funtionality.In the �eld of ryptography, we have to onsider the seurity for the new protool byguaranteeing that what a maliious party an do with the omposed protool is the sameas, or indistinguishable from, what this party an do when invoking the ideal orale for theprotool. The standard approah for arguing the seurity of the omposed protools whihare built upon the subroutines leads to the zero-knowledge riteria. It's required that for themaliious user, there exists a simulator whih produes by itself indistinguishable output fromwhat produed by the mahine interating with the other honest users [Cr�e90, Gol01, Gol04℄.In this thesis, we are only onerned with two-party protools where the seurity isonsidered when a party tries to heat the other being honest. We will also simplify our proofsof seurity without appealing to this beautiful but ompliated framework using simulatormahines. In eah onrete protool, we will expliitly onsider the information revealed tothe maliious adversary.
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Chapter 3Quantum Information ProessingThe omputing or information proessing mahinery has obtained the ever greater suessin 20th entury, issuing the eletroni implementation of Von Neumann model whih realizesthe Universal Turing Mahine, an abstrat omputing mahine stated to be able to omputewhat is naturally regarded as omputable.In a way, any abstrat omputing mahine musts be abstrated from mehaniallye�etive steps whih an be automated, that is what \mahine" means. The most familiarabstration is to Turing with Turing's thesis for his omputing mahine:Thesis 3.1 (Turing's thesis). LCMs [logial omputing mahines: Turing's expression forTuring mahines℄ an do anything that ould be desribed as \rule of thumb" or \purelymehanial". (Turing 1948: 7.)
Laws of motion

Final state

Initial stateInput

Output

Computing machine (abstract) Physical system (model)

Rules

Figure 3.1: Connetion between Information Proessing and Physial MotionInversely, any abstrat omputing mahine may be oneivable within a physialframework. Any real information proessing system relies for its implementation upon sys-tems whose behavior is ompletely desribed by the laws of physis. The onnetion between21



Chapter 3. Quantum Information Proessingwhat an be done mehanially and an abstrat omputing model an be skethed as inFigure 3.1 [Deu℄.In this dissertation, we will be onerned with quantum information, in whih the fun-damental models for information proessing are based upon the laws of quantum mehanis.In the view of Figure 3.1, information are introdued as quantum states of physial systems,observed by observable values from quantum measurement, and proessing rules are realizedby quantum mehanial laws of motion.This hapter introdues some fundamental features of quantum information, empha-sizing quantum mehanial onepts of physial state, laws of motion and measurement.3.1 Quantum State Spae, Evolution and MeasurementWe have �rst to be familiar to a mathematial language provided by quantum theory for de-sribing physial systems of quantum sale of whih the behavior is probabilisti but manifestsinterferene of waves. Remark that the notion \physial system" is rather an abstration, maynot be a real entity. For instane, in a desired experiene, the physial system is the polariza-tion of a photon, not the photon itself; or in another experiene, where we onsider \position-momentum" of a photon, the physial system is now reported to \position-momentum." Onemay admit an inverse de�nition as\A quantum system is whatever admits a losed dynamial desription withinquantum theory" [Per02℄.Then, with the physial system in test,\a state is haraterized by the probabilities of the various outomes of everyoneivable test" [Per02℄.For unifying the interferene of probabilities of outomes in quantum tests, quantum theoryhas formulated eah quantum state as a wave funtion whih hanges over time aording toShrodinger's equation, and belongs to a state spae whih is a Hilbert spae. Although onemay be aware of the fat that\quantum phenomena do not our in a Hilbert spae, they our in a labora-tory" [Per02℄,it suÆes for getting the hang of quantum language within its mathematial formulation inHilbert spaes, provided quantum postulates. A Hilbert spae is de�ned as1. It is a vetor spae H over omplex number �eld C .2. It is assigned an inner produt funtion (:; :) from H �H to C that maps an orderedpair of vetors ('; ) to a omplex number with properties:(a) ( ; ) � 0 and the equality happens i�.  = 0.(b) ('; a: 1 + b: 2) = a('; 1) + b('; 2) for a; b 2 C .22



3.1. Quantum State Spae, Evolution and Measurement() ('; ) = ( ;')� where the asterisk (�) symbolizes for the omplex onjugate.In the area of quantum theory, one is familiar to Dira's ket notations:� j i stands for vetor  .� h'j i stands for inner produt ('; ).� j i h'j stands for projetion operator whih maps vetor jvi to h'j vi : j i.For desribing the state of a quantum physial system, we adopt the �rst postulate ofquantum theory language:Postulate 3.1 (Quantum pure state). Any isolated physial system is assoiated a state spaewhih is a Hilbert spae. The system is ompletely desribed by a unit vetor in the assoiatedstate spae, i.e. its norm k k =ph j i = 1. This state vetor enodes the probabilities forthe outomes of all possible measurements applied to the system.Then, the state of a quantum system evolves in time following quantum theory ofmotion:Postulate 3.2 (Unitary evolution). The evolution of a losed system is desribed by a unitaryoperator on the state spae of the system. That is, given the initial state j i and the evolutionoperator U , UU y = U yU = I, the �nal state is�� 0� = U j i :For human knowledge about a quantum system, one needs to measure the systemwith observables whih interat with the quantum system, amplify the magnitudes and showthe results as marosopi signals. After the measurement, the state of the quantum systemis modi�ed aording to the result. So, the ultimate measurement is an observable whihis a olletion of projetions orresponding to possible real outomes, known as projetivemeasurement:Postulate 3.3 (Projetive measurement). Every physial observable is represented by a Her-mitian operator on the state spae of the system being observed, i.e. the observable operatoran be diagonalizable with real eigenvalues. It has a spetral deompositionM =Xi aiPi;where the eigenvalues ai 2 R represent the outome signals, and Pi is the projetor onto theeigen-spae of M with eigenvalue ai. We see that Pi = Pj jviji hvijj for fjvijigj being theolletion of orresponding eigenvetors of ai.When measuring the state j i, the probability of getting outome ai isp(ai) = h jPi j iand given that outome ai ours, the state of the measured system is projeted by Pi, orollapsed to: Pi j ipp(ai) :23



Chapter 3. Quantum Information ProessingNormally, rather than giving an observable in Hermitian formalism, one spei�es aolletion of omplete orthogonal projetion operators fPig, Pi Pi = I; PiPj = ÆijPi for animpliit observable M =Pi iPi. Partiularly, one frequently uses the term \measure in thebasis fjviig", where fjviig forms an orthonormal basis of the state spae, for the observablegiven by the projetion operator list fPi = jvii hvijg. Then, any state vetor is an unit(or normalized) vetor jvi = Pi i jvii ; i 2 C . The measurement of the system in statejvi \in the basis" will give outome i with probability pi = jij2, Pi jij2 = 1, and if theoutome ai ours then the system is in state jvii. i are known as probability amplitudes,but furthermore they inherit the property of omplex numbers and manifest the interferenewithin the linear algebra over Hilbert spaes.3.2 Statistial Ensembles, Density MatrixIn quantum world, probabilities are not always manifested as omplex amplitudes. Sometime,we are given a system in a mixed state whih is desribed by a statistial ensemble, i.e. thesystem is in one of states fj iigi with respetive probability pi. This ensemble is normallydenoted as fpi; j iig. We are then provided the density operator language as a onvenientmathematial desription for this kind of quantum state. Within this language, the abovestatistial ensemble is represented by a matrix� =Xi pi j ii h ij with 8i; pi � 0 and Xi pi = 1:When the system is measured with an observable M =Pj ajPj , aording to Postulate 3.3,eah member state j ii (with probability pi) gives outome aj with probabilityp(aj=i) = h ijPj j iiand the orresponding output state isj iji = Pj j iipp(aj=i) :Thus globally, outome aj ours with probabilityp(aj) =Xi pip(aj=i) =Xi pi h ijPj j ii =Xi pitr(Pj j ii h ij) = tr(Pj�)where tr(:) is the trae operator, and the orresponding output state of the system is anensemble fp(i=aj); j ijigi with p(i=aj) = pip(aj=i)p(aj) . Then, by the density operator language,the matrix representation of this ensemble is�0j =Xi p(i=aj) j iji h ijj =Xi piPj j ii h ijp(aj) = Pj�tr(Pj�) :Evidently, when the system is in a pure state j i then its matrix representation is j i h j,and more general, we an show that if a system is prepared to be in states with matrix24



3.2. Statistial Ensembles, Density Matrixrepresentation �i with respetive probability pi then the matrix representation of the globalstate is � =Pi pi�i.In general, every matrix representation � adopted as above satis�es the followingproperties, and de�ned as density matrix or density operatorDe�nition 3.1 (Density operator). A matrix (operator) � is a density matrix (density op-erator) if and only if1. � is a positive matrix (operator), i.e. 8 j i ; h j � j i � 0, and2. � has trae equal to one - tr(�) = 1.Within this new language, Postulates 3.1 3.3 and 3.2 are generalized asPostulate 3.4. The state of any isolated system is ompletely desribed by a density operatoron its state spae. If the system is in state �i with probability pi then the density operator forthis probabilist state is � =Pi pi�i.Postulate 3.5. The evolution of a losed system is desribed by a unitary operator. Giventhe system in starting state � and a unitary operator U , the �nal state is then�0 = U�U yPostulate 3.6. When measuring a system in state � with an observable whih is a Hermitianoperator M =P aiPi;Pi Pi = I, outome ai ours with probabilityp(ai) = tr(Pi�)and the aording output state of the system is�i = Pi�Pitr(Pi�)An important property is that a density operator an represent in�nitely many mixedstates, i.e. statistial ensembles. For instane, the density operator� = I=2 = �12 00 12�an be seen as a mixture f1=2; jiig; i 2 f0; 1g or a mixture f1=2; jjig; i 2 f+;�g wherej+i = (j0i + j1i)=p2, j�i = (j0i � j1i)=p2. We an see later that a density operatorrepresents also the state of a omponent of a omposite system whih is in an entangledstate. No matter for whih mixture a density operator stands, i.e. how it is prepared, itsbehavior is onsistent to the laws of Postulates 3.5 and 3.6.For the lassi�ation of ensembles whih give a density matrix, Hughston et al. showedthatTheorem 3.1 ([HJW93℄'s theorem). Two ensembles fpi; j iig and fqj ; j'jig generate thesame density matrix if and only ifppi j ii =Xj uijpqj j'ji ;where (uij) is an unitary matrix with indexes i; j while padding some vetors 0 to the set ofsmaller number vetors. 25



Chapter 3. Quantum Information Proessing3.3 Composite Systems, Entanglement and Partial TraeIn many ases, we are onerned with physial systems whih are made up of distint om-ponent systems. For desribing the state of omposite systems, quantum theory appeals totensor produt and issues the following postulate:Postulate 3.7. The state spae of a omposite system is the tensor produt, denoted 
, ofthe state spaes of its omponent systems. If we prepare a omposite system by preparingeah omponent, indexed by i = 1; :::; n, in states j ii then the joint state of the global systemis j 1i 
 :::
 j ni. Or, in the density operator language, if eah omponent i is prepared instate �i then the omposite system is in state �1 
 :::
 �n.Spei�ally, if fjiigm is a basis of state spae H1 and fjjign is a basis of state spaeH2, then fjii 
 jjigm�n forms a basis of m�n-dimension joint state spae H1
H2. In mostof ases, we an use jiji for joint state jii 
 jji, but not for joint state spae.A major di�erene of this quantum joint state spae from lassial ounterpart is thejoint superposition in the global spae, i.e. given a basis fji1i 
 jj2i 
 :::gm�n�::: (or shortlyfjij:::igm�n�:::), any superposition�11::: j11:::i + :::+ �mn::: jmn:::i ; �ij::: 2 Cis also a possible state of the omposite system. In priniple, we an measure the ompositesystem by an observable on the joint state spae. For instane, withM =Pij::: aij::: jij:::i hij:::j,aij::: 2 R, then outome aij::: ours with probability j�ij j2 and the orresponding ollapsedstate is jij:::i. Moreover, we an separate the omponents of the omposite system, andmeasure any of the omponents loally. For instane, we measure only the �rst omponentswith the observableM =Pi bi jii hij. The initial state of the global system may be rewrittenas Pi jii 
 (Pj:::�ij::: jj:::i). Then the loal measurement will projet the �rst omponentto a ollapsed state jii with probability pi = Pj::: j�ij:::j2, and the global system is in theorresponding state jii 
 (Pj::: �ij::: jj:::i)=ppi.Thus, this leads to a partiular ase that some superposition joint statePij::: �ij::: jij:::iannot be prepared by separately preparing eah omponent in ertain states j i and joiningthem as a tensor produt j 1i 
 j 2i 
 :::. With suh quantum states, there is a orrelationbetween the probability distributions of loal measurements on separated omponents. Forinstane, we prepare a two-omponent system in a statej 0i 
 j'0i+ j 1i 
 j'1ip2 ; for h 0j 1i = 0; h'0j'1iand separate the two omponents arbitrary long apart. Now we are supposed to measurethe �rst omponent with an observable onsisting of j 0i h 0j ; j 1i h 1j, then if the �rstoutome ours then the global system is ollapsed to j 0i 
 j'0i, i.e. if we measure theseond omponent with an observable onsisting of j'0i h'0j ; j'1i h'1j then we reeive the �rstoutome with ertainty. Here, the ation of the measurement on the �rst omponent instantlyhas e�et on the distant seond omponent, that makes the most �titious harateristiof quantum theory. This phenomenon is referred to as quantum entanglement, disovered26



3.4. General Measurement and POVMand ritiized by [EPR35℄, but on�rmed by the experiened violation of variants of Bell'sinequality [Bel64, TBZG98℄.For desribing parts of a omposite system, one may seek for how to orretly desribeobservable quantities of these parts. The uniquely appropriate formulation found for that isthe partial trae operator, ([NC04℄ - Box 2.6), de�ned as�A = trB(j 1iA 
 j'1iB h 2jA 
 h'2jB) = (h'2j'1i) j 1i h 2j :Then, in the language of density operator, if a omposite system in produt state �AB = �1
�2then the redued trae for system A is �A = trB(�1 
 �2) = �1. This density operator isexatly density operator state of omponent A. In ase of entangled state, for instanej�+iAB = j0A0Bi+ j1A1Bip2then the partial trae for A is �A = j0i h0j =2 + j1i h1j =2. Although this density operator islike the state of a mixture, for instane f1=2; jiig; i 2 f0; 1g, the state of A may not exist asits state is not assigned to any real mixture. Nevertheless, the density operator �A desribesaurately the behavior of A aording to Postulates 3.5, 3.6.3.4 General Measurement and POVMBy oupling a system with another anilla system, doing unitary dynamis and projetivemeasurement on the anilla, we an realized any general measurement ([NC04℄ - pages 94-95):Postulate 3.8. Quantum measurements are desribed by a olletion of measurement oper-ators fMmg ating on the state spae of the system being measured. This olletion satis�esthe ompleteness: PmM ymMm = I, the identity operator.If the state of the system before the measurement is j i then outome m ours withprobability p(m) = h jM ymMm j iand after the measurement, when m ours, the system is in stateMm j ip(m)Or in the density operator language, if the initial state is � thenp(m) = tr(M ymMm�)and the orresponding �nal state is �m = M ym�Mmpp(m)27



Chapter 3. Quantum Information ProessingWhen we are only interested in the measurement statis, not the post-measurementstate of the system being measured, it suÆes to abbreviate the measurement operator asPositive Operator-Valued (POV)Em =M ymMm; for Mm being general measurement operators:The measurement of a system in state j i will output m with probabilitypm = h jEm j i :Any POV measurement (POVM) is then de�ned as a olletion of positive operators fEmg,i.e. 8m; j i ; h jEm j i � 0, suh that PmEm = I. This formalism is simpler than the onefor general measurements and suÆient to determine the probabilities of di�erent outomesin a general measurement.3.5 Non-Cloning and DistinguishabilityIn many irumstanes, it may happen that we have to identify or guess the state of a singlequantum system, prepared to be in a state from a set f�bg assigned some a priori probabilitiesfpbg, i.e. the statistial ensemble fpb; �bg. We will see that the distinguishability of quantumstates is a fundamental measure for the seurity of quantum ryptographi protools.A ruial property of quantum system is that we annot reliably opy an arbitraryquantum state [WZ82℄. Indeed, suppose we have suh a opying mahine, whih ouples thesystem that we want to opy its state j i with an equivalent system initialized in a ertainstate jei, and does a quantum dynamis over the omposite system to have the seond systemin the desired state j i. In the quantum language, this dynamis is a unitary operator overthe produt state spae: U(j i 
 jei) = j i 
 j i :Thus, for any two di�erent states j 1i ; j 1i:U(j 1i 
 jei) = j 1i 
 j 1i ; U(j 2i 
 jei) = j 2i 
 j 2i :And, by the linearity of quantum operators, if we introdue a state j 0i = a j 1i+ b j 2i thenthe output state isU((a j 1i+ b j 2i)
 jei) = U(a j 1i 
 jei+ b j 2i 
 jei) = a j 1i 
 j 1i+ b j 2i 
 j 2iwhih is not the desired result j 0i
j 0i that the opying ation would have made. Moreover,as the unitary operator preserves the inner produt:hej 
 h 1j 2i 
 jei = hej 
 h 1jU yU j 2i 
 jei) hej 
 h 1j 2i 
 jei = h 1j 
 h 1j 2i 
 j 2i, h 1j 2i = h 1j 2i228



3.5. Non-Cloning and Distinguishabilitythat an only happen when either h 1j 2i = 0 or h 1j 2i = 1, i.e. j 1i ; j 2i are eitherorthogonal or idential. Thus, we annot opy quantum states belonging to a set of non-orthogonal states.Evidently, if we are given a system in a state belonging to a set or orthogonal statesfjviig, we an measure it with a projetive measurement fPi = jvii hvijg and prepare a newsystem in state jvii if outome i ours.Conforming to that, two non-orthogonal states annot be reliably distinguished byany measurement. One see that, for distinguishing quantum states, one must use a ertainmeasurement, whih is in general a POVM fEig, and one may distinguish them based on theprobability distribution of outomes for eah prepared state [Fu95℄.Suppose that we are provided a quantum system in one of two states �1; �2 with whihthe POVM outputs i with respetive probabilities pi; qi. The distinguishability an be thenmeasured as the distane between probability distributions pi; qi. A onvenient measure ofdistane is the �delity F (pi; qi) =Xi ppiqi:We see that when F (pi; qi) = 1, the two distributions are idential, i.e. we annot distinguishthem, and when F (pi; qi) = 0 then for all outomes i one an reliably distinguish pi; qi beausethere must be either pi = 0 or qi = 0. And so, the distinguishability of two quantum statesan be measured by the �delity of the best measurement, i.e.F (�1; �2) = minfEigF (pi; qi)It is shown that [NC04℄ F (�1; �2) = trq�1=21 �2�1=21The �rst proposal for quantum �delity, due to Jozsa, was the square of the above ommonlyused �delity, i.e. (trq�1=21 �2�1=21 )2 [Joz94℄.Therefore, provided two non orthogonal states j 1i ; j 2i, F (j 1i h 1j ; j 2i h 2j) =j h 1j 2i j > 0, we annot reliably distinguish them.Another usual measure of distinguishability is the mutual information that the out-omes of the measurement reveal about the initial state. For a POVM fEbg, the probabilityof outome b is p(b) =Xi pitr(�iEb) = tr(�Eb)where � =Pi pi�i is the density matrix for the ensemble fpi; �ig. Besides, the probability ofoutome b when the system is prepared in state �i ispi(b) = tr(�iEb):Then the mutual information [Sha48, CT91℄ with the POVM fEbg isI(i; b) = H(b)�Xi piH(b=i)29



Chapter 3. Quantum Information Proessingwhere H(b) = Pb p(b) log p(b) and H(b=i) = Pb pi(b) log pi(b). This amount of aessibleinformation is bounded by Holevo's inequality:I(i; b) � S(�)�Xi piS(�i)where S(:) is Von Neumann entropy funtion of a density matrix:S(�) = �tr(� log �): (3.1)Conformally, the mutual information is suÆient to reveal the identity of the prepared state,I(i; b) = H(i), when the subspaes expanding �i's eigenstates are pairwise orthogonal.3.6 Bipartite State: Shmidt Deomposition and Puri�ationThis dissertation is primarily onerned with omposite systems made up of two major om-ponents lying at users' loations of two-party protools. This kind of omposite systems isspei�ally named bipartite systems whose states are desribed in a bipartite state spae.Two properties of great importane for bipartite systems are the Shmidt deomposi-tion and puri�ation.Theorem 3.2 (Shmidt deomposition). Suppose j i is a pure state of the omposite sys-tem AB where the state spaes HA;HB are of dimensions m;n respetively. Then thereexist an orthonormal vetor set fju1i ; :::; jurig of HA and an orthonormal orthonormal setfjv1i ; :::; jvrig with some r � minfm;ng suh thatj i = rXi=1 �i juii jvii ;where �i are positive real numbers, named Shmidt-oeÆients.Proof. Suppose �A is the redued density matrix of j i for system A:�A = trB(j i h j):This matrix is diagonalizable with positive eigenvalues pi and stands for an ensemble of itsr � minfm;ng eigenstates fpi; juiig. We an add to this ensemble some orthonormal statesjuii ; i = r + 1; :::;m (with probability 0). These eigenstates form an orthonormal basis ofHA. Then, there exist vetors j'ii in HB suh thatj i = mXi=1 juii j'iiAs, �A = trB(j i h j), it musts hold that h'ij'ji = 0 for i 6= j, h'ij'ii = 1 for i = 1; :::; rand h'ij'ii = 0 for i = r + 1; :::;m. 30



