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Abstract—We propose a method for extracting an errorless
secret key in a continuous-variable quantum key distribution
protocol, which is based on Gaussian modulation of coherent
states and homodyne detection. The crucial feature is an eight-
dimensional reconciliation method, relying on the algebraic
properties of octonions. By using this coding scheme with an ap-
propriate signal-to-noise ratio, the distance for secure continuous-
variable quantum key distribution can be significantly extended.

I. INTRODUCTION, CONTEXT AND PREVIOUS WORK

Quantum key distribution (QKD) schemes [1] have led
to the following scenario: Alice and Bob each are provided
with correlated random variables, X and Y , respectively, and
wish to extract a random secret key by discussion over a
public channel, in presence of an eavesdropper, Eve, who is in
possession of a third correlated variable Z . The key extraction
strategy is classically split into two steps. In the first step,
Alice and Bob, reconcile their data, i.e., Alice sends some
extra public information to Bob, which, with the help of Y ,
enables Bob to recover X . In the second step, the privacy
amplification phase [2], Alice randomly chooses, and publicly
communicates to Bob, a compression function g, picked from
a carefully prearranged set. The shared secret is then g(X).
When X, Y and Z are classical variables, the size of the se-

cret can in principle be arbitrarily close to I(X ; Y )−I(X ; Z)
[3]. In a more general setting, the variable of Eve should be
considered to be a quantum state instead of a classical variable,
and the size of the secret becomes I(X ; Y )−S(X ; Z) where
S(X ; Z) refers to the quantummutual information [4] between
X and the quantum state Z . This formula has also been proven
to hold when X and Y refer to continuous variables [5], [6].
One might wonder why two different measures of information
are needed to express the size of the secret. The reason for this
comes from the different assumptions made on Alice’s, Bob’s
and Eve’s capabilities: while Eve is not supposed to be limited
by any technological constraint (in particular, she has access to
a quantum memory or even a quantum computer if she wants
to), Alice and Bob live in our world and are restricted to use
only classical equipment.

In this paper, we focus on continuous-variable protocols and
more especially on the case when X and Y are Gaussian
vectors. The real challenge here lies in the reconciliation
phase, where Alice must communicate the minimum possible
quantity of information to Bob that is sufficient for him to
recover X
In the discrete setting, e.g. whenX and Y are binary strings,

it is folklore that the way to achieve reconciliation is for Alice
to send to Bob the syndrome of X for a properly chosen
linear code C [7]. By properly chosen one means a code
achieving the capacity of the channel between Alice and Bob,
i.e., whose dimension is close to but a little less than I(X ; Y ).
Bob is thus given a code CX that X belongs to (namely the
set of vectors with the same syndrome as X), and a noisy
version Y of X that is just enough for him to recover X by
decoding Y . Note that it is important to be able to measure
the information given by CX on the random variable X . To
be more accurate, one should be able to estimate the value of
S(X ; Z, CX). A possibility is to make sure that the a priori
distribution of X in the coset code CX is uniform, meaning
P (X = x | CX) = 1/2k for every x ∈ CX and where
k = dimCX . This is easily achieved by choosing the code
C randomly and independently of X . In practice we will not
choose a completely random code, but one for which we have
a practical decoding algorithm and is close enough to the
channel capacity. Fortunately, LDPC codes and turbo codes
satisfy these requirements. Note that it is not strictly necessary
for the code CX to be the coset code of some linear code C,
it is simply convenient.
In the Gaussian setting, one could in principle achieve

channel capacity by choosing for CX a random spherical
code, i.e., a set of vectors of cardinality a little less than
2I(X;Y ), lying on the n-dimensional sphere centered on the
origin and of radius ‖X‖. However we face two practical
challenges, namely decoding CX and making sure that the a
priori distribution of X in CX is uniform. Another possibility
consists in first quantizing X then using only a finite number
l of bits to describe the code containing the quantized version
of X [8]. One can show that Eve cannot gain more than l
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bits of information about X , even in a quantum context [9].
Whereas this method is particularly well suited for high signal-
to-noise ratios (SNR), it is not so efficient for low SNR, which
is problematic since it is the situation one encounters when
performing quantum key distribution (QKD) over reasonable
distances (a few tens of kilometers). In fact, we are here
particularly interested in the case where the SNR is low,
meaning that I(X ; Y ) ≤ n where n is the dimension of X
and Y .
In real-world continuous-variable quantum key distribution