3.6. Bipartite State: Shmidt Deomposition and Puri�ationThus, we an �nd the orthonormal states jvii = �i j'ii with �i > 0 andj i = rXi=1 �i juii j'ii :Returning to the diagonal form of �A, we notie that pi = �2i .With this deomposition of bipartite states, Theorem 3.1 implies an important orol-lary for generating �-ensemble at spae-like separation, whih leads diretly to the no-gotheorem for bit ommitment of Mayers, Lo and Chau [May97, LC97℄:Theorem 3.3 (theorem for bit ommitment). Suppose j 0i ; j 1i are two pure states of abipartite system AB satisfying that the redued partial traes for B are idential:trA(j 0i h 0j) = trA(j 1i h 1j):Then there exists a loal unitary transformation ating on the state spae of A, UA, that mapsj 0i into j 1i: UA j 0iAB = j 1iABProof. (Sketh) - Let the Shmidt deompositions of j 0i, j 1i bej 0i = rXi=1 �i jeii jfii ; j 1i = r0Xj=1 �0j ��e0j� ��f 0j� :As trA(j 0i h 0j) = trA(j 1i h 1j), it musts hold that r = r0 and 8i = j; �i = �j ; jfii = ���f 0jE.Thus, there exists a unitary transformation on HA that transforms the orthonormal set feiginto fje0iig, and hene j 0i into j 0i.On the other hand, the puri�ation assumes that for the state � of a system A, wean introdue another system B and prepare a pure state j i for the omposite system ABsuh that the redued partial density matrix for A is the same as �:trB(j i h j) = �Notie that, from the Shmidt deomposition, f. Theorem 3.2, it suÆes to take HB = HA.There may be many puri�ation of a partiular density matrix �.Moreover, the relation between a density matrix and its puri�ation states is statedby Uhlmann's theorem [Joz94℄Theorem 3.4 (Uhlmann's theorem). Suppose �1; �2 are two density operators ating on asame state spae then F (�1; �2) = max j h 1j 2i jwhere the maximum is taken over all puri�ations j 1i of �1 and j 2i of �2.Indeed, the proofs of Uhlmann's theorem gave a strengthen version of this theo-rem ([NC04℄ - exerise 9.15) [Joz94℄: 31



Chapter 3. Quantum Information ProessingTheorem 3.5 (strengthen Uhlmann's theorem). Suppose �1; �2 are two density operatorsating on a same state spae, and j 1i is a puri�ation of �1 thenF (�1; �2) = max j h 1j 2i jwhere the maximum is taken over all puri�ations j 2i of �2, and there exists a puri�ationj 2i realizing the maximum.3.7 Quantum Mehanial Proessing of InformationFinally, the laws of quantum physis an be used for information proessing as in Figure 3.1:information are represented by quantum states, proessed by quantum operators, and �nallyobserved by human via measurements.Similarly to the domain of lassial information, the elementary unit of quantuminformation is a quantum bit, named qubit, whih is the state of a single physial system of2-dimension state spae H2. Normally, a standard orthonormal basis is seleted with twoorthonormal qubits fj0i ; j1ig, and any qubit is expressed as a superposition a j0i + b j1i.Physially, a qubit an be arried out by the polarization of a photon, the spin of an eletron,or any two-state system ... [Pre℄.Moreover, quantum information inherits the features of quantum mehanis, issuingvarious important results. The emergene of quantum information proessing has the mostnotieable impats to the domain of Cryptology, for both Cryptography and Cryptanalysis.Quantum ComputingQuantum omputing is primarily onerned with the the design of quantum algorithms fordesired omputations. The most referred as standard quantum omputational model is theiruit model whih onsists of three stages: (i) preparing a quantum system in state j0i;(ii) applying a unitary evolution to the initial state; (iii) reading out the �nal result withmeasurements [NC04℄. Though there exist some other equivalent omputational modelssuh as measurement-based omputation model [RB01, Nie03℄, quantum adiabati ompu-tation [FGGS00, vDMV01, Rol04, AvDK+04℄, we will primarily use the standard quantumiruit model in the sequel.It is stated that any quantum unitary transformation on an n-qubit system an be de-omposed into one-qubit unitary rotations and two-qubit ontrolled not (CNOT) gates [NC04℄.The omplexity of a quantum transformation is then measured by the number of these prim-itive gates used for building it.Any sequene of qubits is then haraterized by the produt of their state spaes,H2 
 :::
H2. Thus, if a lassial message of n bits an take one of 2n values x 2 f0; 1gn, aquantum message of n qubits an be in any of in�nitely many statesPx2f0;1gn x jxi ; x 2 C .The information proessing algorithms are realized by unitary quantum dynamis. Thus,by the linearity, if we introdue a superposition of inputs to a unitary U then we an geta superposition of proessed ounterparts: U(Px2f0;1gn x jxi) = Px2f0;1gn xU jxi. Thisproperty makes the �titious parallelism of quantum information proessing , exploited tobuild robust quantum algorithms [NC04℄. 32



3.7. Quantum Mehanial Proessing of InformationThis new disipline has led to outstanding results, ever gainable in the lassial om-puting models [Sho94, Gro96℄. This progress has most impat on the �eld of Cryptanalysis:Shor's quantum fatoring algorithm would breaks down the widely used RSA and relatedsystems; Grover's searh algorithm would speed up the breaking of seret keys [Gro96℄.Quantum CommuniationIn another diretion, the ommuniation of quantum information also reveals advantageousfeatures.The non-opiability and non distinguishability of non orthogonal states an help tobuild quantum ommuniation hannel whih help to implement unonditionally seure pro-tools, imposible with trivial lassial ounterpart, for exhanging seret keys [BB84, Eke91,Ben92℄.Besides, the speial orrelation between the states of distantly separated quantumsystems, known as quantum entanglement, provides signi�ant redution of the ost of om-muniation in distributed omputations [BW92, SvD00, BCvD℄. Quantum entanglement alsohelps to transfer an unknown quantum state by sending only lassial information [BBC+93℄.
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Chapter 4Noisy Channels, QuantumConjugate Channel, and The No-goTheoremsAs shown in the Chapter 2, general seure two-party omputations an be implemented,solely based on oblivious transfer. In turn, oblivious transfer annot be lassially builtfrom srath, i.e. without any assumption [Kil88℄. Nevertheless, this primitive beomes anintermediate layer, a term borrowed from the �eld of omputer network engineering, thatseparates well the appliations from spei� ryptographi assumptions, suh as modernomputational omplexity assumptions. This relaxing enouraged researhers to investigatewhether they an make the seurity of protools better, based on other assumptions thanomputational omplexity ones.The main stream of these investments is seeking for realisti noisy hannels that ouldimplement oblivious transfer protools. The implementation is based only on informationtheory that arries a provable unonditional seurity, evidently depending on assumptionsabout noise models.In one diretion, these investments relax the assumption of standard oblivious trans-fers, Rabin OT and one-out-of-two OT. This weakening ation may over a larger lass ofpossible noisy models [CK88, Cr�e97, DKS99, KM01, SW02, CMW04, Mor05℄.In the other diretion, one would �nd out pratially physial hannels that maththe theoretial assumptions. Sine the introdution of quantum mehanis into the �eldof ommuniation and ryptography [Wie83℄, the suessful implementation of key exhangeshemes [BB84, Eke91, Ben92℄ with provable unonditional seurity [LC99, SP00℄ has enour-aged researhers to seek for quantum unonditionally seure bit ommitment and oblivioustransfer [CK88, BBCS92, BCJL93℄. Muh interest aimed to exploit the unertainty prini-ple and the non-loning property to implement wanted noisy hannels for oblivious trans-fer [CK88, BBCS92℄. However, this intention was rejeted by a no-go theorem of Mayers andLo & Chau, whih was �rst disovered for quantum bit ommitment protools [May97, LC97℄and then for quantum oblivious transfer protool [Lo97℄.The material of this hapter onerns a review of the two mentioned researh diretions35



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsand Mayer's, Lo's & Chau's no-go theorems.4.1 A General De�nition of Oblivious TransferEven though one-out-of-two oblivious transfer and Rabin's oblivious transfer are equiva-lent [Cr�e88℄, the former is more onvenient to use and onsidered as the standard version ofoblivious transfers. We will shortly name it \oblivious transfer" while Rabin's version willbe named \Rabin OT".Simply speaking, by de�nition, OT is a primitive where Alie has two seret bits b0; b1and Bob an hoose to get one but not both while Alie annot know Bob's hoie. In termsof information theory and probabilities, we usually work with non-ideal oblivious transfersas oblivious transfer protools provided haraterizing parameters.De�nition 4.1. An oblivious transfer protool is a transmission sheme where Alie has twoseret bits b0; b1 to send to Bob who has a hoie  to get the bit b. The sheme assumesthree non-zero values:� Corretness PC : the probability that Bob gets b when Alie and Bob are honest.� Alie's privay HB: the �nal minimal remaining unertainty of Bob about b1� whateverhis strategy when Alie is honest.� Bob's privay HA: the �nal minimal remaining unertainty of Alie about  whateverher strategy when Bob is honest.We see that an ideal oblivious transfer protool has PC = 1;HB = 1;HA = 1. Inan asymptoti manner, we an have unonditional but non-ideal oblivious transfer withPC ;HB;HA asymptotially lose to 1, depending on some parameter N .4.2 Building Oblivious Transfer from Noisy Channels4.2.1 Oblivious Transfer as Erasure ChannelsThe original version of oblivious transfer protool, proposed by Rabin [Rab81℄, is simply aBinary-Symmetri Erasure Channel with erasure probability 1=2:De�nition 4.2. BSEC(r) , Rabin OT(r)1. Alie sends r.2. Bob reeives r0 = (r with probability 1=2;? with probability 1=2:where ? is the erasure out put symbol.This erasure hannel an implement the hosen one-out-of-two oblivious transfer, fol-lowing Crepeau's redution sheme [Cr�e88℄: 36



4.2. Building Oblivious Transfer from Noisy ChannelsProtool 4.1. BSEC ! OT (b0; b1)()1. Alie piks 3n random bits ri, i = 1; :::; 3n, and sends to Bob via the BSEC. Bob reeivesr0i;�i2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n, suh that �i = 0 for all i 2 I0,and announes (I; I1�) to Alie.3. Alie omputes b̂0 = �Li2I ri�� b0, b̂1 = �Li2I1� ri�� b1 and sends to Bob.4. Bob omputes b = �Li2I0 r0i�� b̂Roughly speaking, based on the Law of Large Numbers, the orretness of Protool 4.1an be hold as Bob reeives in average 3n=2 bits ri without errors with large value of n. SoBob an make n indexes I0 with omplete knowledge of rI0 for deoding b̂. Nevertheless,Bob annot set 2n indexes for getting omplete knowledge of rI0 :rI1 , and thus one of b0; b1must an not be learned.4.2.2 General Binary Symmetri Erasure ChannelRelaxing the seurity assumptions, we an have an extended version of imperfet binarysymmetrial erasure hannel:De�nition 4.3. (';'0; pg)-BSEC1. Alie sends r.2. Bob reeives (r0;�) with � = (0 with probability pg;1 with probability 1� pg;where � is a symbol denoting the erasure status of the hannel. The error rate in the non-erased ase is ', i.e. p(r0 6= r=� = 0) = ' and the error rate in the erased ase is signi�antlygreater, bounded by '0: 1=2 � p(r0 6= r=� = 1) � '0 > '.Inspired from Cr�epeau's redution [Cr�e88℄, with help of appropriate error-orretingodes and privay ampli�ation algorithms, we an implement an oblivious transfer protoolwith this imperfet erasure hannels [Cr�e97, CMW04℄:Protool 4.2. (';'0; pg)-BSEC ! OT(b0; b1)()1. Alie piks N random bits ri, i = 1; :::; 2N , and sends to Bob via the ('; �; pg)-BSEC.Bob reeives r0i;�i2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n, suh that �i = 0 for all i 2 I0,and announes (I; I1�) to Alie.3. Alie omputes and sends (s0 = syn(rI); s1 = syn(rI1�)) to Bob.4. Alie piks a sequene of n random bits m and sends to Bob.37



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theorems5. Alie omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI � m),k1 = (rI1� �m).6. Bob uses s to orret errors in r0I0, omputes k = (r0I0 �m) and b = k � b̂.The intuition behind Protool 4.2 is that Bob an orret all errors in rI0 when he ishonest while, even though Bob is dishonest, the average error rate in both rI0 :rI1 is signi�-antly greater and so a signi�ant amount of error bits remains in at least one of rIi ; i 2 f0; 1g.The distribution of error rates reeived by Bob an be illustrated as in Figure 4.1.
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Figure 4.1: Distribution of error rates reeived by BobIn this onstrution, PC is the probability that honest Bob, who makes I0 as the indexsubset with the best average error rate, an orret all of the errors in r0I0 with syn(rI0). HBis the unertainty of k1� after the error orretion and the privay ampli�ation phases, eventhough Bob is free to set I0; I1,HB = maxi=0;1 Xm22n p(m)H(rIi �m=r0Ii ; syn(rIi);m)! :We an have both PC ;HB asymptotially lose to 1 with large values of N and an appropriatehoie of n and the error orreting ode [CMW04℄.In Protool 4.2, we hoose n = (pg + �)N with 0 < � < pg. As n < pg2N then Boban almost set I0 with error rate ' in r0I0 . Simply speaking the missing information of rI0is H(rI0=r0I0) = nh('). Then Alie sends s0; s1 eah of whih ontains at least nh(') bits ofinformation. Meanwhile, as 2n > pg2N , r0I0 :r0I1 aumulates some reeived bits an error ratesigni�antly greater than '. The missing information of rI0 :rI1 isH(rI0 :rI1=r0I0 :rI1) � pg2Nh(') + (2n� pg2N)h('0)Then the oding theory permits to use odes withjs0j = js1j = H(rI0=r0I0)+H(rI0 :rI1=r0I0 :r0I1)� 2H(rI0=r0I0)4 = (n+pgN)h(')+(n�pgN)h('0)38



4.2. Building Oblivious Transfer from Noisy Channelsfor eÆiently orret r0I0 while there remain at least (n�pgN)(h('0)�h('))=2 bits of missinginformation in one of r0I0 ; r0I1 . Then, the privay ampli�ation operation (rIi �m); i 2 f0; 1genhanes the seurity that prevents Bob from learning both b0; b1.Besides, Bob's seletion of index sets I0; I1 depends only on the probability distributionof �i that is uniform for all index i = 1; :::; N . Thus, Alie annot distinguish I0; I1 to gaininformation about .4.2.3 Non-trivial Disrete Memoryless ChannelA disrete memoryless hannel (DMC) is a statistial model desribing the ommuniationmedium with disrete input alphabets X = fx1; ::; xng , output alphabets Y = fy1; ::; ymg,and the urrent output reeived by the reeiver depends only on the urrent input of theemitter, orresponding to a probability distribution PX=Y .Informally speaking, a DMC is non-trivial if it annot be deomposed into separatesub-hannels eah of whih has apaity 0 or 1. [CMW04℄ states a speial harater of non-trivial DMC thatTheorem 4.1 (CMW theorem on DMC). There exist x1; x2 2 X suh that1. PY=X=x1 6= PY=X=x2 ;2. there exist y 2 Y suh that PY=X=x1(y) > 0; PY=X=x2(y) > 0;3. let, for �; �i 2 [0; 1℄, �PY=X=x1 + (1� �)PY=X=x2 =Xi �iPY=X=xithen �i > 0 implies that PY=X=xi = �PY=X=x1 + (1� �)PY=X=x2The �rst and the seond properties assume that there exists an input pair x1; x2 suhthat we have some possibility to distinguish them but not onlusively. Besides, the thirdproperty assumes that if the sender uses some other input symbols to simulate a randominput that takes only x1; x2 then these fake symbols must be redundant, and annot help thesender. Nevertheless, if the sender is supposed to use x1; x2, and if he does not respet byusing some non-redundant symbols, then the output probability distribution is modi�ed, andan be deteted by statistis.A speial ase of DMC is binary Symmetri Channel. This kind of noisy hannelshas been onsidered very early in [CK88, Cr�e97℄ for building oblivious transfer. �-BSC isdenoted for a binary symmetri hannel with error rate �, i.e. it ips the bit sent on it withprobability �: ��BSC(x) = (x with probability �x with probability 1� �:We have a non-trivial BSC hannel when its apaity is neither 1 or 0, i.e. when � 62 f0; 1=2; 1g.We suppose that 0 < � < 1 beause when � > 1=2 we an ip the output and have the samehannel with error rate 1� �. 39



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go TheoremsBuilding Binary Symmetri Erasure ChannelLet x1; x2 2 X be two input of the DMC satisfying the above properties, f. Theorem 4.1,we an implement a binary symmetri erasure hannel as follows:Protool 4.3. PY=X ! (';'0; pg)�BSEC(r)1. Alie enodes r = 0 as x1:x2, r = 1 as x2:x1 and sends them via the DMC.2. Bob outputs 8><>:r0 = 0;� = 0 if y1:y2 is reeived,r0 = 1;� = 0 if y2:y1 is reeived,r0 = best guess;� = 1 otherwise:where y1; y2 are hosen to minimize the error rate:' = min(y0;y1)2Y�Y PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0) (4.1)And pg is the probability of reeiving this output pair whih minimizes the error rate:pg = PY=X=x1(y1)PY=X=x2(y2) + PY=X=x1(y2)PY=X=x2(y1):If there are many pairs (y1; y2) whih give the same error rate ', we should onsider all ofthem as good pairs, and pg is the sum of the probabilities of reeiving these pairs. '0 is thende�ned as the seond lowest error rate realized by another output symbol pair (y01; y02).Cr�epeau [Cr�e97℄ had also proposed an equivalent onstrution, using repetition odefor BSC:Protool 4.4. ��BSC ! (';'0; pg)�BSEC(r) [Cr�e97℄1. Alie enodes r by the repetition ode r:r, and sends the two enoding bits to Bob viathe �-BSC.2. If Bob reeives r0:r0 then he outputs r0;� = 0; else he outputs � = 1 and r0 as random(or his best guess of r).Building Oblivious TransferIn the above onstrution of BSEC from DMC and BSC, Alie an a�et the probability thatBob onsiders as having got the good bit by violating the oding onvention:1. Alie sends forbidden input symbols x 62 fx1; x2g in the implementation of BSEC fromDMC.2. Alie uses x1; x2 but does not respet the onventional enoding, i.e. she sends x1:x1 orx2:x2. For instant, in the implementation from BSC, f. Protool 4.4, Alie sends r:r:p0g = 2�(1� �) 6= pg40



4.3. Oblivious Transfers from Quantum Conjugate ChannelIf we use these BSEC and Protool 4.2 to implement an oblivious transfer, Alie an hange pgfor di�erent positions i = 1; :::; 2N and have some possibility to distinguish I; I1� onsideringthat the sending of ri via BSEC with a higher probability of non-erasure will make i havemore hane to be put in I.Fortunately, Theorem 4.1 states that the forbidden input symbols would ause a prob-ability distribution on output symbols di�erent from the determined pair x1; x2. Similarly,if Alie uses x1; x2 but does not respet the onventional enoding, the distribution of out-put (y1; y2) also hanges. These heating behaviors an be statistially deteted in a moreadvaned sheme that requires a large number of exeutions of Protool 4.2 [Cr�e97, CMW04℄:Protool 4.5. DMC ! OT (b0; b1)()1. Alie piks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob piks M random bits 1; :::; M .3. For l = 1; :::;M , Alie and Bob run Protool 4.2 that use the BSEC built from the DMC(f. Protool 4.3 or 4.4) with that Bob gets b0l with his hoie l.4. Bob heks the statistis of the hannel and aborts if Alie heats.5. Bob sends 0 =LMl=1 l � 6. Alie omputes b̂0 =LMl=1 bl;0 � b0, b̂1 =LMl=1 bl;(1�0) � b1 and sends to Bob.7. Bob omputes b =LMl=1 b0l � b̂.The idea is that Alie must attak all of M exeutions of Protool 4.2 by violating theoding onvention to learn . In that ase, Bob an detet Alie's dishonesty with statistison outputs [Cr�e97, CMW04℄.4.3 Oblivious Transfers from Quantum Conjugate Channel4.3.1 Quantum Conjugate Coding ChannelQuantum onjugate oding was �rst proposed by Wiesner for implementing an appliation,named multiplexing hannel, similar to oblivious transfer [Wie83℄.We denote fj+i = (j0i+ j1i)=p2, j�i = (j0i � j1i)=p2g. The two bases, retangularbasis fj0i ; j1ig and diagonal basis fj+i ; j�ig, are said to be onjugate in the sense that themeasurement of a basis state in the other basis gives a maximally random output and vie-versa, e.g. the measurement of j+i in the retangular basis outputs j0i or j1i with probability1=2.Protool 4.6. QCC(r)1. Alie randomly hooses one of two onjugate bases: retangular basis fj0i ; j1ig or diag-onal basis fj+i ; j�ig. 41



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theorems2. Alie enodes the bit r by the orresponding basis state: j0i or j+i if r = 0; j1i or j�iif r = 1. Alie sends the enoding state to Bob.3. Bob randomly hooses the retangular or diagonal basis to measure the inoming state.Bob outputs r0.4.3.2 Quantum Binary Symmetri Erasure ChannelThis sheme does not implement orretly an oblivious transfer protool. It would ratherbe a Binary-Symmetri Channel with error rate equal to 1=4. Wiesner suggested also to usesome error-orreting odes to establish a sheme similar to what we all today one-out-of-twostring oblivious transfer. However Wiesner's onstrution was not omplete.A modi�ation of Wiesner's onjugate oding hannel provides a binary symmetrierasure hannel, used to implement quantum oblivious transfer [CK88, BBCS92, Cr�e94℄.Protool 4.7. QCC ! BSEC(r)1. Alie randomly hooses one of two onjugate bases: retangular basis fj0i ; j1ig or diag-onal basis fj+i ; j�ig.2. Alie enodes the bit r by the orresponding basis state: j0i or j+i if r = 0; j1i or j�iif r = 1. Alie sends the enoding state to Bob.3. Bob randomly hooses the retangular or diagonal basis to measure the inoming state.Bob outputs r0.4. Alie announes her basis to Bob.5. If Bob's basis mathes Alie's one, Bob outputs � = 0, otherwise Bob outputs � = 1.4.3.3 Quantum Oblivious Transfer based on Bit CommitmentWe state that Protool 4.7 is no more an erasure hannel in ase Bob an store the quantumstate and do the measurement after having known Alie's basis. It was suggested to use abit ommitment protool to fore Bob doing the measurement before the announement ofAlie's basis. The anonial form of bit-ommitment-based quantum oblivious transfer is:Protool 4.8. BC and QCC ! OT (b0; b1; )1. Alie piks N random bits ri, and N random bases �i 2 fretangular; diagonalg, i =1; :::; N . Alie enodes ri by the orresponding state in basis �i, and sends the quantumstates to Bob.2. For eah ith inoming state, Bob randomly hooses a basis �0i 2 fretangular; diagonalgto measure it, and output r0i.3. Bob makes the ommitment of �0i; r0i for all i = 1; :::; N to Alie.4. Alie randomly hooses an index set T; jT j = t, and sends to Bob.42



4.4. MLC No-go Theorems5. Bob opens the ommitment of �0i; r0i for all i 2 T . Alie tests if �0i = �i ) r0i = ri failsthen aborts.6. Alie announes �i for all i 2 I = f1; :::; Ng n T to Bob. Bob outputs �i = 0 if �i = �0i,�i = 1 otherwise.7. Bob makes two disjoint index sets I0; I1 � I, jI0j = jI1j = n, suh that �i = 0 for alli 2 I0, and announes (I; I1�) to Alie.8. Alie omputes s0 = syn(rI0); s1 = syn(rI1) and sends to Bob.9. Alie piks a sequene of n random bits m and sends to Bob.10. Alie omputes b̂0 = (rI0 �m)� b0, b̂1 = (rI1 �m)� b1 and sends to Bob.11. Bob uses s to orret errors in rI, and omputes b = (rI �m)� b̂The seurity against Alie in this sheme is trivial. Indeed, when Bob is honest, �idepends on the fat that �i �ts �0i. The probability distribution of �i is then uniform for alli 2 T and Alie annot distinguish I0; I1.Providing that the bit ommitment protool is seure, Yao shown that the abovesheme is seure even though Bob an do the oherent attak, i.e. he an attak on multiplequantum states [Yao95℄. It was expeted that a quantum bit ommitment protool, laimedto be seure [BCJL93℄, an help to seure Protool 4.8. However, [May97, LC97℄ state thatquantum bit ommitment is impossible.4.4 MLC No-go Theorems4.4.1 The Theorems for Pure Two-Party ModelsQuantum bit ommitmentWe an see any bit ommitment protool as a two-phase omputation, jointly made by Alieand Bob. After the �rst phase - ommit phase, the omputation is interrupted, and thenontinued in the seond phase - opening phase. The omputation has the prime input: Alieseret bit to be ommitted to Bob, and should output one of three values: 0 - if Bob isonvined that Alie's input is b = 0; 1 - if Bob is onvined that Alie's input is b = 1; and? if any heating user is deteted by the other.As the detetion of Bob's heating would rather be made before the opening phase,we are only interested in the privay against Bob's (onealment) and the detetion of Al-ie's heating (binding), one the ommit phase has ended, i.e. the omputation has beeninterrupted.In the lassial deterministi omputation model, we an easily show that suh asheme is impossible. Indeed, we onsider the omputation as an evolution in time of om-putational on�gurations or images that onsists of variables in Alie and Bob omputing43



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsmahines, assigned with values. Following a deterministi algorithm, the omputation is de-sribed by a deterministi sequene of on�gurations Iinit, .., Ifinal. At eah step i, the on-�guration of the joint omputation is the state of all variables, divided into two parts: Alie'svariables and Bob's ones, i.e Ii = IAi �IBi where \�" denotes the onatenation. For the ompu-tation of b, the omputational on�guration sequene following the algorithm will be fIi(b)gn.At the interrupted step int, the on�guration is Iint(b) = IAint(b) � IBint(b). For the protoolbeing onealing, the partial on�gurations at Bob side must be idential: IBint(0) � IBint(1).Therefore, Alie an freely hange the omputation by replaing IAint(0) with IAint(1) or vise-versa before the opening phase. Thus, the protool annot be both onealing and binding.In the quantum deterministi model, the joint omputation is the same as in theabove lassial model. However, the omputation is more physial like: the on�guration ofthe omputation at a moment is desribed by the state of all partiipating quantum systemsat that moment. The transition from one on�guration to another suessive on�guration ismade by loal unitary transformations at Alie's and Bob's sides and by the ommuniationsbetween them. We would simply onsider a pure quantum protool as a pair of Alie and Bobmahines and quantum partiles are faithfully brought from sender's mahine to reeiver'smahine in ommuniations.Similarly to the lassial ase, aording to a deterministi algorithm, Alie and Bobmust prepare two quantum systems A and B, haraterized by H = HA;init
HB;init, initiallyin some determined pure state j (b)initi = j (b)iA;init 
 j0iB;init. At step i, Alie and Bobrealize a joint omputation Ui = UA;i 
 UB;i on j (b)i�1i to get j (b)ii and ommuniateto exhange some subsystems, and then, the on�guration j (b)ii is split into two partsaording to the new deomposition HA;i 
HB;i = H. The ommuniation is not restritedto be one-way. We see that H is invariant, but its deomposition into Alie and Bob's partsvaries by ommuniations. The omputation is then a determined sequene of on�gurationsj	(b)initi ; ::; j	(b)finali.At step i, the orresponding on�guration j	(b)ii is split into two partial on�gura-tions at Alie and Bob sides: �A(b)i = trB;i(j	(b)ii h	(b)ij);�B(b)i = trA;i(j	(b)ii h	(b)ij):If the protool is unonditionally onealing then Bob has not to be able to distinguish �B(0)ifrom �B(1)i for all i � int where int is the interruption step, i.e. 8i � int; �B(0)i = �B(1)i.Here, it suÆes to be only interested in �B(0)i = �B(1)i at the interruption step i = int. Forsimplifying, we will useHA
HB instead ofHA;i
HB;i to impliitly speify the deompositionat the moment of speaking.We ould expet that Alie annot replae �A(0) with �A(1) and vie-versa beause ofthe entanglement in j	(b)i. Unfortunately, following [HJW93℄, in ase �B(0) = �B(1), thereexists a unitary transformation UA ating in HA that maps j	(1)i into j	(0)i, f. Theo-rem 3.3 on page 31. Therefore, Alie an replae the partial on�guration by the operatorsUA and U�1A . We would rather say that quantum entanglement does not help to seure bitommitment.More generally, quantum model allows a non-ideal unonditional seurity, i.e �B(0) ��B(1). The seurity of Alie's bit an be measured by the distinguishability between �B(0)44



4.4. MLC No-go Theoremsand �B(1), for instane the �delity of quantum states:F (�B(0); �B(1)) = 1� �: (4.2)The extension of Uhlmann's theorem, f. Theorem 3.5 on page 32, states that there exists apuri�ation j	0(0)i of �B(1) suh thatj h	(0)j	0(0)� j = F (�B(0); �B(1)) = 1� �:Reall that, as j	0(0)i and j	(1)i are two puri�ations of �B(1), there exists a unitary trans-formation for Alie to swith between j	0(0)i and j	(1)i. Therefore, suppose that Alie hasbegan the omputation for b = 1, she an heat by transforming j	(1)i into j	0(0)i anddelaring b = 0. The opening phase will be ontinued with j	0(0)int+1i ; ::: j	0(0)finali underunitary transformations. So: j h	(0)finalj	0(0)final� j = 1� �:A measure for Bob aepting Alie announement is F (�B(0)final; �0B(0)final). FollowingUhlmann's theorem ([NC04℄ - theorem 9.4), we haveF (�(0)Bfinal; �0B(0)final) � 1� �: (4.3)Therefore, in a pure deterministi quantum model, we annot have a bit ommitmentprotool that is both onealing and binding. Moreover, the more a protool is onealing,the more it is binding, by the measure of quantum �delity, f. Eqs. (4.2), (4.3).Quantum oblivious transferThe no-go theorem on bit ommitment implies the impossibility of oblivious transfer beausewe an implement quantum oblivious transfer from bit ommitment [Cr�e94, Yao95℄. Though,we revise here Lo's theorem for seure one-sided omputations, inluding oblivious transfer,in a pure deterministi quantum model [Lo97℄.Seure one-sided two-party omputations is a sublass of seure two-party omputa-tions where Alie and Bob want to ompute a two-party funtion f(i; j). Alie holds inputi and Bob holds input j. At the end of the omputation, Alie has no information about j.Only Bob gets the result f(i; j) and learns no more information about i than what an belearned from his input j and the result f(i; j). For instane, oblivious transfer is a seureone-sided omputation of (1� )� b0 + � b1 where Alie inputs b0; b1, Bob inputs .To ompute f(i; j),Alie and Bob run together a unitary U transformation on Alie'sinput jii : i 2 fi1; ::; img joint with Bob's input jji : j 2 fj1; ::; jng. Other known loalvariables an be omitted without loss of generality. At the end, Bob an learn the result fromthe output state jviji = U(jiiA 
 jjiB). But Alie an entangle her input A with a privatequantum anilla D, i.e. prepares system D 
A in the initial state 1pnPi jiiD 
 jiiA.If Bob inputs j1 then the initial state for the protool is��u0�in = 1pnXi jiiD 
 jiiA 
 jj1iB ; (4.4)45



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theoremsand at the end, the output state isjvj1i = 1pnXi jiiD 
 U(jiiA 
 jj1iB):Similarly, if Bob inputs j2 then the output state isjvj2i = 1pnXi jiiD 
 U(jiiA 
 jj2iB):For the seurity on Alie side, the partial on�gurations must be idential, i.e.trB(jvj1i hvj1 j) = trB(jvj2i hvj2 j);and then there exists a loal unitary transformation U j1;j2 on Bob loal system suh thatjvj2i = U j1;j2 jvj1i :Therefore, beause D hij vji = 1pn jviji, the transformation U j1;j2 is universal for all Alieinput i: jvij2i = U j1;j2 jvij1i :Bob an enter jj1i, omputes jvij1i and measures it to learn f(i; j1). However, to enable Bobto unambiguously get the result, jvij1i must be an eigenstate of Bob's �nal measurement andnot perturbed by this measurement. Bob an transform it to jvij2i by U j1;j2 , measure it tolearn f(i; j2), and so on. Thus, if the protool is orret and seure against Alie, Bob anompute f(i; j) for any private input j.In a non-ideal protool, Bob ould slightly modify jvij1i and therefore jvij2i, whenlearning j1, and ould learn j2 with a ertain auray. The errors are aumulated in eahmeasurement step. The more the protool is orret, the more Bob an heat with highauray.4.4.2 Interpretations for the generalityThe above anonial theorems for the impossibility of quantum bit ommitment and oblivioustransfer were made in a deterministi pure two-party quantum model where both parties(i) ommuniate by sending quantum signal via a quantum hannel, and (ii) do all of theomputations at the quantum level, following a ertain deterministi algorithm.One may see that this proof is \too simple to be true" for all possible protoolswhere Alie and Bob (1) do measurement on their quantum systems and pass to lassialomputation; (2) introdue private serets; (3) ommuniate lassial information through amarosopi hannel that does permit to transmit quantum signal.Indeed, the proofs in Mayers' and Lo's - Chau's original papers [May97, LC97℄ didnot interpret in detail the physial operations for the generality of the theorem, larifyingthe above three fators. A brutal redution of the general algorithms to the pure quan-tum deterministi two-party model ould make people doubt its validity. The laim of the46



4.4. MLC No-go Theoremsgeneralization of the theorems aused troubled researhers to try to �nd a loophole behindit [Yue00, Yue04, Che03℄ although none of the ounter-examples is valid.Most of attention were paid to lassial variables in omputations [Yue00, Bub01b,Yue02, Yue04, Che03, Che05, Che06℄. Indeed, from a omputational viewpoint, the randomlassial variables are not evident in the deterministi quantum model.For this, it is stated that probabilisti omputations an be implemented by invari-ant iruits with auxiliary random variables [Gol01℄, and any lassial omputation an berealized by equivalent quantum iruits throwing away some parts of outputs, named super-operators [BS98℄, f. Figure 4.2. The ommonly known argument in the main interpretationof no-go theorems is that the omputation an be kept at quantum level by not throwing anyprivate quantum system, f. Figure 4.3. This purifying ation on random lassial variablesis indeed semi-honest and annot be deteted. In suh a ase, the joint omputation is de-terministi and the anonial proof eliminate the possibility of bit ommitment and oblivioustransfer protools, f. Setion 4.4.1.
j0i Uj0i

Figure 4.2: SuperoperatorThe problem of seret variables was addressed in [Yue02, Yue04℄. As Alie's heatingtransformation is found for the model where Bob does the puri�ation of these randomvariables, the feeling is that the global state ollapses to a seret state depending on Bob'sseret lassial results, and Alie annot know the orresponding transformation. This pointwas partially answered in [Bub01b, Che05, Che06℄, for ideal and nearly-ideal protools.The lassial ommuniation is normally omitted with some assumptions on the om-muniation, expressed as \lassial ommuniation an be arried out by quantum model, butwith some onstraints" [LC97℄. But what are the onstraints? From the physial viewpoint,the lassial hannel does not appear in this redued two-party quantum model.What is the di�erene between a quantum hannel and a lassial one? A quantumhannel is a medium that we an use to diretly transmit a quantum state without disturbingit. Nevertheless a lassial hannel, for transmitting disrete messages, permits only one froma olletion of disrete signal values whih an be ampli�ed by many quantum systems on47



Chapter 4. Noisy Channels, Quantum Conjugate Channel, and The No-go Theorems
Uj0ij0i

Figure 4.3: Non-throwing superoperatorthe hannel, for instane a marosopi eletrial wire with tension +5V for 0 and �5V for1. Imagine that in the spei�ation of a protool, at a ertain moment, a party S hasto measure some quantum state j iS with an apparatus with n degrees of freedom andommuniate this result to the other via a lassial hannel. This measurement will outputi 2 f1; ::; ng with probability p(i) and let the measured system in a state j iiS . Reeivingthe lassial value i, the reeiver R ould generate a basis state jiiR in a n-dimension spaefor his further omputation.Of ourse, we an redue this ommuniation to a pure two-party quantum modelwhere the sender realizes a transformationU(j iS j0iR)! nXi=1pp(i) j iiS jiiRand the protool will go on orretly beause the density-matrix desription of eah systemis the same as though a real measurement is done [BCMS97, LC97, Bub01b℄. The jointomputation remains a unitary evolution of a pure two-pary state, and with suh a quantumtwo-party joint omputation, bit ommitment is impossible as analyzed in Setion 4.4.1.However, the above redued model for lassial ommuniations does not interpretwhat really happen in the physial world. It permits to onserve a two-party entanglementthat does not exist in the spei�ation of the protool with lassial ommuniation. Thistwo-party entanglement ould introdue some extra e�ets. For instane, it ould happenthat the reeiver used the reeived message to do a quantum omputation and sends bakthe result, then the sender would learn more information with entanglement attak by thee�et of super-dense oding [BW92℄.Indeed, the lassial hannel fores the measurements to be done for making lassialsignals i.e. Alie and Bob have to really measure their quantum states to make lassial48



4.4. MLC No-go Theoremsmessages. In a generi protool, the ommuniation of lassial messages fores destroyingthe purity of two-party states. The real joint omputation with ommuniation by measuringand transmitting lassial values via a lassial hannel is not an evolution of a pure two-partystate. In other words, as the ation of measurements \an never help a heater" [GL00℄, whyit does not prevent Alie from heating?We an say that a quantum protool with ommuniation of lassial messages an beorretly implemented in a pure quantum two-party model. Nevertheless, it is not obviousto emulate the protool by a puri�ed two-party model for proving the inseurity without aonvining interpretation. One may doubt that the redued two-party model implementsorretly the protool, not seurely, and ould be used to prove the possibility [Yao95℄, notthe impossibility of two-party protools.This point was only explained in Mayers' version where the measurements for makinglassial messages were onsidered [May97℄. Following Mayers, Alie and Bob would keep allof the operation at the quantum level, exept for making lassial messages. Thus, for eahlassial message , the quantum system is projeted to a ollapsed state orresponding tothe lassial outome and is in a known pure two-party state j b;iAB. The trade-o� betweenonealing and binding is separately treated for this state, i.e. the ollapsed protool mustbe seure: F = F ��B (0); �B (1)�= F (trA(j 0;i h 0; j); trA(j 1;i h 1; j))� 1� � (4.5)and Alie has a unitary heating transformation UA; with possibility of suessj h 0; jUA; j 1;i j = F � 1� �: (4.6)
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Chapter 5Binary SymmetriMulti-Error-Rate ChannelsThe material of this hapter, based on [Dan07℄, is onerned with an extended noisy model:the binary symmetri multi-error-rate hannel (BSMERC). This hannel onsists of parallelbinary symmetri sub-hannels with di�erent error rates.We see that Cr�epeau's et al.'s [CMW04, Mor05℄ onstrution sheme from DMC im-plements indeed a BSMERC. In their onstrution, based on this BSMERC, they built abinary symmetri erasure hannel by separating the minimal error rate as good erasure fromthe others greater error rates. Then, one an exploit this gap to build an oblivious transferprotool where Bob an only reeive one seret key from Alie, not both, based on errororreting odes and ampli�ation, f. Setion 4.2 on page 36.However, in some ases, this onstrution is not eÆient as the gap is so tinny. Nev-ertheless, by onsidering the general BSMERC, we have the freedom to hoose a barriererror rate to make an extended erasure hannel whih implements oblivious transfer proto-ol. With suh an extension, we an improve the eÆieny of the redution sheme based onthe probability distribution of error rates.We expet also that this general intermediate model is onvenient for onsidering themore general noisy hannels, partifularly noisy hannels with ontinuous alphabets.5.1 Binary Symmetri Multi-Error-Rate Channel5.1.1 The ModelWe extend here the de�nition of binary symmetri erasure hannel to have a binary symmetrimulti-error-rate hannel (BSMERC) as a binary symmetri hannel with di�erent error rates0 � '1 < ::: < 'm � 1=2 with a probability distributionPj p('j) = 1. For eah bit sent onit, the hannel hooses to e�et a ertain error rate 'j with probability p('j). When Bobreeives the output bit, he also knows the atual error rate of the hannel while Alie doesnot exept with the a priori probability distribution.We an imagine that the hannel onsists ofm parallel binary symmetri sub-hannels51



Chapter 5. Binary Symmetri Multi-Error-Rate Channelswith di�erent error rates. For eah input bit, the hannel selets a sub-hannel j withprobability p('j) and passes the input via this sub-hannel. In another way, the hannel is aspeial disrete memoryless hannel with input symbols set X = f0; 1g and output symbolsset Y whih an be partitioned intom disjoint binary subsets Y1[:::[Ym, Yj = fy0j ; y1j g wherethe onditional probability distribution over X � Yj is PY=X � p('j) � P'j�BSCY=X , obtainedby the probability distribution of a binary symmetri hannel of error rate 'j ('j-BSC)multiplied by p('j).We denote the probabilist set of error rates as E = fp('j); 'jgj=1::m. We use alsoE = f'1; :::; 'mg when the probability distribution fp('j)g is impliitly agreed. An assoiatedBSMERC to E an be de�ned as follows:De�nition 5.1. E-BSMERC1. Alie sends a bit r.2. Bob reeives r0 and the outome of the tossing of a probabilist variable e whih takesvalue in 'j with probability distribution fp('j)g whih indiates that Pr(r0 6= r) = 'j.This hannel an be faithfully emulated by a quantum oding sheme: the sender en-odes a bit by the parity of a sequene of random bits and sends the enoding quantum statesof these bits to the reeiver, where two values 0; 1 of a bit are enoded by two nonorthogonalquantum states; the reeiver uses the deoding oherent measurement invented by [BMS96℄for deteting the parity of the sequene. We will expose this emulation in Chapter 6.5.1.2 Semi-honest BSMERC from Non-trivial DMCIndeed, based on a nontrivial DMC, the oding sheme in Protool 4.3 on page 40 with apair of input symbols x1; x2 satisfying Theorem 4.1 on page 39 an be used to implement aE-BSMERC as follows:Protool 5.1. PY=X ! E-BSMERC(r)1. Alie enodes r = 0 as x1:x2, r = 1 as x2:x1 and sends them via the DMC.2. Bob reeives y0:y1, sets r0 as the best guess of r and the orresponding error ratee = PY=X=x1(y1�r0)PY=X=x2(yr0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0) 2 E :where E is the set of all possible error rates over all pairs (y0; y1) 2 Y � Y with input pairx1; x2:E = ( PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y0)PY=X=x2(y1) ����� (y0; y1) 2 Y �Y)then for eah 'j 2 EYYj = ((y0; y1) 2 Y � Y ����� PY=X=x1(y1)PY=X=x2(y0)PY=X=x1(y1)PY=X=x2(y0) + PY=X=x1(y0)PY=X=x2(y1) = 'j)52



5.2. Building Oblivious Transfer from E-BSMERCand p('j) = X(y0;y1)2YYj(PY=X=x1(y0)PY=X=x2(y1) + PY=X=x1(y1)PY=X=x2(y0)):5.1.3 A Charaterizing Funtion of E-BSMERCSuppose that Alie sends to Bob N random bits via an E-BSMERC, and Bob is free to seta subset of n = Np reeived bits, 0 � p � 1, we are interested in the almost lowest missinginformation of the bits in Bob's subset, assumed by Law of Large Numbers. For desribingthis average lowest missing information, we onstrut a funtion � : [0; 1℄! [0; 1℄ as:� if p � p('1) then Bob almost reeives a segment Np bits with error rate e1 and then�(p) = ph('1);� if p('1)+p('2) � p > p('1) then Bob an almost make the onatenation of a segmentof Np('1) bits with error rate '1 and a segment of N(p � p('1)) bits with error rate'2, then the average entropy is �(p) = p('1)h('1) + (p� p('1))h('2);� and so on.An example with an E-BSMERC with 3 error rates is illustrated in Figure 5.1.

jI0jNp1 p2 1p3p1h('1)p1h('1) + p2h('2)
p1h('1) + p2h('2) + p3h('3)

Figure 5.1: Bob's optimal average error rate5.2 Building Oblivious Transfer from E-BSMERCWe propose an extended BSEC, denoted as (E ; j0)-BSEC, whih is de�ned as a E-BSMERCprovided a error rate threshold 'j0 2 E with 1 � j0 < m. We see that only (E)-BSMERCwith E having at least two di�erent error rates, i.e. m � 2 is interesting for building erasurehannels. When E has only one error rate, the (E)-BSMERC beomes in fat a BSC that anbe used to produe a BSEC, a BSMERC with two error rates, f. Protool 5.1.53