schemes, two practical suggestions have been put forward
and implemented. The first scheme, slice reconciliation [8],
[10], consists in quantizing X and performs poorly at low
SNR, mainly because it breaks the Gaussian symmetry of the
problem. In the second scheme [11], [12], Alice reveals the
absolute value |xi| of each component ofX = (x1 · · ·xn). The
information is then coded in the sign of each x i. This simple
scheme suffers some limitations for a Gaussian modulation
of X since the Gaussian distribution is centered around 0
and most of the data will consequently have a small absolute
value, meaning that their sign will be difficult to discriminate.
To overcome this problem, it has been proposed to use post-
selection [12], [13] to get rid of the low-amplitude data
and only keep the more meaningful large-amplitude data.
Unfortunately, this approach has a major drawback in terms of
security since the status of the post-selected data is still unclear
and might allow Eve to implement some powerful attacks.
Here we are interested in generalizing the second scheme

in a way that does not require post-selection anymore. This
can be done by defining the code CX in two steps. First, one
defines on the sphere of radius ‖X‖ an isomorphic image
QX of the n-dimensional Hamming cube F

n
2 . Given QX ,

the channel between Alice and Bob becomes a binary input
additive white Gaussian noise (AWGN) channel. Then we are
almost back to the discrete case and the problem becomes
simply that of defining an efficiently decodable code CX ⊂
QX that comes close to the new channel (sub)capacity: in
practice an LDPC code is used. Note that if the SNR is low
enough, this subcapacity is almost equal to the capacity of the
channel, which would be attained for a Gaussian modulation.
In this setting, the new challenge is to find the best way of
defining the cube QX . We have three requirements:

• Giving QX should not leak more information on X than
is necessary, this again means that the a priori distribution
of X in QX should be uniform.

• The resulting channel capacity between Alice and Bob
should be as large as possible.

• Defining QX should be realisable in practice: actual
values of n range from 105 to 106. The reason for this is
twofold: one needs long codes to reasonably approach the
Shannon limit of the channel, and the use of long blocks
is also necessary in order to reduce the uncertainty on
I(X ; Y )−S(X ; Z) due to the estimation of the channel
parameters.

In the present work we shall study a definition of QX which

b)

x2 x2x2

x1 x1 x1

a) c)

Fig. 1. Consider two successive states X1, X2 sent by Alice: the
states really sent correspond to X1 > 0, X2 > 0. Figures a), b)
and c) show the cube QX described by Alice for three different
reconciliation protocols. a) corresponds to slice reconciliation [8],
[10]: the four states are well separated but the Gaussian symmetry is
broken, b) corresponds to the case where the information is encoded
on the sign of the Gaussian value [12]: the symmetry of the problem
is preserved but some states are very close and thus difficult to
discriminate, c) corresponds to the approach presented in this paper
where the states are well separated and the symmetry is preserved.

performs better than previous protocols at low SNR without
requiring any post-selection. The rest of the paper is organised
as follows: Section II gives restrictions on the dimension n of
the space for which efficient descriptions of cubes QX can be
done. Section III is concerned by the description of such cubes
and presents a realistic reconciliation protocol for continuous-
variable Quantum Key Distribution, whose performance is
analyzed in Section IV.

II. EFFICIENT ORTHOGONAL TRANSFORMATIONS OF R
n

The idea that we shall pursue here is best described in
dimension n = 2. Figure 1 presents an example of the
description of QX for different reconciliation protocols. One
can easily see that the best way to describeQX is to respect the
Gaussian symmetry (which translates into a spherical symme-
try) while maximizing the distances between the different code
words of CX . The natural solution is to take for QX a cube of
width 2‖X‖/√n inscribed in the sphere Sn−1(O, ‖X‖) and
containing X .
The norm of X follows a χ2 distribution with n degrees

of freedom which becomes a Dirac distribution for n � 1.
Hence, Alice can reveal the value of ‖X‖ to Bob without
any significant loss of information, or equivalently use the
normalized variable X/‖X‖ instead of X . Therefore, given
X ∈ Sn−1, one needs to define a cube QX centered on 0 and
containingX such that the a priori distribution ofX givenQX

is uniform. The easiest way to describe such a cube is simply
to describe the orthogonal transformation transporting the
canonical cube (whose vertices have coordinates ±1/

√
n) on

the considered cube. In dimension 2, this method works well
since Alice just needs to give Bob an angle in order to define
the square containingX . We are interested in generalizing this
method to higher dimensions.
The protocol would then be the following: Alice chooses

randomly one of the vertices U of the canonical cube of
R

n and gives to Bob the orthogonal transformationM(X, U)
mappingX on U . This transformation defines the cube QX . If

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1021

Authorized licensed use limited to: Telecom ParisTech. Downloaded on February 2, 2009 at 13:08 from IEEE Xplore.  Restrictions apply.