Chapter 5. Binary Symmetri Multi-Error-Rate ChannelsProtool 5.2. E-BSMERC ! (E ; j0)-BSEC(r)1. Alie sends r via E-BSMERC, and Bob reeives r0 and e = 'j.2. Bob sets � = 0 if e � 'j0, i.e. j � j0, and � = 1 otherwise.This binary symmetri erasure hannel haspg = Xj:'j�'j0 p('j) = Xj�j0 p('j): (5.1)Suppose that we have a E-BSMERC with a ertain interesting threshold 1 � j0 < mwhere m is the ardinality of the error-rate set E , we an inspire from Protool 4.2 on page 37for building oblivious transfer.In our implementations of oblivious transfer, Alie sends 2N random bits r1; :::; r2Nto Bob via the (E ; j0)-BSEC with 1 � j0 < m. Bob should reeive 2Npg of them as goodbits. Bob then an set two sequenes I0; I1, eah of size n < 2Npg. With I0; I1, Bob hastwo orresponding sequenes r0I0 ; r0I1 where r0I0 onsists of good bits. Then, Alie sends errororreting odes' syndromes syn(rI0); syn(rI1) for suÆiently orreting all of errors in r0I0 ,but not suÆient for orreting all errors in r0I1 for any dishonest setting. We should use errororreting odes with syndrome lengthjsyn(rI0)j = syn(rI1) = Hdis(rI0 :rI1=r0I0 :r0I1)=2 +Hhon(rI0=r0I0)2 (5.2)where Hdis is the missing information for any maliious setting of I0; I1 while Hhon is themissing information for honest setting. Thus, the missing information gap is ruial for�nding eÆient error-orreting odes, f. Theorem 2.3 on page 13:R = jsyn(rI0)j �Hhon(rI0=r0I0) = Hdis(rI0 :rI1=r0I0 :r0I1)� 2Hhon(rI0=r0I0)4 (5.3)Notie that, with our (E ; j0)-BSEC, r0I0 and r0I1 onsist of bits sent via binary sym-metri hannels with di�erent error rates. For instane, the bits in r0I0 are reeived with errorrates '1; :::; 'j0 . We see that, for setting any sequene r0I0 :r0I1 of 2n-bits length, Bob an inbest have almost a segment of 2Np('1) bits with error rate '1, ..., and a last segment of2N (with  � p('k)) bits with error rate 'k suh that 2N(p('1) + :::+ p('k�1) + ) = 2n,i.e. Hdis(rI0 :rI1=r0I0 :r0I1) = 2N�(n=N) (5.4)Besides, for the missing information in honest setting of I0, we onsider two honest settingsof I0 whih lead to two di�erent implementation shemes of oblivious transfer as follows.5.2.1 Sheme 1In this implementation sheme, we use the exat funtion for missing information: Bob willreate I0 as the onatenation of segments of positions with error rates 'j ; 1 � j � j0, eahof length 2N(p('j)� Æj) with a bias Æj > 0; and Alie sends the syndromes syn(rI0); syn(rI1)whih are omputed by the onatenations of syndromes orreting 2N(p('j)� Æj) uniformlydistributed errors with error rate 'j ; 1 � j � j0.54



5.2. Building Oblivious Transfer from E-BSMERCProtool 5.3. (E ; j0)-BSEC ! OT(b0; b1)()1. Alie piks 2N random bits ri, i = 1; :::; 2N , and sends to Bob via (E ; j0)-BSEC(ri).Bob reeives r0i;�i; ei2. Bob makes two disjoint index sequenes I0; I1, jI0j = jI1j = n = 2NPj0j=1(p('j) � Æj),suh that� �i = 0 for all i 2 I0, i.e. ei � 'j0 ;� I0 is the onatenation of segments 1 � j � j0 of 2N(p('j) � Æj) positions theerror rate is 'j.and announes (I; I1�) to Alie.3. Alie omputes and sends (s0 = syn(rI); s1 = syn(rI1�)) to Bob. Here, s0; s1 are madeby the onatenation of odes with error rate 'j for segment 1 � j � j0 of 2N(p('j)�Æj)bits in rI.4. Alie piks a sequene of n random bits m and sends to Bob.5. Alie omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI � m),k1 = (rI1� �m).6. Bob uses s to orret errors in rI0, and omputes b = k � b̂The idea is that Bob almost reeives 2Np('j) bits with error rate 'j . So, aordingto the Law of Large Numbers, f. Theorem 2.1 on page 10, with81 � j � j0; 0 < Æj < p('j):Bob an almost produe a segment of 2N(p('j) � Æj) indexes where the error rates are 'j .The missing information to be �lled by error orretion for this segment is then 2N(p('j)�Æj)h('j). So the missing information to be orreted for the sequene r0I0 isHhon(rI0=r0I0) = j0Xj=1 2N(p('j)� Æj)h('j):Meanwhile, the almost lowest missing information of rI0 :rI1 for all setting of I0; I1 isHdis(rI0 :rI1=r0I0 :r0I1) = 2N�0�2 j0Xj=1(p('j)� Æj)1A :Lemma 5.1. Let error rate set E = f'1; :::; 'mg, for all 1 � j < m and for all � >p('1)+ :::+p('j) whih is deomposed into � = �1+ :::+�j suh that 81 � i � j; �i � p('i).We have jXi=1 �ip('i) < �(�):55



Chapter 5. Binary Symmetri Multi-Error-Rate ChannelsProof. Denote p = (p('1) + :::+ p('j)), we have�(�) � jXi=1 p('i)h('i) + (�� p)h('j+1)= jXi=1 p('i)h('i) + jXi=1 �ih('i+1)� jXi=1 p('i)h('i+1)= jXi=1 �ih('i+1)� jXi=1 p('i)(h('i+1)� h('i))and then �(�)� jXi=1 �ip('i) � jXi=1(�i � p('i))(h('i+1)� h('i)):As � > Pji=1 p(�i) and 81 � i � j; �i � p('i), there musts exist a ertain i suh that�i > p(�i) and then �(�)� jXi=1 �ip('i) > 0:Theorem 5.1. Given a (E ; j0)-BSEC with 1 � j0 < m satisfying that there exist Æ1; :::; Æj0suh that 81 � j � j0; 0 < Æj � p('j)=2 and Pj0j=1 p('j) < Pj0j=1 2(p('j) � Æj) � 1, thenProtool 5.3 implements oblivious transfer with failure probability negligible in N .Proof. As 0 < Æj � p('j), then Bob an almost honest set up I0; I1 where r0I0 is the onate-nation of segments, eah segment j = 1::j0 has 2N(p('j)� Æj) bits reeived with error rate'j . Meanwhile, the missing information of rI0 :rI1 for any dishonest setting of I0; I1 is:Hdis(rI0 :rI1=r0I0 :r0I1) = 2N�0�2 j0Xj=1(p('j)� Æj)1A :As 81 � j � j0; 2(p('j)� Æj) � p('j), andPj0j=1 2(p('j)� Æj) >Pj0j=1 p('j), then aordingto Lemma 5.1:Hdis(rI0 :rI1=r0I0 :r0I1) > 2N j0Xj=1 2(p('j)� Æj)h('j) = 2Hhon(rI0=r0I0):Therefore, we an propose an error orreting ode, with syndrome length alulated by Eq.(5.2), that an orret eÆiently Hhon(rI0=r0I0) bits of missing information while there aresome remaining bits of missing information of one of rI0 ; rI0 .56



5.2. Building Oblivious Transfer from E-BSMERCThus, we have to hoose j0; Æ1; :::; Æj0 suh that(81 � j � j0; 0 < Æj � p('j)=2;Pj0j=1 p('j) <Pj0j=1 2(p('j)� Æj) � 1 (5.5)In a onvenient way, we an hoose Æ1 = ::: = Æj0 = Æ and the onstraints beome(0 < Æ � minj=1;:::;j0fp('j)=2gPj0j=1 p('j) <Pj0j=1 2(p('j)� Æ) � 1 (5.6)5.2.2 Sheme 2In this onstrution, we onsider the reeived bits in r0I0 as being sent via a BSC with theaverage error rate 'g = Pj0j=1 p('j)'jPj0j=1 p('j) (5.7)This hannel an be emulated as Bob forgets the atual error rate of eah reeived bit in I0.Then the average missing information to be orreted is h('g).Protool 5.4. (E ; j0)-BSEC ! OT(b0; b1)()1. Alie piks 2N random bits ri, i = 1; :::; 2N , and sends to Bob via E ; 'j0-BSEC(ri).Bob reeives r0i;�i; ei2. Bob makes two disjoint index sets I0; I1, jI0j = jI1j = n = 2N(pg� Æ), suh that �i = 0for all i 2 I0, i.e. ei � 'j0 and sends (I; I1�) to Alie.3. Alie omputes and sends (s0 = syn(rI); s1 = syn(rI1�)) to Bob. Here, s0; s1 made ashek odes for error rate 'g = Pj0j=1 p('j)'jPj0j=1 p('j)4. Alie piks a sequene of n random bits m and sends to Bob.5. Alie omputes and sends (b̂0 = k0 � b0; b̂1 = k1 � b1) to Bob, with k0 = (rI � m),k1 = (rI1� �m).6. Bob uses s to orret errors in rI0, and omputes b = k � b̂.However, by this approah, Bob has lost information when forgetting the error rateof eah reeived bit, as expressed by following inequality, based on the onvexity of entropyfuntion: h('g) = h Pj0j=1 p('j)'jPj0j=1 p('j) ! � j0Xj=1 p('j)h('j)Pj0j=1 p('j) (5.8)where the right-hand formula is the average missing information when Bob keeps in mind theerror rate of eah reeived bit. 57



Chapter 5. Binary Symmetri Multi-Error-Rate ChannelsNotie that I0; I1 are referred to as sets in Protool 5.4 while as sequenes in Proto-ol 5.3. The di�erene is that, if I0 ontains i1 < ::: < in then, in Protool 5.3 Bob sends thesequene (i1; :::; in) while in Protool 5.3 Bob sends the a permutation sequene (ij1 ; :::; ijn)depending on the error rates reeived at eah position.Obviously, a dishonest Bob should always keep information about error rates, and weannot apply the average error rate approah to r0I0 :r0I1 for the seurity. So, for this imple-mentation we should guarantee a positive gap between missing information, f. Eq. (5.3),as: �(2(pg � Æ)) � 2(pg � Æ)h('g) > 0: (5.9)Simply speaking, we an assume that Protool 5.4 implements an oblivious transferprotool with failure probability negligible in N with the onstraints(0 < Æ � pg; 2(pg � Æ) � 1;�(2(pg � Æ)) � 2(pg � Æ)h('g) > 0 (5.10)5.2.3 Veri�ation of Sender's HonestyBesides, simply speaking, as the probability distributions of r0i;�i; ei are idential over allbits ri sent by Alie, from the view of Alie I0 and I1 annot be distinguishable, and thus sheannot gain any information about Bob's hoie . So Protools 5.3, 5.4 are seure againstAlie. However, if we use the binary symmetri erasure hannel built from a disrete mem-oryless hannel as in Protool 5.1, Alie an violate the enoding onventions to hange theprobability distribution of r0i;�i; ei over eah ri in Protools 5.3, 5.4 and then guess I0; I1 tolearn . For preventing this attak we an fortunately verify Alie's honesty by the statistialparameters of the DMC based solely on its output symbols, as in Protool 4.5 on page 41,beause our extensions make only relaxations on the error-rate threshold for the intermediateerasure hannels and do not hange these parameters.Protool 5.5. PY=X ! OT (b0; b1)()1. Alie piks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob piks M random bits 1; :::; M .3. For l = 1; :::;M , Alie and Bob run a semi-honest OT protool that use the extendedBSEC built from the DMC, f. Protool 5.1, Bob gets b0l with his hoie l.4. Bob heks the statistis of the hannel DMC and aborts if Alie heats.5. Bob sends 0 =LMl=1 l � 6. Alie omputes b̂0 =LMl=1 bl;0 � b0, b̂1 =LMl=1 bl;(1�0) � b1 and sends to Bob.7. Bob omputes b =LMl=1 b0l � b̂. 58



5.3. Improvement of EÆieny based on Error-Rate Distribution5.3 Improvement of EÆieny based on Error-Rate Distribu-tionWe an see that CMW's onstrution sheme is a speial ase of Protools 5.3, 5.4 wherej0 = 1. Then, this onstrution is based on the gap between the minimal error rate and theseond least one. However, we see that this hoie is not the most eÆient for building theoblivious transfer protool.For instane, in the example illustrated in Figure 5.1, we have '1 � '2 and p1 � p2.In this ase, in the onstrution of oblivious transfer based in Protools 4.3 on page 40, 4.2 onpage 37, we have to set all i 2 I0 with ri are reeived with error rate '1 and then I0; I1 are onlymade with i where ri are reeived with error rate '1 or '2. Thus, the missing informationgap, f. Eq. (5.3), is very small and auses diÆulties in �nding e�etive error-orretingodes to make the oblivious transfer protool orret and seure.Nevertheless, we an onsider all error rates below a ertain value 'j0 as good where'j0 is not neessarily the minimal error rate. With some onstraints, f. Eqs. (5.6), (5.10),we an also build an oblivious transfer protool from this extended BSEC, f. Protools 5.3,5.4. When we hoose j0 = 1, i.e. 'j0 = '1, these shemes turn into the above speial ase.Moreover, depending on the distribution of error rates orresponding to the outputpairs, we would rather hoose 'j0 to regroup good pairs with good error rates below 'j0 .Aording to Theorems 2.1 on page 10 and 2.3 on page 13, we should optimize (i) Æ forthe suess of honest setting of I0 and (ii) the unertainty gap between the average missinginformation of rI0 when Bob is honest and of rI0 :rI1 when Bob is dishonest, f. Eq. (5.3), foran eÆient error orreting odes assuming the orretness and the privay of the protool.� For the onstrution sheme using Protool 5.3, we would look for a good j0 � 1and a bias Æ that optimizes Æ and �(2(pg � j0Æ)) � 2Pj0j=1(p('j) � Æ)h('j), satisfyingonstraints in Eq. (5.6).� For the onstrution sheme using Protool 5.4, the optimization riteria for this on-strution are then Æ and �(2(pg � Æ)) � 2(pg � Æ)h('g) with the onstraints in Eq.(5.10).In the above example, f. Figure 5.1, we would better regroup '1; '2 as good errorrates, and get a better gap between the missing information of rI0 , in honest setting, andof rI0 :rI1 , in dishonest setting, for �nding out eÆient error orreting odes. With suhdistribution, either Protool 5.3 or 5.4 an give a better eÆieny than the basi onstrutionof [CMW04℄.However, the eÆieny optimization problem in onstrution of oblivious transfer isa diÆult problem. Our extended shemes an help to improve the eÆieny of buildingoblivious transfer but neither Protool 5.3 nor 5.4 is an optimal onstrution.Imagine that there is a j0 with 81 � j � j0, 'j are very small, 8k > j0, 'k aresigni�ant, and pg = Pj0j=1 p('j) = 1=2 � �, then we would think that j0 is a good hoie.Unfortunately, if there exists a j � j0 suh that p('j) � 1 then Æ � p('j)=2 annot beoptimized. So the onstrution in Protool 5.3 is not good in this ase. Indeed, the onstraints59



Chapter 5. Binary Symmetri Multi-Error-Rate Channels0 < Æ � minj0j=1fp('j)=2g prevent us from seeking for a better threshold. In this ase,Protool 5.4 is better. However, in ase of another distribution of error rates where 81 �j � j0, p('j) are so signi�antly great that we an avoid the onstraint on Æ but 'j variesmuh, then Protool 5.3 is better beause the missing information in r0I0 is omputed moreaurately and the error orreting odes an be made more eÆient.We should then swith between the two approahes for optimizing both Æ and the gapR, f. Eq. (5.3), depending on the probability distribution of the error rates of the BSMERC.We an also propose a ompromise between two approahes for a better exploitationof the error rate distribution of the BSMERC. We an make partitions over the error rates.Eah partition onsists of some suessive error rates and is onsidered as in Protool 5.4with the average error rate. The global sheme resembles Protool 5.3, but I0 is made fromonatenation of segments orresponding to the partitions.Moreover, suppose that we are satis�ed with one of the onstrution, using eitherProtool 5.3 or 5.4, the optimization riteria are required to be quantitatively formulated. Forinstane, in 5.3 onstrution, we should optimize both Æ and �(2(pg�j0Æ))�2Pj0j=1(p('j)�Æ)h('j). Therefore, what is the trade-o� between these to riteria? This an only determinedwhen we have exat parameters on the eÆieny of the error-orreting odes, f. Theorem 2.3on page 13.5.4 Conluding RemarksIn this hapter, we has generalized the onstrution of oblivious transfer based on a nontrivialdisrete memoryless hannel by introduing the model of a general binary symmetri multi-error-rate hannel, f. De�nition 5.1 and Protool 5.1. With this extension, we have thefreedom to �nd a threshold for a binary erasure hannel whih reates a better gap betweenthe equivoation of rI0 to be �lled by error-orreting odes and of rI1 to be ondensed byprivay ampli�ation.By this extension, we an enhane the eÆieny, i.e. redue the number of bits sentvia the DMC, in omparison with the restrited onstrution based on the lowest error rate,f. Protool 4.3 on page 40. We see that if we an inrease both Æ and the error rate gap bya fator  > 1, then we an redue N to N= to have an oblivious transfer protool with thesame failure probability. However, an eÆient onstrution would depend on the probabilitydistribution of the error rates of the multi-error-rate hannel.Moreover, the onstrution of oblivious transfer from noisy hannels via intermediateBSMERC is more general. We expet that this approah an help us in onsidering theopen question about implementing OT from more general noisy hannels suh as ontinuousalphabet hannels [Mor05℄. Intuitively, noisy ontinuous alphabet hannels an be used toimplement ontinuous error-rate set E-BSMERC. However, it should require further studiesfor a quantitative analysis of the implementation.
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Chapter 6Quantum Non-Orthogonal Coding
In this hapter, we are studying a quantum nonorthogonal oding sheme using two nonorthog-onal quantum pure states. It is known that this oding sheme is omparable to quantumonjugate oding for building QKD protools [Ben92℄. We present an alternative approahto the onstrution of variants of oblivious transfer, based on the quantum nonorthogonaloding.If a sender uses this oding to send a lassial bit, then there is no quantum measure-ment apparatus for the reeiver to suessfully deode the signal. We expose that this odingsheme an be used to emulate the noisy transmission models: BSC, BSEC, BSMERC, men-tioned in Chapters 4 and 5. Our onstrutions are optimal for semi-honest sender model,i.e. in eah onstrution, we expliitly propose an quantum deoding oherent measurementfor the reeiver to obtain the optimal parameters. We emphasize the advantage of quantumoherent measurements.Inspired from the previous work, we analyze the onstrution of an oblivious transferprotool based on the quantum BSEC with lassially semi-honest sender. For the seurityagainst the reeiver, we should onsider the optimal oherent attaks, and abandon the usuallassial privay ampli�ation.Then, it's suggested that we an fore the sender to be semi-honest by verifyingsender's honesty via statistial tests. A oin ipping based sheme is raised from this idea.However, if the sender is supposed to possess a quantum omputer and permitted to keepthe quantum entanglement, then the sender an gain information about reeiver's seret. Insuh senario, we say that the sender is quantum semi-honest. Nevertheless, if we have a bitommitment protool, we an fore the sender to be lassially semi-honest sender and builda seure oblivious transfer protool.These results are omparable to what is obtained from the approah based on quantumonjugate oding, f. Setion 4.3 on page 41. However, both of the approahes ould notissue a seure quantum oblivious transfer, as prevented by the no-go results of Mayers, Lo &Chau [May97, LC97, Lo97℄. 61



Chapter 6. Quantum Non-Orthogonal Coding6.1 Quantum Non-Orthogonal CodingWe de�ne a �-QNOC as a oding sheme whih enodes two possible values of a lassial bit(0 or 1) by two quantum nonorthogonal pure states:j 0i ; j 1i suh that j h 0j 1i j = 1� �: (6.1)For example, we an hoose j 0i = �os�sin��; j 1i = � os�� sin�� (6.2)with os 2� = 1� �. In terms of density matrix, these states are�0 = j 0i h 0j = �2 ss s2� and �1 = j 1i h 1j = � 2 �s�s s2 �where ; s stand for os�; sin� respetively, or shortly�b = � 2 �s�s s2 � (6.3)where the plus sign for b = 0 and the minus sign for b = 1. The parameter � an be seen asa measure of orthogonality of the oding sheme: � = 1 when the two enoding states �1; �2are orthogonal. Here, we are only interesting in QNOC with 0 < � < 1.6.2 Optimal Distinguishabilities and Emulated Noisy ModelsThis is an unusual oding beause there is no perfet deoder [NC04℄. We an only usesome appropriate deoding apparatus, expeting some kinds of distinguishability informa-tion [FvdG99℄.We expose here some related problems of distinguishability related to this enodingsheme: the distinguishability of the two enoding states themself, and the distinguishabilityof the parity of a bit sequene enoded by the QNOC. For eah optimal quantum mea-surements for the distinguishabilities, the QNOC an be used to emulate interesting noisyhannels.6.2.1 BSC based on QNOCThe �rst problem is onerned with the distinguishability of the two enoding non orthogonalpure states.For example, the distinguishability an be measured by the mutual information be-tween the enoded bit b and the deoding outomes of a measurement E on the enodingstates. This amount of information is bounded by Holevo's inequality [NC04, Yue97℄:I(b;E) � S(�)� �0S(�0)� �1S(�1) = S(�) (6.4)62



6.2. Optimal Distinguishabilities and Emulated Noisy Modelswhere S(:) is Von Neumann entropy funtion, f. Eq. (3.1) on page 30, f�0 = p(b = 0); �1 =p(b = 1)g is the a priori probability distribution of b, and � = �0�0 + �1�1. It is shown thata projetive measurement in basis fj+i ; j�ig withj+i = 1p2�11�; j�i = 1p2� 1�1� (6.5)is an optimal measurement for the enoding states in Eq. (6.2), gaining the mutual informa-tion bound. With this measurement basis, optimizing the mutual information, the QNOCimplements a BSC with error rate [BMS96℄pe = 1� 2s2 (6.6)where I(b;E) = 1 � h(pe) for h(:) being binary Shannon entropy funtion, f. Eq. (2.2) onpage 11.Protool 6.1. QNOC ! BSC(r)1. Alie uses the enoding state orresponding to r, f. Eq. (6.2) and sends the qubit toBob.2. Bob measures the reeived qubit in basis fj+i ; j�ig, f. Eq. (6.5) and sets r0 = 0 if theoutput state is j+i, r0 = 1 if the output state is j�i.6.2.2 BSEC based on QNOCOn the other hand, the distinguishability an tell us how well one an distinguish the twostates �0; �1 in terms of the onlusive or deterministi information that we an get aboutthe enoded bit from measurement outomes.It appears �rst that we an use the projetions f�0; I � �0g,where I is the identityoperator ating on the Hilbert spae of j 0i ; j 1i, to have a onlusive response: when theprojetion I��0 has ated, then the entry state had to be �1. Thus, the probability of suessis equal to 12 tr((I � �0)�1) = 12(1� j h 0j 1i j2).However, deeper studies shown that we would rather ouple the system with an an-illa and do a projetive measurement in the joint spae to gain a better probability ofsuess [Iva87, Die88, Per88, JS95, Bus97℄. With an anilla initialized to be in state j0i, theomposite system is then in state( j0i � s j1i) j0i =  j00i � s j10iwhere the plus sign for j 0i and minus sign for j 1i. We apply the unitary transformationwhih is a rotation in the subspae spanned by j00i and j11i suh thatj00i ! s j00i+r1� s22 j11i :Therefore, the �nal state is p2 � s2 j11i+ s(j0i � j1i) j0i :63



Chapter 6. Quantum Non-Orthogonal CodingIf we measure the anilla system in the basis fj0i ; j1ig and �nd it in state j0i, then theoriginal state an be onlusively distinguished by the measurement on the original systemin the basis fj+i ; j�ig. The probability of a suessful inferring is thenpmax = 2s2 = 1� jh 0j 1ij = �: (6.7)This measurement is shown to be optimal for a onlusive inferring when j 0i ; j 1i are takenwith equal probabilities, and the probability in Eq. 6.7 is the optimal probability of suess.We see that this deoding sheme implements a BSEC with pg = �.Within the formalism of POVM, we propose a deoding measurement for our �-QNOCwith whih we an suessfully infer the enoded bit with the maximal probability �:Ê = 8><>: Ê0 = 12�� (I � �1);Ê1 = 12�� (I � �0);Ê2 = I � Ê0 � Ê1 9>=>; : (6.8)where the measurement of system in state �1 annot give Ê = 0 and the measurement ofsystem in �0 annot give Ê = 1. In suh a way, the enoded bit is onlusively deteted whenÊ = 0 or Ê = 1, and we have a binary symmetri erasure hannel:Protool 6.2. �-QNOC ! BSEC(r)1. Alie sends to Bob the state �r enoding r to Bob, using the �-QNOC.2. Bob uses the de�ned deoding Ê, f. Eq. (6.8), to measure the state. Bob outputs:� � = 0 when Ê = 0 or Ê = 1; Bob sets r0 = Ê and so r0 = r.� � = 1 when Ê = 2; Bob sets r0 as random bit.Comparing with the BSEC based on quantum onjugate oding, f. Protool 4.7 onpage 42, we state that� Protool 4.7 beomes a noiseless hannel if Bob an store the qubit for arbitrarilyduration. Nevertheless, Protool 6.2 annot be noiseless whatever Bob an do, i.e.there must exist some erasure of information.� In Protool 4.7, Alie annot a�et the probability distribution of �. Nevertheless, inProtool 6.2, Alie an a�et the probability distribution of � by sending a state notbelonging to fj 0i ; j 1ig.6.2.3 The Parity Bit and BSMERC based on QNOCSuppose that a sender generates a sequene of random bits, enodes eah of them by a qubitby the �-QNOC and sends the enoding qubits to a reeiver whih has to identify the parityof the original bit sequene.It appears �rst that the reeiver an measure eah qubit, optimizing a ertain dis-tinguishability information as above, and ombining all of the results for determining the64



6.2. Optimal Distinguishabilities and Emulated Noisy Modelsparity bit. However, it is pointed out that the reeiver an do better by using a oherentmeasurement on the whole of the sequene of qubits [BMS96℄.The density matries for the parity bit for a sequene of n qubits is omputed reur-sively as �(n)0 = 12(�(1)0 
 �(n�1)0 + �(1)1 
 �(n�1)1 )�(n)1 = 12(�(1)0 
 �(n�1)1 + �(1)1 
 �(n�1)0 )where the ase for a single qubit is exposed in Eq. (6.3):�(1)b = � 2 �s�s s2 � :One de�nes two auxiliary matries �(n) = 12(�(n)0 + �(n)0 )�(n) = 12(�(n)0 � �(n)0 ):We have �(1) = �2 00 s2� ; �(1) = � 0 ss 0�and �(n);�(n) an be omputed reursively as�(n) = �(1) 
 �(n�1); �(n) = �(1) 
�(n�1)Therefore, �(n) is a 2n�2n diagonal matrix in whih the diagonal members are 2n omponentsof the expansion of the tensor (2 s2)
n, for instane (2 s2)
2 = (4 2s2 2s2 s4), and �(n)is a 2n � 2n anti-diagonal matrix in whih all of the anti-diagonal members are nsn. Thus,by the simple omputation �(n)b = �(n) ��(n);one has the general form of the density matries for the parity bit
�(n)b = 0BBBBBBBBB�

2n 0 0 ::: 0 0 �nsn0 2(n�1)s2 0 ::: 0 �nsn 00 0 2(n�1)s2 ::: �nsn 0 0::: ::: ::: ::: ::: ::: :::0 0 �nsn ::: 2s2(n�1) 0 00 �nsn 0 ::: 0 2s2(n�1) 0�nsn 0 0 ::: 0 0 s2n
1CCCCCCCCCA :

BMS's [BMS96℄ trik is then a smart re-arranging of rows and olumns of the matrix byhanging the basis. The new basis vetors are omputed from the old ones, jii ; i 2 f0; 1gn,as ��i0� = ji=2i for even i; and ��i0� = j2n � (i+ 1)=2i for odd i:65



Chapter 6. Quantum Non-Orthogonal CodingWe have the parity density matries in a diagonal form�(n)b = 0BBB�B[j=1℄b 0 ::: 00 B[j=2℄b ::: 00 0 ::: 00 0 ::: B[j=2(n�1)℄b 1CCCA ;where eah diagonal member is a 2� 2 matrix in the form ofB[j℄b = �2(n�k)s2k �nsn�nsn 2ks2(n�k)� :For j from 1 to 2n: the �rst blok (j = 1) has k = 0; there are �n1� bloks whih have k = 1;there are �n2� bloks whih have k = 2; et. This ontinues until k = (n� 1)=2 for odd n. Foreven n, we adjust only 12�nk� bloks of k = n=2.Eah of these bloks is of the same form as in Eq. (6.3) and so stands for a QNOCsheme with two pure statesjbi[k℄ = � 0[k℄�s0[k℄�; for 0[k℄ = n�kskp2(n�k)s2k + 2ks2(n�k) ; s0[k℄ = ksn�kp2(n�k)s2k + 2ks2(n�k)whih enode diretly the values of the parity bit b. We will be interested in the optimalmutual information, and eah QNOC in a subspae j orresponding to blok j is seen as aBSC sub-hannel with error rate, f. Eq. (6.6):p[k℄e = 1� 20[k℄s0[k℄2 :We see that, the enoding sheme randomly selets one of 2n�1 orthogonal 2-dimensionsubspaes j = 1; :::; 2n�1 (spanning the basis vetors orresponding to B[j℄b ) with probabilityq[k℄ = tr(B[j℄b ) = (2(n�k)s2k + 2ks2(n�k))and uses two pure states in eah subspae to enode to parity bit b whose enoding densitymatrix is B[j℄b =tr(B[j℄b ).The optimal measurement for the mutual information of the parity is then (i) a loss-less projetive measurement whih determines the enoding subspae j and (ii) an opti-mal measurements for the QNOC using two orthogonal pure states with density matriesB[j℄b =tr(B[j℄b ); b 2 f0; 1g, gaining the optimal mutual information I2(p[k℄e ) = 1 � h(p[k℄e ) withorresponding value k of eah sub-hannel j.The optimal mutual information for distinguishing the parity values of the n-bit se-quene, with a determined �-QNOC, is then a funtion that we name by the �rst letters ofits authors Bennett, Mor and Smolin:BMS�(n) = (P(n�1)=2k=0 �nk�q[k℄I2(p[k℄e ) for odd nP(n�1)=2k=0 �nk�q[k℄I2(p[k℄e ) + 12� nn=2�q[n=2℄I2(p[n=2℄e ) for even n : (6.9)We see that this enoding and deoding shemes implements a binary symmetri multi-error-rate hannel, f. De�nition 5.1 on page 52: 66



6.3. Semi-honest-Sender Oblivious Transfer based on QNOCProtool 6.3. QNOC ! E-BSMERC(r)1. Alie generates a sequene of n random bits r1; :::; rn suh that r1 � :::� rn = r.2. Alie enodes eah ri with a qubit via the QNOC, and sends the qubit sequene to Bob.3. Bob does the above optimal oherent measurement, sets r0 as the �nal guess of r andregisters the orresponding error rate p[k℄e .Thus, E = fp[k℄e jk = 0; :::; bn=2gThe probability of the error rate p[k℄e is then the sum of the usage probabilities of allhannels j of the same k:p(p[k℄e ) = (�nk�(2(n�k)s2k + 2ks2(n�k)) for 1 � k � (n� 1)=212�nk�(2(n�k)s2k + 2ks2(n�k)) for k = n=2 with even n : (6.10)6.3 Semi-honest-Sender Oblivious Transfer based on QNOC6.3.1 Disussion on Protool RedutionIn the previous setion, we have presented how QNOC is used to build several semi-honest-sender noisy hannels: BSC, BSEC, BSMERC. We expliitly presented eah of onstrutionsof BSC, BSEC and BSMERC from QNOC with an optimal quantum deoding oherentmeasurement for the optimal parameters. With suh hannels, we an implement oblivioustransfer via the lassial redution sheme, f. Chapters 4, 5.The �rst question is that why did we ompliate things, beause a BSC is suÆientfor implementing all of the others semi-honest hannels by the lassial redution shemes,f. Protools 4.4 on page 40, 4.3 on page 40.However, as shown in Setions 6.2.2, 6.2.3, Bob an use oherent quantum measure-ments with higher apaity beyond lassially ombining individual measurements. So, insuh lassial redution shemes, we should re-examine the possible oherent measurementswhih would give Bob more advantage.6.3.2 Constrution of OT from Quantum BSECWe present here the onstrution of a semi-honest sender oblivious transfer protool from thequantum BSEC, f. Protool 6.2, and highlight the preaution about privay ampli�ationin the presene of quantum oherent attaks. We use the same redution sheme as inProtool 4.2 on page 37 for an oblivious transfer protool:Protool 6.4. QNOC !dOT (b0; b1)()1. For i from 1 to N , Alie piks a random bit ri and sends it to Bob via the BSEC protoolbased on �-QNOC; Bob outputs (r0i;�i).2. Bob randomly builds two disjoint index subsets I0; I1 � f1; :::; Ng suh that jI0j = jI1j =n, and 8i 2 I0;�i = 0. 67



Chapter 6. Quantum Non-Orthogonal Coding3. Bob sends the ordered pair (I; I1�) to Alie, aording to his hoie .4. Alie, reeiving (I; I1�), sends bak (b̂0 = b0�k0; b̂1 = b1�k1) to Bob where k0 = Li2Iri,k1 = Li2I1�ri.5. Bob deiphers b = b̂ � Li2I0r0i.We analyze �rst the orretness PC and Alie's privay HB.All that Bob reeives are a sequene of qubits in a state �B and the iphertexts of b0; b1with the keys k0; k1: b̂ = b � k, b̂1� = b1� � k1�. The equivoations of the plaintextsH(b=b̂; �B) = H(k0=�B), H(b1�=b̂1�; �B) = H(k1=�B) depend on Bob's measurements ofthe qubits �B and his setting of I0; I1 [Sha49℄.In a lassial thinking, we an assume the orretness and Alie's privay of Proto-ol 6.4 with lassial arguments as for Protool 4.2.For the orretness, yes, we an use the same argument as Alie and Bob who arehonest an make the sheme as in a lassial senario. PC is obviously the probability thatBob gets at least n bits in N rounds of BSEC, when Bob is honest.However, we annot assume the privay by these arguments. Following these lassialarguments, Bob measures eah qubit individually, and ombines the results to guess the paritybits of 2n-bit substrings. Thus, the average error rates in suh substrings an help to seurethe parity based on the lassial privay ampli�ation. Nevertheless, in the quantum world,dishonest Bob is supposed to use quantum mahine with unbounded power. With suh amahine Bob an implement quantum algorithms and oherent measurements over the wholeof the qubits to gain information. It was shown that in many ases oherent attaks gainmuh more information than inoherent attak.For the onveniene in our proofs, we adopt a measure of Alie's privay on Bob sideas HB = H(b0 � b1=Y ) (6.11)where Y stands for all intermediate information that Bob an get, and � denotes theexlusive-or operator. Suh a measure is reasonable beause in many appliations builtfrom OT, the seurity is based on the seurity of b0 � b1 [Cr�e89℄. Alie's privay HB =H(b0 � b1=b̂0; b̂1; �B) = H(k0 � k1=�B) is the minimal equivoation of the parities of the2n-bit substrings of (r1; ::; rN ), given the enoding qubits.In [BMS96℄, Bennett et al. have proposed the optimal oherent measurement to gaininformation about the parity of a bit sequene given the non-orthogonal enoding states.However, it's not the same problem as gaining the optimal information about the parity ofany of substrings with �xed length. Indeed, we see that when the substrings' length is 2n and2n < N�, we an almost guess the parity of one of them. Figuring out how good a quantumalgorithm an guess the parity of any of 2n-bit substrings of a N -bit string, given the QNOCstates, would be omplex and out of sope of this thesis.For onveniene, we an simply on�gure with 2n = N , and reuse BMS's funtion, f.Eq. (6.9), for the optimal aessible information that Bob an get about k0 � k1 from the68



6.3. Semi-honest-Sender Oblivious Transfer based on QNOCqubits. This amount of information is less than 1 and dereases with N when � < 1 [BMS96℄.Then, H(k0 � k1=�B) = 1�BMS�(N) is greater than 0 and inreases with N .For instane, when we hoose � = 35o, thus have � � 0:658, then BMS�(N) is adereasing funtion as in Figure 6.1.
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Figure 6.1: Optimal mutual information of the parity bit with 0.658-QNOCIn an asymptoti manner, we have a protool that is almost both orret and seureagainst Bob:Theorem 6.1. Given any �1; �2 > 0, we an on�gure Protool 6.4 with 1=2 < � < 1; 2n = Nand there exists N0 suh that 8N � N0PC � 1� �1; andHB = H(k0 � k1=�B) � 1� �2:Proof. (Sketh). When Alie and Bob are honest, with � > 1=2, Bob will reeive in average�N > N=2 = n good ri, i.e. with �i = 0. Thus, Bob an set I0 with no error in r0I0 andsuessfully deipher b. The probability that Bob reeives less than n < �N good ri an benegligible in N .Besides, HB = H(k0� k1=�B) = 1�BMS�(N) where BMS�(N) is also negligible inN when � < 1.Therefore, we an hoose 1=2 < � < 1 for PC and HB are both arbitrarily lose to 1with parameter N .Alie is supposed to be semi-honest, i.e. she respets the QNOC sheme, but wantsto reord all intermediate information to guess Bob's hoie. When Bob is honest, i.e. herespets the deoding sheme, then the probability distribution of �i are idential for allposition i, and Alie annot distinguish I0; I1 to gain information about .69



Chapter 6. Quantum Non-Orthogonal CodingIn onlusion, in ase Alie is semi-honest, we an on�gure the protool with 1=2 <� < 1, n = N=2 with even N , Protool 6.4 implements an oblivious transfer with failureprobability arbitrarily small in N .6.4 Quantum OT based on Coin Flipping and EPR AttakWe see that Protool 6.4 does not implement a seure oblivious transfer protool againstAlie who is ative. Indeed, Alie an violate the QNOC sheme to ontrol the probabil-ity distribution of � of the BSEC. Then, simply speaking, the distributions of I0; I1 overf1; :::; Ng are di�erent: a position i with a greater p(�i) = 0 has a greater probability to beput in I0. Alie an then gain information about .For the simple ase when the qubit sequene is in state �B = NNi=1 �i, i.e. all �i atposition i are not entangled eah with the others, then the exeution of eah ith BSEC roundis independent of the others: p(�i = 1=�i) = tr(Ê2�i), whereÊ2 =  2�2�2�� 00 0 !Thus, Alie annot de�nitively fore �i to be 1 as tr(Ê2�i) � tr(Ê2) = 2�2�2�� . We havemin�i tr(Ê2�i) = 0 when �i = j1i h1j (6.12)max�i tr(Ê2�i) = 2� 2�2� � when �i = j0i h0j (6.13)With suh a ontrol of probability distribution of �i; i = 1; :::; N , Alie an guess I1 as theset with more indies for input �i = j0i h0j and less indies for input �i = j1i h1j.The idea inspired from the implementation of OT from DMC, f. Protool 4.5 onpage 41, is that Bob should ask Alie to reveal some ri in Protool 6.4 to test the enoding.If Alie is supposed to reveal ri 2 f0; 1g, Bob an measure �i by the projetion �ri = j rii h ri jto verify. If the qubit is not j rii, then Alie has a non zero probability of being deteted.We should have a protool as follows:Protool 6.5. QNOC ! OT (b0; b1)()1. Alie piks M random bits b1;0; :::; bM;0 and sets bl;1 = b0 � b1 � bl;0 for l = 1; :::;M .2. Bob piks M random bits 1; :::; M .3. For l = 1; :::;M ,� Alie piks N + T random bits ri and sends it to Bob via �-QNOC.� Bob hooses T random indexes j and announes to Alie.� Alie reveals rj; Bob measures jth qubit with projetion �� rj� 
 rj �� and aborts if itfails. 70



6.4. Quantum OT based on Coin Flipping and EPR Attak� Bob uses the de�ne measurement Ê to omplete the BSEC rounds, and Alie andBob implement dOT (bl;0; bl;1)(l).4. Bob sends 0 =LMl=1 l � .5. Alie omputes b̂0 =LMl=1 bl;0 � b0, b̂1 =LMl=1 bl;(1�0) � b1 and sends to Bob.6. Bob omputes b =LMl=1 b0l � b̂.Alie has to heat all of M dOT rounds to learn Bob's hoie . If in eah round,dishonest Alie has a non zero probability of being deteted, then we an prevent Alie fromheating with large value of M .With large value ofM , we see that the tests assume that eah qubit sent by Alie is instate j ri with a random bit r. This state an be desribed by ��0+(1��)�1. The intuitionis that if the ith qubit sent in Protool 6.4 is in state �i = ��0 + (1 � �)�1; � 2 [0; 1℄ thenp(�i = 0) = �. We would dedue from the lassial ase that if the probability distributionsof all �i are idential, then Alie annot disover .Nevertheless, Bob an use his advantage to heat in eah dOT round: he measures allof the N + T qubits and ask Alie to reveal rj with whih the result is bad while using goodresult to set I0; I1. Bob an heat one of M dOT rounds to aw the protool. However, wewould expet a good on�guration of M and N to make Protool 6.5 highly seure againstboth Alie and Bob as in [Mor05℄.Based on the same idea, we would onlude that, if Alie and Bob have aess toa oin ipping protool, e.g. a blak box that generates pairs of random bits, then Bob'sadvantage is removed. We would imagine an oblivious transfer protool based on oin ippingas follows:Protool 6.6. CF and QNOC ! OT(b0; b1)()1. For i from 1 to (M + 1)N , Alie piks a random bit ri and sends to Bob a quantumstates enoding ri with �-QNOC sheme.2. Alie and Bob use oin ipping to generate N random log(M + 1)N -bit numbers toselet U � f1; :::; (M + 1)Ng with jU j = N .3. For i 2 T = f1; ::; (M +1)Ng nU , Alie unveils ri to Bob; Bob veri�es ri by measuringthe ith qubit �i with the projetion j rii h ri j and abort if it fails.4. Alie and Bob ontinue with Protool 6.4 on N remaining qubits indexed in U .Unfortunately, this lassial reasoning is true only if the state ��0+(1��)�1 is preparedby a statisti ensemble onsisting of j 0i with probability � and j 1i with probability 1� �.In the sope of quantum mehanis, this statistial ensemble an be prepared as the state ofa subsystem entangled with another system.In general ase, Alie prepares a bipartite state �AB , and sends to Bob N qubits inthe state �B = trA(�AB):71



Chapter 6. Quantum Non-Orthogonal CodingFor instane, Alie an violate the enoding onvention by preparing eah qubit as half B ofa pair in state p� j0iA 
 j 0iB +p1� � j1iA 
 j 1iBand sends the qubit B to Bob. This preparation is indeed quantum semi-honest beause thedensity matrix of the qubit B is the same as when Alie is honest. When Bob measures thequbit B with the de�ned Ê for implementing Protool 6.2, the probability distribution of �does not hange, p(�=�B = 0) = �. However, Alie an measure the system A with someapparatus EA to gain some mutual information I(�;EA) about � based on the orrelationprodued by quantum entanglement. Alie an then use I(�i;EA) about �i in eah ith roundto guess the di�erene between I0 and I1.We expose here an example of suh EPR attaks on Protool 6.6. By similarity, thisattak also aws Protool 6.5. Assume thatj 0i =r1� �2 j0i+r�2 j1i ; j 1i =r1� �2 j0i �r�2 j1i :then 12�0 + 12�1 = � 1� �2 00 �2 � = (1� �2 ) j0i h0j+ �2 j1i h1jThis matrix an be prepared as an ensemble of j0i with probability (1 � �2 ) and j1i withprobability �2 . We see that these states maximally violate the �-QNOC and have the bestdistinguishability of the probability distributions of �, f. Eq. (6.12), (6.13).Therefore, a dishonest Alie an make a bipartite state���0� =r1� �2 j0iA j0iB +r�2 j1iA j1iBand sends qubit B to Bob. Observe that the density matrix of Bob's part is the same as thedensity matrix of Bob's part of j�i = (j0iA j 0iB+ j1iA j 1iB)=p2, and there exists a unitarytransformation UA on Alie side that transforms j�0i to j�i: (UA 
 IB) j�0i = j�i. We have���0� =r1� �2 j0iA j0iB +r�2 j1iA j1iB=r1� �2 (j+iA + j�iA)p2 j0iB +r�2 (j+iA � j�iA)p2 j1iB= 1p2 j+iA 
 r1� �2 j0iB +r�2 j1iB!+ 1p2 j+iA 
 r1� �2 j0iB �r�2 j1iB!= 1p2(j+iA 
 j 0iB + j�iB 
 j 1iB)and thus UA is indeed the Hadamard gateUA = H = 1p2 �1 11 �1�Therefore: 72



6.5. Quantum OT based on Bit Commitment� If the state j�0i is seleted to be tested, Alie an apply UA on her side to have j�iand measures the system A in the basis fj0iA ; j1iAg. This is equivalent for Alie tomeasure in basis fj+iA ; j�iAg. Alie reveals r = 0 if the output is j0iA leaving Bob'spart in state j 0iB , r = 1 if the output is j1iA leaving Bob's part in state j 1iB . Aliean then suessfully pass the test.� If the state j�0i is used for OT protool, Alie measures the system A in the basisfj0iA ; j1iAg. If Alie outputs j0iA, Bob is left with the state j0iB that has a higherprobability of giving � = 1; if Alie outputs j1iA, Bob is left with the state j1iB that hasa lower probability of giving � = 1. We remark that Alie's and Bob's measurementsommute in the sense that, if Alie measures after Bob does, Alie gain the sameinformations, i.e. Bob has reeived � = 1 with a higher probability if Alie outputsj0iA and Bob has reeived � = 1 with a lower probability if Alie outputs j1iA.With suh an advantageous information about probability distribution of �i; i 2 U ,given I; I1�, Alie an guess I1 as the set with more indies for output j0iA and less indiesfor output j1iA. Therefore, the tests annot help us to prevent Alie from heating, and theabove quantum oblivious transfer protools, even though based on oin ipping, are awedby EPR attaks.6.5 Quantum OT based on Bit CommitmentWe see that Protool 6.4 is seure against Alie only if Alie is supposed to respet theenoding onvention in the �-QNOC sheme. We an fore Alie to do this with help of a bitommitment protool. Reall that oin ipping an be built from bit ommitment [CK88℄.Protool 6.7. BC and QNOC ! OT(b0; b1)()1. Alie piks (M + 1)N random bits ri and ommits all of ri to Bob via BC protool.2. Alie sends to Bob quantum states enoding ri with �-QNOC sheme for all i =1; :::; (M + 1)N .3. Alie and Bob use oin ipping, whih an be built from BC, to generate N randomlog((M + 1)N)-bit numbers to selet U � f1; :::; (M + 1)Ng with jU j = N .4. For i 2 T = f1; ::; (M + 1)Ng n U ,� Alie unveils ri to Bob.� Bob veri�es ri in the ommitment and aborts if it fails.� Bob measures the ith qubit with the projetion j rii h ri j and abort if it fails.5. Alie and Bob ontinue with Protool 6.4 on N remaining qubits indexed in U .The main di�erene between the test with a ommitment of r and the one without aommitment as in Protools 6.5, 6.6 is that a ommitted bit r, with the projetion j ri h rj,determines only the pure state j ri while a random bit r with the projetion j ri h rj is a73



Chapter 6. Quantum Non-Orthogonal Codingmixed state desribed by � j 0i h 0j+(1��) j 1i h 1j. Then, the former ase does not permitAlie to send the enoding qubit di�erent from the onventional pure state j ri while thelater permits a violation of �-QNOC by part of a bipartite entangled state. In other words,the ommitment of r fores Alie to be lassially semi-honest.Therefore, in Protool 6.7, if dishonest Alie violates the �-QNOC onvention for somerounds of BSEC in U to have some hane to distinguish I0; I1 � U , then she will be detetedwith large value of M . If Alie pass the tests then Alie musts almost respet the enodingonvention. Thus following Theorem 6.1, she gains little information about .Could EPR attaks help Alie to heat in a general way: Alie prepares �AB and sendsthe qubit sequene in state �B = trA(�AB) to Bob; after the seletion of U , Alie operateson �A in suh a way that Bob's part in U violates the �-QNOC and helps Alie to guess ,f. Setions 6.6 and 6.4, while Bob's part not in U , named U , passes the tests? We see thatwith a large value of M , almost qubits in U must respet the �-QNOC. So, there may existU 0 � U; jU 0j = jU j suh that the qubit sequene in U 0 respets the QNOC, i.e. is in stateNi2U 0 j rii h ri j and so �B =  Oi2U 0 j rii h ri j!
 �U 0As U 0 and U are equivalent under the random seletion, Alie's operation would also workwith U 0 as U . However, for any of Alie's loal transformations, �B remains the same, i.e.the qubit sequene in U 0 is in stateNi2U 0 j rii h ri j that respets the �-QNOC and does nothelp Alie.Theorem 6.2. Given �1; �2; �3 > 0, we an on�gure Protool 6.7 with 1 > � > 1=2, N=n = 2and there exists N0 suh that 8N � N0PC � 1� �1; and HB � 1� �2;and there exists M0 depending on N suh that 8M �M0HA � 1� �3Proof. (Sketh) Following Theorem 6.1 we ould on�gure Protool 6.4 and hoose �rst alarge value of N0 to have an oblivious transfer protool strongly orret and seure againstBob: PC � 1� �1; and HB � 1� �2Then, we hoose M large enough to assume that at the onlusion of Protool 6.7, Alie hasto almost respet the �-QNOC and gains an amount of information about  below �3.6.6 Building Weak Oblivious TransferWe will show that Protool 6.4 satis�es De�nition 4.1 on page 36 with PC > 0;HB > 0;HA >0. The orretness parameter PC is onsidered, given that Alie and Bob are both honest.We see that PC =PN�a�n �Na ��a(1��)N�a. Thus PC > 0 when 0 < � < 1. Besides, Alie's74



6.6. Building Weak Oblivious Transferprivay HB is 1�BMS�(N) when we hoose n = N=2 for even N . And then, HB > 0 when� < 1. We onsider now the seurity on Alie side, i.e. Bob-privay when Bob is honest. Wedenote D, the probability distribution of N BSEC rounds e = (�1; :::;�N ) 2 f0; 1gN , knownto Alie when Bob is honest. In fat, Alie an ontrol the probability distribution D ofexeution of BSEC rounds e = (�1; ::;�N ) by sending a sequene of qubits in any state.HA = minfH(=D) : for all D that Alie an generate by sending the quantum sequenegGiven a distribution D, Alie has an equivoation of Bob's hoie as the averageentropy HA = H(=D) = XW2W p(W=D)H(=W;D); (6.14)for W being the set of all ordered pairs of disjoint subsets of n indexes, i.e.W = fW = (W0;W1) :W0 \W1 = ;; jW0j = jW1j = ng;and H(=W;D) = h(p( = 0=W;D)) being the onditional entropy of  when Alie reeivesW 2 W. Thus: p( = 0=W;D) = p(W= = 0;D)p( = 0=D)p(W=D)= p(W0 = I0;W1 = I1=D)2p(W=D)= Pe pD(e)p(W0 = I0;W1 = I1=e)2Pe pD(e)p(W=e) ;p( = 1=W;D) = p(W= = 1;D)p( = 1=D)p(W=D)= p(W1 = I0;W0 = I1=D)2p(W=D)= Pe pD(e)p(W1 = I0;W0 = I1=e)2Pe pD(e)p(W=e)where p(I=e) is the probability that Bob returns W to Alie, knowing an ourrene e of theexeutions with the probability pD(e) ontrolled by Alie.The probability that Bob returns W = (W0;W1), given the exeution e, is omputedby the formula p(W=e) = 1Xk=0 p(Wk = I0;W1�k = I1=e):We suppose that honest Bob, knowing an exeution e = (�1; ::;�N ), randomly seletsI as any subset of L indexes from Zero(e) = fi 2 f1; ::; Ngj�i = 0g, and �lls I1� with theremaining indexes in Zero(e), then with indexes randomly seleted from One(e) = f1; :::; NgnZero(e). 75



Chapter 6. Quantum Non-Orthogonal CodingFor W = (W0;W1) 2 W, we havep(W0 = I0;W1 = I1=e) = 8>><>>:�jZero(e)j2n ��1 if W � Zero(e)�jZero(e)jn ��1� jOne(e)j2n�jZero(e)j��1 if W0 � Zero(e) ^ Zero(e) �W0 otherwise.We denote EW = fe : p(W0 = I0;W1 = I1=e) > 0g i.e. W 2 Zero(e) or W0 � Zero(e) ^Zero(e) �W . For 0 � a � N , we use ea to denote any ourrene of e suh that Zero(e) = a.The ardinality of EaW = fea 2 EW g is thenjEaW j = 8><>:�N�2aa�2n� if a � 2n1 if n � a < 2n0 otherwise:We havep(W0 = I0;W1 = I1=D) = PN�a�0Pea p(ea=D)p(W0 = I0;W1 = I1=ea)= PN�a�0 Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)= PN�a�2n Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)+ P2n>a�n Pea2EaWp(ea=D)p(W0 = I0;W1 = I1=ea)We see that, only a ith qubit with a priori probability known by Alie p(�i = 1) = 1 angive Alie the onlusive information about  when i is put into I1 by Bob.However, when Bob uses the deoding measurement Ê for the �-QNOC with � > 0,p(�i = 1=�i) � 2�2�2�� < 1 for all quantum states �i sent to Bob, f. Eq. 6.13. Therefore, forall heating qubits sent to Bob, Alie has nonzero unertainty about , i.e. HA > 0.In brief, as analyzed above, Protool 6.4 satis�es De�nition 4.1 when 0 < � < 1. Theparameters N;n and � an be alibrated to have some degree of weak orretness and weakseurity on both sides. We enter then in a two-party game where the more advantage we giveto a party, the more this party an ontrol the game and heat.We omit a quantitative analysis for the on�guration of our WOT beause of theomplexity on Alie side. Intuitively, the smaller � is, the larger Alie-privay HB is, but thesmaller Bob's privay HA is beause Alie has larger gap in the probability distribution of�i : 0 � p(�i = 1) � 2�2�2�� . Besides, the smaller N is, the smaller Alie-privay HB is, butthe larger Bob-privay HA is beause it is harder for Alie to distinguish I0 and I1.We expet that if the protool is on�gured to be orret and seure on Bob side,Alie will be able to generate a distribution D to guess  with a high auray. Indeed, aquantum oblivious transfer that is orret and seure on both sides is eliminated by the no-gotheorems ([May97, LC97, Lo97℄) that we will expose in the next hapter.
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Chapter 7No-go Theorems: Reinterpretationand ExtensionThe material of this hapter is onerned with the general model of quantum two-partyprotools. Suh protools should onsist of ommuniation of quantum information via aquantum hannel and lassial information via a marosopi hannel. With the preseneof suh marosopi hannel, a quantum protool is no more a purely quantum two-partymodel onsisting of users' quantum mahines. The measurements for making lassial signalstransmitted via this hannel would reate entanglements between users' quantum systemswith a third party system, unontrollable by the users and thrown to the environment. Themarosopi hannel is as a publi measurement apparatus whih is trusted by both Alieand Bob.With this three-party model inluding an environment party oupled with the lassialhannel, we present a faithful interpretation of general quantum protools for building bitommitment and oblivious transfer protools. With the puri�ed model, we show that theno-go theorems are valid for both ideal and non-ideal primitives.Based on this interpretation for general two-party protools, showing ertain featuresof the models penalized by the theorem, we extend the no-go theorem for some partiulartrusted two-party orale based models whih do not hide information from the views of Alieand Bob. A no-go result on oin-ipping based bit ommitment protools similar to Kent'sone [Ken99℄ an be easily obtained from these extensions.A orollary from these extensions is that a quantum two-party orale for implementingunonditionally seure bit ommitment and oblivious transfer must involve an erasure ofinformation from the views of Alie and Bob. This remark suggests us to disuss the no-gotheorems from a thermodynamial point of view, due to Landauer's priniple [Lan61℄.7.1 Reinterpretation for No-go TheoremsA major objetion to MLC no-go theorem is that it is \too simple to be true" for all possibleprotools where Alie and Bob1. do measurement on their quantum systems and pass to lassial omputation;77



Chapter 7. No-go Theorems: Reinterpretation and Extension2. introdue private serets;3. ommuniate lassial information through a marosopi hannel that does not permitto transmit quantum signal.Most of attention were paid to lassial variables in omputations [Yue00, Bub01b,Yue04, Che03, Che06℄. And these were suessfully explained in these supplement works.The problem of seret variables, addressed in [Yue02, Yue04℄, was also treated for ideal andnearly ideal protools by some related results in [Bub01b, Che06℄.The lassial ommuniation is normally omitted with some assumptions on the om-muniation, expressed as \lassial ommuniation an be arried out by quantum model, butwith some onstraints" [LC97℄. But what are the onstraints? From a physial viewpoint,the lassial hannel does not appear in this redued two-party quantum model.What is the di�erene between a quantum hannel and a lassial one? A quantumhannel is a medium that we an use to diretly transmit a quantum state without disturbingit. Nevertheless a lassial hannel, for transmitting disrete messages, permits only one froma olletion of disrete signal values whih an be ampli�ed by many quantum systems onthe hannel, for instane a marosopi eletrial wire with tension +5V for 0 and �5V for1. Imagine that in the spei�ation of a protool, at a ertain moment, a party S hasto measure some quantum state j iS with an apparatus with n degrees of freedom andommuniate this result to the other via a lassial hannel. This measurement will outputi 2 f1; ::; ng with probability p(i) and let the measured system in a state j iiS . Reeivingthe lassial value i, the reeiver R ould generate a basis state jiiR in a n-dimension spaefor his further omputation.Of ourse, we an redue this ommuniation to a pure two-party quantum modelwhere the sender realizes a transformationU(j iS 
 j0iR)! nXi=1pp(i) j iiS 
 jiiRand the protool will go on orretly beause the density-matrix desription of eah systemis the same as though a real measurement is done [LC97, Bub01b℄. The joint omputationremains an unitary evolution of a pure two-party state, and with suh a quantum two-partyjoint omputation, bit ommitment is impossible as analyzed in Setion 4.4.1.However, the above redued model for lassial ommuniations does not interpretwhat really happen in the physial world. It permit to onserve a two-party entanglementthat does not exist in the spei�ation of the protool with lassial ommuniation. Thistwo-party entanglement ould introdue some extra e�ets. For instane, it ould happenthat if the reeiver uses the reeived message to do a quantum omputation and sends bakthe result, the sender ould learn more information with entanglement attak by the e�etof super-dense oding [BW92℄.We an say that a quantum protool with ommuniation of lassial messages an beorretly implemented in a pure quantum two-party model. Nevertheless, it is not obviousto emulate the protool by a puri�ed two-party model for proving the inseurity without a78



7.1. Reinterpretation for No-go Theoremsonvining interpretation. We have right to doubt that the redued two-party model mayimplement orretly the protool, not seurely. The pure quantum two-party model ould beused to prove the possibility [Yao95℄, not the impossibility.Indeed, the lassial hannel fores the measurements to be done for making lassialsignals i.e. Alie and Bob have to really measure their quantum states to make lassial mes-sages. And in a generi protool, the ommuniation of lassial messages fores destroyingthe purity of two-party states. The real joint omputation with ommuniation by measuringand transmitting lassial values via a lassial hannel is not an evolution of a pure two-partystate. In other words, as the ation of measurements \an never help a heater", why it doesnot prevent Alie from heating?This point was only explained in Mayers' version where the measurements for makinglassial messages were onsidered [May97℄. Following Mayers, Alie and Bob would keep allof the operation at the quantum level, exept for making lassial messages. Thus, for eahlassial message , the quantum system ollapsed with the orresponding lassial outomeis in a known pure two-party state j b;iAB , and the trade-o� between onealing and bindingis separately treated for this state, i.e. the ollapsed protool must be seure:F = F ��B (0); �B (1)�= F (trA(j 0;i h 0; j); trA(j 1;i h 1; j))� 1� � (7.1)and Alie has a unitary heating transformation UA; with possibility of suessj h 0; jUA; j 1;i j = F � 1� �: (7.2)However, a protool that is seure against Bob is not neessarily seure for all possibleollapsed protools orresponding to all possible lassial exhanged messages, f. Eqs. (7.1)and (7.2), but on average. For example, F ould be small for some  but the ourringprobability of  is small. Moreover, it an happen that the ourring probabilities of  forthe ommitment of 0 and 1 are di�erent, i.e. p0() 6= p1(). Could we relax more themeasures of average onealment and binding?In this setion, we present a faithful interpretation for the no-go theorem, onsideringall physial systems appearing in a general bit ommitment protool. The similarity an beapplied to oblivious transfer protools. This interpretation will larify the troubles with thetwo points:� Classial omputations with serets: We show that EPR attaks of Alie is general inspite of the fat that honest Bob really uses lassial seret variables and does themeasurements in his omputation. This interpretation, inspired from Lo's argumentsin [Lo97℄, is simpler and more aessible than [Bub01b, Che06℄. Moreover, our detailedinterpretation leads to the possibility of a mental game on Bob's serets when thenumber of values of these serets is very large in omparison with the onealmentparameter, f. Setion 7.3.� Classial ommuniations: We show that the seurity and the heating an be analyzedfor a puri�ed protool in a global view onsidering a marosopi hannel for transmit-ting lassial message within the onepts of deoherene in quantum measurements.79



Chapter 7. No-go Theorems: Reinterpretation and ExtensionThis puri�ed model shows a more general view on average onealment and bindingthan Mayers' one whih onsidered these parameters only for individually eah historyof the protool orresponding to one quantum on�guration ollapsed to one lassialmessage sequene [May97℄.7.1.1 Augmented model purifying private randomness and seretsWe onsider the seurity of quantum bit ommitment with private serets and loal measure-ments in an augmented model whih puri�es all these lassial variables. For simplifying, wesuppose that Alie and Bob ommuniate only quantum information. The ommuniationvia a lassial hannel will be onsidered later.Suppose that Alie and Bob possess two quantum mahines with unlimited resoure.Using these mahines, Alie and Bob an realize all omputations at the quantum level bythe purifying ation desribed as follows.Suppose that following the algorithm, at some step, a user X 2 fA;Bg prepares aseret value whih is a random variable jii, hosen from a �nite set fj1i ; ::; jnig with equalprobabilities 1=n, and introdues it to a quantum iruit that omputeUX(jiiX j (b)iAB)where j (b)iAB is used for the remaining quantum system of the protool. This probabilis-ti omputation reates in fat a quantum statistial ensemble of possible on�gurations:f1=n; UX (jiiX j (b)iAB)g. User X an instead prepare the entangled statenXi=1p1=n jiiX jiiDX ; (7.3)keeps the quantum die DX for the puri�ation and uses part X for the quantum algorithmas in the honest ase. The omputation is then kept at the quantum levelnXi=1p1=n jiiDX UX(jiiX j (b)iAB):Suppose that at some steps, a user X 2 fA;Bg has to measure the quantum statej (b)iAB by an apparatus with n degrees of freedom. Aording to the output i 2 f1; ::; ng andthe ollapsed state j i(b)iAB with probability pb(i), this user realizes a quantum omputationUX ontrolled by i, i.e. he/she produes a state jiiX j i(b)iAB for i = 1; :::; n, and appliesUX(jiiX j i(b)iAB). The user an instead introdue a n-dimension quantum system in X,and a n-dimension quantum die in DX for the puri�ation. He ouples these with j (b)iABand transforms them to nXi=1ppb(i) jiiDX jiiX j i(b)iAB ; (7.4)Then he applies UX to the system in HX as in the honest ase, i.e. the output will benXi=1ppb(i) jiiDX UX(jiiX j i(b)iAB):80



7.1. Reinterpretation for No-go TheoremsThe above behaviors an be seen as semi-honest. Suh semi-honest ations are notdetetable beause the density matries of all systems are the same as in a honest sheme, andmust be allowable beause the both users have quantum mahines with unlimited resoure. Infat, eah user respets the spei�ed algorithm but keeps the multiverse of the omputationsorresponding to private lassial variables [Deu℄.

jjiDA DBA Bjii
Figure 7.1: Global model purifying private lassial variablesTherefore, the joint omputation is an unitary evolution ating on HDA 
HA
HB
HDB where DA;DB are Alie and Bob's dies whih are seret and do not appear in theexeution of the protool for honest users. The on�guration at any moment an be expressedas j	(b)i =Xi;j ppb(i; j) jiiDA jjiDB j i;j(b)iAB (7.5)where i; j represent all possible values of lassial serets and measurement results that Alieand Bob would have produed, and j i;j(b)iAB is the ollapsed quantum state aordingto the lassial values i at Alie loation and j at Bob loation when both are honest f.Figure 7.1.But the users an throw their dies to the quantum mahines and fully ontrol themas normal omputational system in A;B. Then, the protool must be onealing against thispuri�ation beause DB is fully ontrolled by Bob's mahine, i.e:�B;DB (0) = �B;DB(1) (7.6)where �B;DB (0) = trA;DA(j	(0)i h	(0)j), �B;DB (1) = trA;DA(j	(1)i h	(1)j).Then, as exposed in Setion 4.4.1, the theorem for the puri�ed two-party system81



Chapter 7. No-go Theorems: Reinterpretation and Extensionassumes that Alie �nds a heating unitary transformation ating in HA 
HDA suh thatUA(j	(1)i) = j	(0)i :The most ommon feeling is that, Bob may not neessarily follow the puri�ed sheme.When honest Bob really does the measurements and uses lassial random serets, the two-party entanglement is destroyed. For the sake of simpliity, we throw the dies in DA to A,and the puri�ed state an be expressed as j	(b)i =PNj=1ppb(j) jjiDB j j(b)iAB . Aordingto his lassial private values j 2 f1; ::; Ng, the global puri�ed state is projeted into theollapsed states j j(b)iAB whih may not be known to Alie. Alie ould not �gure out theorresponding heating transformation.However, if Bob does not purify his omputations by throwing DB away, he hasno advantage. In any way, we annot weaken the ondition in Eq. (7.6), and beauseppb(j) j j(b)i = DB hjj	(b)i, the transformation UA is universal for all of Bob's serets, i.e.UA(j j(1)i) = j j(0)i : (7.7)Even in a non-ideal ase where F (�B;DB (0); �B;DB (1)) = 1 � �, as shown in Setion 4.4.1,there exists a puri�ation j	0(0)i of �B;DB (1) satisfying j h	0(0)j	(0)i j = 1 � �, and Aliean �nd UA: ��	0(0)� = UA(j	(1)i) =Xj pp1(j) jjiDB UA(j j(1)iAB)=Xj pp1(j) jjiDB �� 0j(0)�ABAlie an use this unitary transformation to heat. Here, in spite of the fat that there mayexist some lassial output j with it, Alie fails to heat beause j h j(0)j 0j(0)E j � 1, butthe probability of produing suh lassial value j must be small and the average of Alie'spossibility of suess when Bob is honest an be measured by:Xj pp0(j)pp1(j) ��
 0j(0)�� j(0)��� � j 
	0(0)��	(0)� j= 1� �:In onlusion, if a quantum protool with loal random variables and measurementsis onealing against Bob, given that Bob has an unlimitedly powerful quantum mahine,then it is not binding when Alie has an unlimitedly powerful quantum mahine. In fat,as all of these loal lassial values an be puri�ed by quantum mahine, f. Figure 4.3, itis required to analyze the protool in the puri�ed two-party model where the omputationsbeome quantum deterministi. The omputation with lassial variables and measurementsof one user is as throwing some loal systems away from the global puri�ed model, an onlyause losses of information and never help that user.However, the hoie for values of seret variable is subjetively random, not objetively,i.e. user X is free to hoose the seret in Eq. (7.3) as any jii, even as any probabilitydistribution P for a puri�ation PipP (i) jiiDX jiiX . A onrete analysis of a mental gameon Bob's serets will be provided in Setion 7.3.82



7.1. Reinterpretation for No-go Theorems7.1.2 Augmented model purifying lassial messagesAbove, we showed that loal random variables and private measurements an be puri�ed inAlie's and Bob's quantum mahine. And in suh a ase, the bit ommitment is impossiblebeause of a property of two-party pure states. Moreover, Bob's honest strategy, that doesnot take the puri�ation step, and does not help to eliminate Alie's heating strategy thatpuri�es all of Alie's loal random variables and measurements.However, in a general protool, Alie has to do the measurements beause of thepresene of a lassial hannel. As measurements \an never help a heater" [GL00℄, why themeasurements for making lassial messages do not prevent Alie from heating?Mayers' proof ould respond to this question. By the same arguments as above,Mayers pointed out that Alie and Bob may purify all measurements exept for makinglassial messages. And the protool on�guration is projeted to a ollapsed state, indexedby the exhanged lassial message and then known by both Alie and Bob. The onealmentand binding are then treated by the no-go theorem for bit ommitment on this sub-protoolon�guration whih is a pure state, f. Setion 4.4.2.In the sequel, we will interpret the lassial ommuniations in a faithful puri�edmodelby the onepts of deoherene in quantum measurements for making exhanged messages.This makes us one more return to a global model purifying all lassial messages exhangedbetween Alie and Bob. In this model, the average parameters for onealment and bindingare more relaxed than in Mayers' ase, and thus more general.It is natural to think that in reality a lassial hannel is oupled with the environ-ment where the deoherene is so strong that the messages transmitted on the hannel aremeasured by a CNOT-like gate, opied, and ampli�ed by an in�nite quantum systems in theenvironment, i.e. a basis qubit jii beomes jii 
 jiiE [Zur91, BS98℄.In [Yao95℄, Yao de�ned a quantum two-party protool as a pair of quantum mahinesinterating through a quantum hannel. The protool is exeuted on a joint system onsistingof Alie's mahine HA, Bob's mahine HB , and the quantum hannel HC . The exeution isalternating rounds of one-way ommuniations. For eah round, one partiipant D 2 fA;Bgperforms a unitary omputation in the joint spae of his private system HD and the messagesHC . The messages will be taken to the loation of the other for the next round, f. Figure 7.2.This model has been used as a standard for analyzing quantum ommuniations inquantum protools, e.g. the omplexity of quantum ommuniations [Kre95, dW02℄ andquantum interative proofs [Wat99℄. It was also used in the Lo & Chau's proof of theinseurity of quantum protool for bit ommitment [LC97, Bub01b℄.If we use Yao's model for two-party protools, the model should be generalized as apair of quantum mahines interating through a quantum hannel and neessarily a lassialhannel. The model onsists of two mahines HA;HB , a quantum hannel HC for bothquantum and lassial messages and a trusted measurement mahine M with anillas HE.The measurement is in fat a CNOT-like gate whose ontrolling inputs are in the spae of thesender's \lassial messages" and targets are anillas in the marosopi environment spaeHE , f. Figure 7.3. In eah ommuniation round, a partiipant D 2 fA;Bg does an unitaryomputation on HD 
 HC ; the trusted mahine applies the CNOT gate to the \lassialmessages" in HC and the environment of the lassial hannel HE. The quantum messages83



Chapter 7. No-go Theorems: Reinterpretation and Extension

UB;2
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UA;3
Figure 7.2: Quantum two-party modeland \lassial messages" in HC are taken to the other loation for the next round.But, as the quantum ommuniations do not play an important role in the proof, it isnot neessary to separate quantum ommuniation systems from quantum omputation ones.The presene of the HC would be redundant. Indeed, in [LC97℄, the authors must assumethat the hannel after the ommitment phase is in a pure state juiC . This assumption is notevident, and may trouble the readers if provided without expliation. For instane, we anuse a EPR-pair hannel for teleporting quantum states [BBC+93℄, and the EPR-pair hannelmusts be separated from the other omputational systems to guarantee that these EPR pairsare used only for the ommuniation of quantum signals by teleportation. In [Bub01b℄,the hannel systems C must be split into two parts in possession of Alie and Bob. Wewould rather faithfully onsider the ommuniation of quantum signal as quantum partilesare brought from sender's mahine to reeiver's mahine. As analyzed in Setion 4.4.1, theommuniations of quantum messages make only repartitions of quantum systems in Alieand Bob's mahines. Nevertheless, we will separately analyze the ommuniation of lassialmessages via a marosopi hannel.Suppose that the proess of ommuniation of lassial message via a lassial hannelas follows:1. The sender S 2 fA;Bg has to measure some quantum state j iAB with an apparatus84



7.1. Reinterpretation for No-go Theorems
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Figure 7.3: Quantum protool with a lassial hannelwith n degrees. This measurement will output i 2 f1; ::; ng with probability p(i) andlet the measured system in a state j iiAB :j i !Xi pp(i) j iiAB jiiS jiiE;Swhere HE;S is for the marosopi part in the measurement devie lost to the environ-ment that auses the impurity of sender's state.2. The sender sends the signal i via a marosopi hannel where the signal an be in�nitelyampli�ed by the environment E: jiiS ! jiiS 
 jiiE :3. The signal is ampli�ed, and propagates to the reeiver's devie, where the orrespondingquantum state jii will be generated for the reeiver's quantum mahine R = fA;Bg nfSg: jiiE ! jiiE 
 jiiR :Therefore, we an see this proess ats on a pure state, but in a larger spae overingAlie's, Bob's mahine and the environmental systems amplifying the signals:j iAB j0iS;R;E� ! nXi=1pp(i) jiiS jiiE� jiiR j iiAB85



Chapter 7. No-go Theorems: Reinterpretation and Extensionwhere E� denotes all systems of the environment, and S;R denote the ontrollable quantumsystems in Alie's and Bob's mahines. The initial states of systems storing the lassialmessages in this proess are not important, and denoted by j0iS;R;E�. So, by introduingthe environment systems E�, the exeution of the protool is seen as a deterministi unitaryevolution of the global three-party state lying in HA 
HB 
HE�.Here, HE� is not ontrolled by any partiipant, and the on�gurations of the protoolare not pure states lying in a two-party spae for quantum systems in Alie' and Bob'smahines anymore. Nevertheless, it's a three-party model where the systems in E� play apassive role via the CNOT gates, make us have to leave the puri�ed model, f. Figure 4.3and turn bak to the superoperator model, f. Figure 4.2.Therefore, the protool is seen as a deterministi omputation on a three-party spaeand the on�guration of the protool at any moment an be desribed by a known pure statein the form of j	(b)i = NXi=1ppb(i) jiiE� jiiA jiiB j i(b)iAB (7.8)where i is any possible lassial message, and jiiA ; jiiB appear for the fat that Alie andBob an dupliate and keep a reord of the lassial messages forever in their mahines.

F2
A BE*j1i
jNi F1Figure 7.4: Entanglement onnetions via lassial messagesFor the seurity on Bob's side, the protool has to assumeF (�B(0); �B(1)) � 1� �where �B(b) = trE�(trA(j	(b)i h	(b)j)). 86



7.1. Reinterpretation for No-go TheoremsOf ourse, Alie an only ontrol the quantum systems in his mahine HA andF (�B;E�(0); �B;E�(1)) � F (�B(0); �B(1)) (7.9)where �B;E�(b) = trA(�(b)). The inequality happens when information are lost during om-muniation via the lassial hannel. Unfortunately, the environment has only honestly am-pli�ed the signals and the equality is obtained:F (�B;E�(0); �B;E�(1)) = F (�B(0); �B(1))� 1� �beause in the desription of j	(b)i, jiiE� is exatly the same as jiiA. Therefore, there existsan unitary transformation UA suh thatj h	(0)jUAj	(1)ij � 1� �In Figure 7.4, we represent eah entanglement onnetion via a lassial message i bya line. The frontier F1 at the limit of Alie's ontrol gives Bob the same information as at F2.The lassial hannel is noiseless and does not help Bob, f. Eq. (7.9). We an reall that anoisy hannel ould enable us to build unonditionally seure primitives [Cr�e97, CMW04℄.The above puri�ed model exists only if we aept the onept of deoherene thatleads to the Many Worlds Interpretation of quantum mehanis where the pure global stateexists as the multiverse of lassial realms orresponding to the ollapsed state [Sh04℄. Thispure state may not exist in reality aording to the Copenhagen Interpretation, beause Alieand Bob should be in one of N situations, provided a ollapsed state jiiA jiiB j i(b)iAB withthe orresponding probabilities pb(i), i.e. we are provided instead a statistial ensemblefpb(i); jiiA jiiB j i(b)iABg.In that ase, Alie's average heating possibility over all ourrene of exhangedlassial messages an be measured byNXi pp0(i)p1(i)j h i(0)j hijUA jii j i(1)i j � jh	(0)jUAj	(1)ij� 1� �We see that these ollapsed states are the same as j b;i in Mayers' version for i = .The above average heating possibility of Alie suggests to extended the average onealmentfor the protool from Mayers' individual ollapsed protools asCONC 0 =X pp0()p1()FOf ourse, if we ould measure the average onealment asCHEAT 0 =X pp0()p1()j h 0; jUA; j 1;i j=X pp0()p1()F87



Chapter 7. No-go Theorems: Reinterpretation and ExtensionMoreover, as a standard, the onealment an be measured byCONC = F  X p0()�B (0);X p1()�B (1)! :Normally CHEAT 0 � CONC ([NC04℄ - theorem 9.7), but as Bob keeps a reord of las-sial message  in his quantum state �B (b) the two measures of onealment are identialCONC 0 = CONC and then CHEAT 0 = CONC.Logially, we are allowed to redue this three-party model to a pure quantum two-party model by making jiiE� disappear as this is only a redundant opy of jiiA jiiB. However,this redued pure quantum two-party model only emulates the real protools logially, notphysially. The redution ould not so be evident without a physial interpretation.7.1.3 Summary
DBClassial hannel's dies
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Figure 7.5: The global puri�ed modelIn summary, the global puri�ed model whih was obtained by the puri�ation of loalrandom variables, f. Eq. (7.5), and exhanged lassial messages, f. Eq. (7.8), an beillustrated as in Figure 7.5 whih desribes the on�guration of the protool at any givenmoment. This on�guration is in a pure state:j	(b)i =Xk;i;jppb(k; i; j) jkiABE� jiiDA jjiDB j k;i;jiABThe exeution of the protool is a sequene of deterministi unitary transitions betweensuessive on�gurations. It is a parallel exeution of many honest shemes. For instane,the real on�guration of the protool orresponding to Alie's private outome i, Bob's privateoutome j and exhanged lassial message k is represented by the bold line in the �gure.As Alie and Bob have the possibility to keep their dies in their quantum mahines,we would throw DA to A and DB to B and the no-go theorem is applied to the model asanalyzed above. 88



7.2. Extensions of the No-go TheoremsNote that, if the puri�ation of loal variables jii and jji is really possible as Alie'sand Bob's throw the private dies DA;DB to their quantum mahines, the puri�ation of ex-hanged lassial messages jki is more abstrat. It is a quantum parallelism of ollapsed oun-terparts orresponding to exhanged lassial messages as in Mayers' interpretation [May97℄:the on�guration orresponding to the lassial message k lies in the region marked by thedot line in Figure 7.5.Nevertheless, this global puri�ation desribes the real exeution of a protool if theNature follows the theory of Deoherene and Many Worlds Interpretation. In any way, it isa onvenient model for analyzing the average values of onealment and binding of generalprotools with lassial ommuniations.7.2 Extensions of the No-go TheoremsWe fall into the same situation as in the lassial world sine lassial protools were alsoimpossible. We ould be satis�ed to use a trusted third party for unonditionally seureomputations. It is trivial when we have a trusted third party for implementing these pro-tools. For instane, in an oblivious transfer protool, Alie sends b0; b1 and Bob sends  toTrent who is honest; Trent sends b to Bob. We all this as a trusted two-party orale model,i.e. we onstrut a trusted two-party iruit for any desired omputation, with some inputsfrom Alie and Bob, and some outputs bak to Alie and Bob. The exeution time of theomputation done by the orale is an elementary unit, and we an onsider as it immediatelyreturns the results to the partiipants.In this Setion, we present an extension of the impossibility of quantum bit ommit-ment and oblivious transfer for some partiular two-party orale models.7.2.1 Short-Term OraleDe�nition 7.1. We de�ne a Short-Term Orale (ST-O) as a trusted two-party orale thatimplements any spei�ed algorithm, using some loal variables. At the end of the omputation,the orale splits all the �nal values of all variables, inluding loal one, and sends bak onepart to Alie, one part to Bob.For instane, a simple lassial iruit for oblivious transfer with 2 input wires fromAlie for fb0; b1gA, 2 input wires from Bob for f; xgB , is built with logi gates for thetransition fb0; b1gAf; 0gB ! fb0; b1gAf; bgB (7.10)and redirets output wires A to Alie, B to Bob. The input wire initialized to 0 is for Bobstoring the reeived bit.A quantum ST-O is illustrated as in Figure 7.6: it reeives quantum signal for inputsfrom Alie and Bob; initializes neessary loal variables to j0i; applied the required ompu-tation to these inputs; and at the end splits all of the outputs, inluding the loal variables,into two parts, redirets one part to Alie, and one part to Bob.We an extend the no-go theorems to a more general quantum quantum based onST-O: 89
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Figure 7.6: The quantum Short-Term OraleTheorem 7.1 (Extension of no-go theorems). We annot build seure Quantum bit ommit-ment, oblivious transfer protool based quantum ST-Os.Proof. (Sketh). In fat, when the orale uses only pure states as loal input, and immediately,splits and sends all of the qubits that partiipate to the omputations to Alie and Bob,the global state at any onsidered moment is in some known pure state, aording to thealgorithm, in a two-party spae relating only Alie and Bob sides. Therefore, the no-gotheorems remain valid.For example, we prove the impossibility of one-sided seure omputation. As shown inSetion 7.1, the average of seurity and heating possibility of general protools with randomvariables, serets variables, and lassial ommuniations, ould be analyzed in a deterministipuri�ed model. It is then suÆient to prove the theorem for this redued model.We start with Eq. (4.4). Attahing a pure state j0iA0B0 , loally prepared by the orale,the initial state is ��u0�in = 1pnXi jiiP 
 jiiA 
 jj1iB 
 j0iA0B0 �At the end of the omputation, with help of the orale, the ombined system is in statejvj1i = 1pnXi jiiP 
 U(jiiA 
 jj1iB 
 j0iA0B0)where system A0 is set to A, system B0 is set to B after the split. Therefore, the remainingarguments of Lo's proofs an be followed, f. Setion 4.4.1.90



7.2. Extensions of the No-go Theorems7.2.2 Trivial Orale ModelIn our interpretation of MLC nogo theorems, we disovered that quantum bit ommitmentand oblivious transfer are impossible even with the presene of an unontrollable third partysystems suh as the marosopi hannel. The marosopi hannel for Alie and Bob om-muniating lassial information plays the role of an trusted orale whih publily measuresthe quantum states in Alie and Bob mahines. The measurements for making lassial mes-sages are indeed non information-erasing in the joint view of Alie and Bob. We an extendthe no-go theorems to quantum protools based on suh trivial orale.De�nition 7.2. We de�ne a Quantum Trivial Orale as a trusted two-party orale whihan implement the omputation of any two-party funtion. The orale an be oupled withan environment quantum system O unontrollable by Alie and Bob. The orale does anymeasurement in publi, i.e whenever the orale throws some information to O, it makes twoopies of the information, and sends one to Alie, one to Bob.Then, more generally:Theorem 7.2 (Extension of no-go theorems). We annot build seure Quantum bit ommit-ment, oblivious transfer protool based on Quantum Trivial Orales.For the sketh, we an throw all of systems in O to the global third party environmentE�, then the global on�guration of any protool based on trivial orales at any moment isof the same form as Eq. (7.8):j	i = NXi=1ppb(i) jiiE� jiiA jiiB j iiAB (7.11)In this three-party model involving Alie's mahine, Bob's mahine and the systems in E�,at any time the global state of a protool an be desribed by the form as in Eq. (7.11), andthus� The systems in E� do not hide information from Bob in a bit ommitment sheme. Itould be then seen as a two-party model HA
 (HE�
HB) where HE�
HB is for whatBob an learn about Alie's seret and HA is for what Alie an fully ontrol to heat.� The systems in E� do not hide information from Alie in an oblivious transfer sheme.It ould be then seen as a two-party model (HA 
HE�)
HB where HA 
HE� is forwhat Alie an learn about Bob's seret and HB is for what Alie an fully ontrol toheat.7.2.3 A ase-studyLet verify a quantum ST-O for implementing oblivious transfer protool with some familiarquantum gates. 91



Chapter 7. No-go Theorems: Reinterpretation and ExtensionInspired from Bennett et al. [BDSW96℄, we use the notations:��� e00E = j�+i = (j00i+ j11i)=p2;��� e01E = j��i = (j00i � j11i)=p2;��� e10E = j	+i = (j01i+ j10i)=p2;��� e11E = j	�i = (j01i � j10i)=p2�Our ST-O uses three loal qubits. The �rst and the seond loal qubits are preparedin entangled state ��� e00E. The third qubit is initialized to j0i.Let b0; b1 be the two bits that Alie want to send and  be Bob's hoie. The trustedparty does a ontrolled � rotation Rb0b1 on the �rst qubit, aording to b0; b1:R00 = I;R01 = �z; R10 = �x; R11 = �y�The �rst and seond qubits are obtained in state ���gb0b1E. Next, in ase  = 1 the trustedparty applies the bilateral �=2 rotation By to the �rst and seond qubits [BDSW96℄:��� e00E!By ��� e00E ;��� e01E!By ��� e10E ;��� e10E!By ��� e01E ;��� e11E!By ��� e11E �The trusted party applies then the CNOT gates omputing the parity of the �rst and theseond qubits and the target is the third qubit. Then, the trusted party undoes the rotationBy ontrolled by  and the bilateral rotation Rb0b1 . The omputation done by the ST-O is aquantum iruit ating on 6 qubits: two for Alie's inputs, three for the loal qubits, one forBob's input. Finally the ST-O splits the outputs ends bak the two �rst qubits to Alie andfour last qubits to Bob, f. Figure 7.7.Simply speaking, if Alie and Bob are subjeted to send b0; b1;  to T as lassialsignals jb0i ; jb1i ; ji 2 fj0i ; j1ig, the quantum ST-O implements a O-OT gate:jb0b1iA ��� e00ET j0iT jiB !Rb0b1 jb0b1iA ���gb0b1ET j0iT jiB!By jb0b1iA ���b̂b1�ET j0iT jiB!CNOTs jb0b1iA ���b̂b1�ET jbiT jiB!By ;Rb0b1 jb0b1iA ��� e00ET jbiT jiB!split jb0b1iA ��� e00EB jbiB jiB �92



7.2. Extensions of the No-go TheoremsAlieRb0b1 Rb0b1ByByj�+iTjb0b1iA
j0iTjiB BobFigure 7.7: A Short-term Orale for O-OT protoolIn ase Alie and Bob ommuniate with ST-O via quantum hannels, they an send quantuminputs diretly. Suppose that Alie prepares inputs as a superposition12(j00i+ j01i + j10i+ j11i)�The global input state is thenjini = 12(j00iA + j01iA + j10iA + j11iA) ��� e00ET j0iT jiB �If Bob sends ji = j0i then the omputation isjini !Rb0b1 12 hj00iA ��� e00ET + j01iA ��� e01ET + j10iA ��� e10ET + j11iA ��� e11ET i j0iT j0iB!CNOTs 12 hj00iA ��� e00ET j0iT + j01iA e01T j0iT + j10iA ��� e10ET j1iT + j11iA ��� e11ET j1iT i j0iB!By;Rb0b1 12 h(j00iA + j01iA) ��� e00ET j0iT + (j10iA + j11iA) ��� e00ET j1iT i j0iB!split 12 h(j00iA + j01iA) ��� e00EB j0iB + (j10iA + j11iA) ��� e00EB j1iBi j0iB �If Bob sends ji = j1i then the omputation isjini !Rb0b1 12 hj00iA ��� e00ET + j01iA ��� e01ET + j10iA ��� e10ET + j11iA ��� e11ET i j0iT j1iB!By 12 hj00iA ��� e00ET + j01iA ��� e10ET + j10iA ��� e01ET + j11iA ��� e11ET i j0iT j1iB!CNOTs 12 hj00iA ��� e00ET j0iT + j01iA ��� e10ET j1iT + j10iA ��� e01ET j0iT + j11iA ��� e11ET j1iT i j1iB!By;Rb0b1 12 h(j00iA + j10iA) ��� e00ET j0iT + (j01iA + j11iA) ��� e00ET j1iT i j1iB!split 12 h(j00iA + j10iA) ��� e00EB j0iB + (j01iA + j11iA) ��� e00EB j1iBi j1iB �93



Chapter 7. No-go Theorems: Reinterpretation and ExtensionThe partial on�gurations are then�A0 =0BB�14 14 0 014 14 0 00 0 14 140 0 14 141CCA ; �A1 = 0BB�14 0 14 00 14 0 1414 0 14 00 14 0 141CCAWe see that the redued density matries at Alie's loation are di�erent for the two ases,�A0 6= �A1 , and so  is not seure against Alie. For instane, Alie an measure the �rstand the seond qubit with the projetion (h00j � h01j + h10j � h11j)=2, and has a nonzeroprobability of getting a positive result when  = 1.
ST-O

jb0b1iAj�+iTj0iTjiBj000iM

Alie

M
Bob

Figure 7.8: Classial hannels hiding informationWe reonsider the ase where Alie and Bob ommuniate with the ST-O via lassialhannels. It is done as though the quantum hannels are equipped with measurement deviesas in Figure 7.8. The inputs will be measured and projeted onto the omputational basis.Using the de�ned model for the lassial hannel, Alie sends her inputs throughCNOT gates whose targets are in the measurement mahine M of the lassial hannelbetween Alie and the ST-O. The output is entangled with M . In ase Alie prepares anysuperposition of inputs a j00i+ b j01i+  j10i+ d j1i, the �nal states of the omputations for = 0 and  = 1 arejout0i = (a j00iA j00iM + b j01iA j01iM ) ��� e00EB j00iB + ( j10iA j10iM + d j11iA j11iM ) ��� e00EB j10iB ;jout1i = (a j00iA j00iM + b j10iA j10iM ) ��� e00EB j01iB + ( j01iA j01iM + d j11iA j11iM ) ��� e00EB j11iB :The redued matries of three qubits at Alie loation are gained by traing out M part andB part, and beome �B0 = �B1 = 0BB�jaj2 0 0 00 jbj2 0 00 0 jj2 00 0 0 jdj21CCA :
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7.2. Extensions of the No-go TheoremsThus, the protool is seure against Alie. By the similar analysis, we see that the protool isseure against Bob heating. In fat, the deoherene on the lassial hannel between Alieand the ST-O reates an entanglement with the environment M whih hides informationfrom Bob, while the deoherene on the lassial hannel between Bob and the ST-O reatesan entanglement with the environment M whih hides information from Alie. The lassialhannels do not publi measurements any more.7.2.4 Coin Flipping based protoolsAs a orollary of Theorem 7.2, we onlude thatCorollary 7.1. Coin Flipping based Quantum Bit Commitment and Quantum ObliviousTransfer are impossible.In [Ken99℄, Kent showed a similar result. In his paper, he established a relativistmodel to implement oin ipping. With an assumed quantum trusted party, we made themodel more omprehensible from a non-relativist point of view.Proof. In an indiret manner, we an state that oin ipping is weaker than bit ommitmentand oblivious transfer. Indeed, we suppose that Alie and Bob have aess to a ST-O thatreates a pair of qubits in Bell state j�+i = (j0iA j0iB+ j1iA j1iB)=p2 and sends eah part toa user. With suh a ST-O, Alie and Bob have a fair quantum oin that an realize lassialoin ipping: Alie and Bob measure j�+i in the same basis fj0i ; j1ig to share a randombit. However, quantum bit ommitment and oblivious transfer are not realizable with thisST-O, as shown by Theorem 7.2.We make here a more diret proof for protools based on lassial oin ipping. Sup-pose that Alie and Bob have aess to a subroutine that an generate lassial random oinsand send two opies to Alie and Bob. The lassial oins is then an probabilisti ensembleof j0iA j0iB ; j1iA j1iB with probabilities 1=2; 1=2:�AB = (j0A0Bi h0A0B j+ j1A1Bi h1A1B j)=2The oins an be represented by a pure state in an augmented model as though they areentangled with a third-party system T .jCi =p1=2(j0iA j0iB j0iT + j1iA j1iB j1iT )Suppose that a quantum protool implemented between Alie and Bob requires Alie and Bobto share random oins at some steps. Reall that just before the �rst all to the subroutine,the quantum on�guration of the protool, realized by normal ommuniation between Alieand Bob, is in a state of the penalized form j	i =PNi=1ppb(i) jiiE� jiiA jiiB j iiAB , f. Eq.(7.8). After reeiving a oin, the on�guration beomesj	i 
 jCi = Xi=1::N;j=0::1ppb(i)=2 jijiE� jijiA jijiB j iiABwhere T is thrown to E�. We see that this formula is also of the penalized form, f. Eq.(7.11). Therefore, by indution, with any suessive unitary transformation on A;B ands95



Chapter 7. No-go Theorems: Reinterpretation and Extensionrequest for random oins to the orale, the global on�guration of the protool remains in thepenalized form. Therefore, quantum bit ommitment and oblivious transfer based on oinipping are impossible.To one who stiks to the Copenhagen Interpretation of quantum mehanis, the quan-tum on�guration of joint omputation just before a request to the oin ipping subroutineis a projeted state j iiAB whih is known to Alie and Bob aording to the exhanged mes-sages i. Now, the oin ipping subroutine provides either j0iA j0iB or j1iA j1iB with equalprobability. However, one the oins are provided, Alie and Bob know whih oin they have,and the global state is aordingly a known state j iiAB 
 j0iA j0iB or j iiAB 
 j1iA j1iB.And the no-go theorems an be applied to eah of these ollapsed pure states, as in Mayers'proof [May97℄.7.3 Subjetive Serets and a Game on Seret Parameters ?Reall that, in the augmented model purifying Bob's private lassial variables, Bob's seretvariables are analyzed by assigning to them a probability distribution, f. Eq. (7.3), normallya at distribution. But these variables are \subjetively" random, not \objetively" randomas in a measurement in Eq. (7.4). We onsider only the dies in DB that purify these\subjetively" random variables, and the dies purifying \objetively" random results ofmeasurements are thrown to B. DA is also thrown to A as Alie keeps all of her dies in thequantum mahine. The omputational on�guration in Eq. (7.5) is thenj	(b)i = NXj=1p1=N jjiDB j j(b)iAB ;where N is the number of all possible values of Bob's seret variables used in the omputation.The theorem for deterministi model assumes that we an �nd a unitary UA for Alie heatingwith threshold 1� �: Xj 1N j h j(0)jUAj j(1)ij � 1� � (7.12)However, in reality Bob is free to hoose these variables, i.e. Bob an hoose anydistribution over f1; :::; Ng. The on�guration would be in a statej	!(b)i = NXj=1pp!(j) jjiDB j j(b)iABwhere ! 2 
 � [0; 1℄N is for denoting the probability di�usion over f1; :::; Ng reated by Bob.Of ourse, for the seurity on Bob's side, the protool must hold8!; F (�B! (0); �B! (1)) � 1� �;96



7.3. Subjetive Serets and a Game on Seret Parameters ?and then for eah deision of Bob on !, Alie has a orresponding heating unitary transfor-mation UA;!: Xj p!(j)j h j(0)jUA;!j j(1)i j � jh	!(0)jUA;!j	!(1)ij� 1� �: (7.13)The question is: \Is there a protool that is seure against Bob, but Alie an not �nd theuniversal heating unitary beause of !?"When the protool is ideally seure, then the answer is No, beause Alie's transfor-mation is universal, f. Eq. (7.7). For non-ideal ase, inspired from [Lo97℄, we treat also twofollowing ases.7.3.1 Case 1: N� = Æ � 1We see that, Alie's heating transformation for the at distribution satis�es Eq. (7.12).Therefore, for all seret value j,j h j(0)jUAj j(1)ij � 1�N� = 1� Æand then, for any distribution used by Bob, the Alie's possibility of heating is:Xj p!(j)j h j(0)jUAj j(1)i j � 1� Æ:Cheung showed also a similar result [Che06℄.7.3.2 Case 2: �� 1 � N�It may happen that, for any transformation UA;! for Alie, there exists a distribution !0 suhthat Bob an detet Alie heating with a signi�ant probabilityj h	!0(0)jUA;! j	!(1)i j�Xj pp!0(j)p!(j)j h j(0)jUA;!j j(1)i j� 1; (7.14)in ontrast to Eq. (7.13). If suh a protool exists, satisfying both Eqs. (7.13) and (7.14), weare in a non stable game on Bob's seret variables:� If Alie �xes a transformation UA;!, then Bob an hoose an distribution !0 to detetAlie's heating with a signi�ant probability, f. Eq. (7.14). There may be a olletionf!1; ::; !kg for Bob.� But, if Bob determines his distribution !0, Alie an �nd a heating transformationUA;!0 with high probability of not being deteted by Bob, f. Eq. (7.13). Even if Bob97



Chapter 7. No-go Theorems: Reinterpretation and Extensionuses a random olletion of distribution f!1; ::; !kg, Alie an treat it as a pure stateby onsidering that Bob's introdue some extra dies t:j0i = kXt=1p1=k jtiD 
 j	!t(0)ij1i = kXt=1p1=k jtiD 
 j	!t(1)iAnd as the protool must be seure against Bob, i.e. F (trA(j0i h0j); trA(j1i h1j)) � 1��,Alie an �nd an unitary U�A with the average of possibility of heatingXj  kXt=1 p!t(j)=k! j h j(0)jU�Aj j(1)i j � j h0jU�Aj1i j� 1� �: (7.15)In fat, the heating transformation UA;!� for !� being the mean distribution of !1; ::; !k,i.e. p!�(j) =Pkt=1 p!t(j)=k, satis�es Eq. (7.15) and an be used as U�A.Nevertheless, we do not know whether or not a quantum protool exists for suh anon stable mental game on seret variables, satisfying that for all distribution !� there exists a transformation UA suh thatXj p!(j)j h j(0)jUA;!j j(1)i j � 1� �� and for this UA, there exists a distribution !0 suh thatXj pp!0(j)p!(j)j h j(0)jUA;!j j(1)i j � 1:7.3.3 SummaryWe see that in the ase where Bob has a seret S for whih Bob hooses the value from a setf1; :::; Ng, Alie an assign to this variable a at distribution, i.e. pX(i) = 1=N , and emulatethe puri�ed protool to �nd a heating unitary transformation as in Eq. (7.12). When itrequires that the onealment is ideal, then Alie's heating is universal for all values of Bob'sseret. However, we are normally in a non-ideal ase where the onealment is permitted tobe measured by 1�� with a negligible value of � > 0. Here, we say that the protool is nearlyideal if N� � Æ � 1. In suh a ase Alie's heating transformation is also universal withwhih Alie has a heating possibility in order of 1�Æ for any hoie of seret S. Nevertheless,when the number of possible values of S is large in order of �, i.e. N� � 1, then there willbe an open problem on the possibility of a non stable game on Bob's hoie of the seret.The response to the question that whether suh a game really exists should require furtheronsideration. 98



7.4. Disussion on Irreversibility and Reversibility7.4 Disussion on Irreversibility and ReversibilityThe topis of reversible omputation are mostly studied in relation with Landauer's prinipleof thermodynamial reversibility when resolving the paradox of \Maxell's demon" aboutwhether an intelligent being ould violate the seond law of thermodynamis: the erasure ofone bit of information in a omputational devie is neessarily aompanied by a generationof kT ln 2 heat [Lan61, Ben82, Bub01a, Ben03℄.A remarkable result from Theorem 7.2 is that, unonditionally seure oblivious transferand bit ommitment an only be made with help of a trusted third party whih hides someinformation from Alie and Bob. Theorem 7.2 implies that we have to have a trusted thirdparty whih auses an logial erasure of information and so, similar to Maxell's Demon,generates heat, f. Figure 7.9. It is onvenient to see that the third party has limitedresoure, and if Alie and Bob invoke the request for many times, it begins to erase itsprivate memory by reset all to j0i or to overwrite its memory and thus generate heat.Corollary 7.2 (Irreversibility of OT and BC). Any quantum implementation unonditionallyseure oblivious transfer and bit ommitment requires erasure of information from the jointviews of Alie and Bob, and thus auses thermodynamial reversibility and leads dissipationof heat to the environment.It was shown that any logially reversible omputation ould be thermodynamiallyreversible and implemented without heat dissipation, and vie versa, any thermodynamiallyreversible omputing proess must be logially reversible [Ben82, Ben00℄. Moreover, it wasshown that any omputation ould be logially reversible, by Turing mahine model [Ben73℄or by logi iruit models [Tof80, FT82℄.This result is intuitively onformed to the impossibility of implementation of oblivioustransfer and bit ommitment, as the all of two-party protools are logially invertible:� In a lassial protool, Alie and Bob an do any loal omputation reversibly [Ben73℄,for instane by using universal reversible gates instead of normal irreversible gates AND,OR, ... [Tof80, FT82℄. Therefore, the joint omputation is a reversible proess over allvariables at Alie and Bob loations.� In a quantum protool, we expet that measurements will ahieve some erasure ofinformation. However, Alie and Bob an keep all of omputations at the quantumlevel without measurement even the �nal measurements beause in an ideal protool,the users should learn the results with ertainty.Then in the end of the protools, Alie and Bob an make a opy of the results, and undo allof the operations to reestablish the thermodynamial ondition. So the impossibility of suha non-erasing protool for oblivious transfer and bit ommitment is intuitive.Of ourse, when the users deny this behavior by throwing private information thenthe erasure appears and we have an oblivious transfer protool. For instane, the privatemeasurements for making Alie's and Bob's private lassial variables ould lead to a logialerasure of information, and therefore we an implement oblivious transfer by foring Bob tomeasure the quantum signals [Cr�e94, Yao95℄.99



Chapter 7. No-go Theorems: Reinterpretation and ExtensionObviously, it is not that the erasure of information is suÆient for implementing seureomputations. As analyzed in Setion 7.1.2, the measurements for making lassial messagesan be logially seen as unneessarily opying some information to the external environment.In real protools, we make lot of unneessary ampli�ation of information to the environmentand ause unneessary dissipation of heat.
BobAliceFigure 7.9: Seure two-party omputations must be logially information-erasing?A question is that: Are proesses implementing unonditionally seure oblivious trans-fer and bit ommitment logially irreversible?An intuitive response from Corollary 7.2 is Yes. There are many positive symptomsfor this answer. For instane, in a general two-party quantum protool with lassial ommu-niation, the global proess is then logially reversible, though physially irreversible as Alieand Bob annot ontrol the external environment and then annot implement bit ommit-ment and oblivious transfer. Impliitly, Rabin's oblivious transfer is equivalent to a logialerasure hannel. Thus, any logial proess that emulates Rabin OT would require the logialerasure of information. And oblivious transfer may not be implemented by any logiallyreversible omputing proess in the joint view of Alie and Bob.However, it's interesting to analyze the two-party orale based protools.For protool using quantum orales, the response omes immediately from Corol-lary 7.2. We see that quantum two-party orale based protools for oblivious transfer and bitommitment required some entangled information, hidden or erased from the views of Alieand Bob.We realize surprisingly that we an build a lassial orale for oblivious transfer, andso bit ommitment, an be made with unitary transitions. Indeed, the orale implementingoblivious transfer an be made with a unitary one:fb0; b1gAf; xgB ! fb0; b1g1f; x � bgBwhere x is an auxiliary input for Bob to store the reeived bit. This transition is one-to-oneand so there exists a reverse transition for it. Suppose that Alie and Bob send the inputsto the orale, get the outputs, make a opy of the result, and send the outputs to an otherorale with the reverse transition whih would reestablish the thermodynamial ondition forthe �rst orale. So, ould Alie and Bob realize oblivious transfer and bit ommitment for100



7.5. Conluding Remarksfree, i.e. without dissipation of heat, by this way? Could lassial world beats the quantumone in this thermodynamial battle?The response'd rather be no, beause the ultimate laws of marosopi behaviors aregoverned by quantum theory. Here, we must assume that the lassial orale reeives lassialsignals and treat them by a unitary transformation. In other words, the lassial orale isneessarily lassial, ating in the lassial world, not quantum superposition one.However, a proess is neessarily lassial only if it is ollapsed to the atual state ofthe environment. From this quantum view, a logial neessarily lassial bit is neessarilya binary state entangled with and ampli�ed by the environment. As in our Case-Study, f.Setion 7.2.3, a lassial orale an be build from a quantum one if it observes by measuringthe signals. This observation leads some information to be stored somewhere in the memoryof the orale, and must be therefore erased as in the quantum orale.7.5 Conluding RemarksIn summary, we have proposed a detailed interpretation of general quantum two-party proto-ols where the exeution is seen as a deterministi unitary evolution of a pure state overingall quantum systems inluding Alie's and Bob's quantum dies purifying random variablesand loal measurements, and environment's dies when a marosopi hannel is used fortransmitting lassial information.Thus, the global state is a pure three-party state, not two-party state, where theenvironment's dies are not ontrollable by neither Alie nor Bob. However, this impuritydoes not help to seure bit ommitment and oblivious transfer protools. Indeed, the three-party state is in the formj	iABE� = NXi=1ppb(i) jiiE� jiiA jiiB j iiABTherefore, the environment does not hide information from Bob in a bit ommitment protool,and from Alie in an oblivious transfer protool. The state an be then seen as a two-partyone where E� is given to the observer, while the other part an be fully ontrolled by theheater.Obviously, seure two-party omputations' primitives an be trivially built with helpof a trusted third-party, onsidered as two-party orales. However, we have shown that the no-go theorems an also be applied to protools that use trusted quantum orales that omputeany two-party funtion for Alie and Bob but splits and redirets all output quantum statesto Alie and Bob, either without measurement at all or with publi measurements i.e. themeasurements outomes are known by Alie and Bob. Nevertheless, oin ipping belongsto this lass of trivial orales. These works implied that two-party orales for implementingunonditionally seure omputations are required to hide or erase information and onsideredas dissipation of heat.One more, we have to be satis�ed by the fat that the implementation of two-party se-ure omputation's primitives an only be made with either onditional seurity that is basedon assumptions on the limitation of the omputing model [DFSS05, KKNY05, LMF06℄, or101



Chapter 7. No-go Theorems: Reinterpretation and Extensionwith assumptions about trusted third-parties suh as fair noisy ommuniation media [Cr�e97,CMW04℄.
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Chapter 8ConlusionIn this thesis, we have investigated the onstrution of oblivious transfer, the entral primitiveof seure two-party omputations, in the frameworks of noisy models and quantum mehanialmodels.The �rst part of the thesis is inspired by the framework developed by Crepeau, Mo-rozove et al. for building oblivious transfer as erasure models from noisy hannels. We havemade a ontribution to this framework with the introdution of Binary Symmetri Multi-Error-Rate Channel whih is a general erasure model intermediating between noisy hannelsand oblivious transfer. Indeed, we an exploit a gap between a set of small error rates, asgood set, and a set of greater error rates, as bad set, of the BSMERC to eÆiently buildoblivious transfer. This extended approah helps to make use of the probability distibutionof error rates for gaining a more eÆient onstrution of oblvious transfer than the existingones based only on the gap between the minimal error rate as the best, and the other greatererror rates.Moreover, we an go further to onsider the onstrution of BSMERC from DMC:what input pair x1; x2 of the DMC should be used for implementing oblvious transfer withoptimal eÆieny? Here, x1; x2 would be seleted for good distribution of error rates of theBSMERC and for eÆient veri�ation of Alie honesty via statistial test [Mor05℄.However, this approah to suh improvement of eÆieny is ad-ho and depends onthe probability distribution of error rates, f. Chapter 5. An open problem is left for furtheronsideration of the optimal onstrution of oblivious transfer protool from the BSMERC.We are motivated to do further researhes on the eÆieny optimization in this framework.Besides, we expet that, the onsideration of this general intermediate model will be extendedto ontinuous error-rate set BSMERC and then to general noisy ontinuous alphabet hannels.It also requires further works to be investigated for quantitative analysis of implementationof oblivious transfer from these ontinuous hannels.Relatedly to this framework of noisy models, we proposed a ase-study on a quan-tum nonorthogonal oding with two orthogonal pure quantum states, in omparison withthe largely exploited quantum onjugate oding. We exposed that the QNOC an be usedto emulate the desired noisy model. In eah of suh emulation sheme, we analyzed the ap-pliation of quantum oherent measurements for optimal parameters for the reeiver. These103



Chapter 8. Conlusionanalyses emphasize the preaution of quantum oherent attak for seurity parameters inprotool-redution shemes whih ombine existing protools as subroutines to build othersprotools. We should onsider the seurity parameters of omposite protool under quan-tum oherent attaks whih are realized on the global quantum system on adversary side.However, the quantum oding is unfair beause the sender an hange the parameters ofthe emulated noisy models. We ould so implement only weak oblivious transfer with non-ideal parameters. Nevertheless, while proposing a mehanism for foring Alie to behave assemi-honest, based on oin ipping and bit ommitment subroutines, we presented also howa quantum attak using two-party entanglement ould be seen as quantum semi-honest butnot lassially semi-honest. Thus, our proposal for oin-ipping based protool is awed andthe one for bit-ommitment based protool is seure.The seond part of this thesis is inspired by the no-go theorems of building quantumoblivious transfer and bit ommitment protools, issued by Mayers and Lo-Chau [May97,LC97, Lo97℄. We proposed a reinterpretation of the quantum model for two-party protools,larifying the problems of private lassial variables and the ommuniation of lassial infor-mation via a marosopi hannel. We exposed that the general model is indeed a three-partysystem onsisting of Alie's mahine, Bob's mahine and the environment systems oupled tothe lassial hannel. This protool on�guration is no more a pure two-party quantum stateto whih the theorems referred. However, the theorems remain valid on this model. Withthis faithful interpretation, we ould extend the theorems to orale based protools with someonstraint features of the orales to be used. We pointed out that if the quantum oralesdo not erase information then they annot help to build quantum oblivious transfer and bitommitment protools. Thus, oin ipping annot be used to build oblivious transfer or bitommitment protool.With these generalizations, we state that, with two-party oinsp1=2(j0A0Bi+j1A1Bi)and many-party oinsp1=2(j0A0B0:::i+j1A1B1:::i), unonditionally seure two-party bit om-mitment and oblivious transfer remain impossible. Nevertheless, we an do many interestingtasks with these oins: establishing seret key [BB84℄, reduing ommuniation ost [BW92℄,teleporting unknown quantum state [BBC+93℄, sharing serets [HBB99℄, anonymously trans-mitting information [CW05℄, ...Moreover, we ould assert that unonditionally seure oblivious transfer is by de�ni-tion an information-erasing proess whih an only be implemented with help of a trustedthird party with erasure of information, for instane noisy hannels [Cr�e97, CMW04℄. Thisresult implied a dissipation of heat to the environment in implementations of unondition-ally seure two-party omputations. Nevertheless, a lassial protool based on an oralean be logially reversible, and thus thermodynamially reversible [Ben73℄. This absurditysuggested that we have to reonsider what are neessarily lassial information and ompu-tation. An information is neessarily lassial only if it is entangled with and ampli�ed bythe environment, and thus impliitly requires to be erased.After all, this thesis has been primarily onerned with the physis of information andomputation, a new inspiring disipline for omputer sientists and physiists.\Information, after all, is something that is enoded in the state of a physialsystem; a omputation is something that an be arried out on an atual physially104



realizable devie. So the study of information and omputation should be linkedto the study of the underlying physial proesses." [Pre℄The formalism of omputational proesses in the physial framework beomes less ab-strat than the lassial one suh as Turing mahine. Indeed, any omputation is a transitionfrom an initial state to a �nal state of a physial system, f. Figure 3.1 on page 21. This ouldhelp us to remove the assumption about the omputing model based on Turing's abstratmahine. This physial-like formalism makes thus a �rmer foundation for omputer siene.Partiularly, when the physial devies' diameters attain the atomi sale, their be-haviors should be quantum mehanial. The works at this interfae of quantum physis andinformation is promotive for both information proessing and ommuniation. It lets opendoors into fruitful new disiplines of Algorithmis, Computational Complexity, ComuniationComplexity, Information Theory, ... that would welome an motivated reseahers.
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