Alice has chosen U among an appropriate binary code C, then
Bob can recover U from the knowledge of Y and M(X, U).
There are many such mappings M , but one needs a mapping
easy to describe and to compute. An example is the reflection
across the mediator hyperplane of X and U . Unfortunately,
such an orthogonal transformation leaks some information
about X and U because the distribution of X givenM(X, U)
is not uniform for n > 2 due to the phenomenon of the
concentration of the measure for spheres in dimensions n > 2,
and therefore cannot be used by Alice in a QKD protocol.
A solution that does not give unnecessary information about

X is to randomly choose an orthogonal transformation with
uniform probability in the ensemble of orthogonal transforma-
tions mapping X to U . However, randomly generating such
a transformation is not doable in practice for n � 1. For
instance, generating a random orthogonal transformation on
R

n requires one to draw an n×n Gaussian random matrix and
to calculate its QR decomposition, i.e., its decomposition into
an orthogonal and a triangular matrix which is an operation
of complexity O(n3).
A practical solution involves the following. First, Alice and

Bob agree publicly on a code C, then for each word X ∈
Sn−1 sent by Alice and for each code word U ∈ C ⊂ S n−1

chosen by Alice, there should exist an continuous application
M of the variables X and U such that M(X, U) ∈ On and
M(X, U)X = U . Therefore if Alice gives M(X, U) to Bob,
she describes a cube QX containing X inscribed on the n-
dimensional sphere and the code CX is defined as the image
of C byM−1. The following theorem shows that the existence
of such an application M restricts the possible values of n to
be 1, 2, 4 or 8.
Let us first recall a result from Adams [14], which quantifies

the number of independent vector fields on the unit sphere of
R

n:
Theorem 1: For n = a · 2b with a odd and b = c + 4d, one

defines ρn = 2c + 8d. Then the maximal number of linearly
independent vector fields on Sn−1 is ρn − 1.
In particular, the only spheres for which there exist (n− 1)

independent vector fields are the unit spheres of R, R
2, R

4

and R
8, which can, respectively, be seen as the units of the

real numbers, the complex numbers, the quaternions and the
octonions.
Theorem 2: If there exists a continuous application:

M : Sn−1 × Sn−1 −→ On

(X, U) 	−→ M(X, U)

such that M(X, U)X = U for all X, U ∈ Sn−1, then n =
1, 2, 4 or 8.

Proof: The idea of the proof is to use the existence of
such a continuous function M to exhibit a family of (n− 1)
independent vector fields on Sn−1.
Let (e1, e2, . . . , en) be the canonical orthonormal basis of

R
n. For 1 ≤ i ≤ n, let ui(x) = M(en, x)ei. One has: un(x) =

x and

(ui(x)|uj(x)) = eT
i M(en, x)T M(en, x)ej = δi,j

since M(en, x) ∈ On. Then, for x ∈ Sn−1,
u1(x), u2(x), . . . , un−1(x) are (n − 1) independent vector
fields on Sn−1 and finally n = 1, 2, 4 or 8.

III. ROTATIONS ON S1 , S3 AND S7

Now that we have proved that such an application M
can only exist in R, R

2, R
4 and R

8, we will exhibit such
applications that can be described and computed efficiently
and prove that they do not leak unnecessary information to
Eve. Note that the trivial case of R for which the unit sphere
is {−1, 1} corresponds to the method where one encodes a bit
in the sign of the Gaussian variable [12].

A. Existence

Let us start with the easiest case: R2. The existence of such
an applicationM verifyingM(X, U)X = U for the unit circle
is obvious: it is simply the rotation centered on 0 of angle
Arg(U)−Arg(X) where Arg(X) denotes the angle between
X and the x-axis. An alternative way to seeM isM(X, U) =
U ·X−1 where X and U are identified with complex numbers
of modulus 1. The same is true for dimensions 4 and 8 where
S3 and S7 can, respectively, be identified with the units of the
quaternions and the octonions, and for which a valid division
exists.

B. Computation of M(x, y)

For n = 2, 4 and 8, there exists a (non-unique) family of
n orthogonal matrices An = (A1, . . . , An) of R

n×n such that
A1 = �n, and for i, j > 1, {Ai, Aj} = −2δi,j�n where
{A, B} is the anti-commutator of A and B. An example of
these families is explicitly given in Section V. The following
Lemma shows how to use such a family to construct a
continuous function M with the properties described above.
Lemma 1: M(X, U) =

∑
i=1...n αi(X, U)Ai with

αi(X, U) = (AiX |U) is a continuous map from Sn−1×Sn−1

to On such that M(X, U)X = U .
Proof: First, because of the anti-commutation property,

one can easily check that the family (A1X, A2X, . . . , AnX)
is an orthonormal basis of R

n for any X ∈ Sn−1. Then,
for any X, U ∈ Sn−1, (α1(X, U), . . . , αn(X, U)) are the
coordinates of U in the basis (A1X, A2X, . . . , AnX). This
proves that M(X, U)X = U . Finally, the orthogonality of
M(X, U) follows from some simple linear algebra.
Therefore α = (α1, . . . , αn) is sufficient to describe

M(X, U) and the computation of αi can be done efficiently
since the matrices Ai are permutation matrices with a change
of sign for some coordinates. In the QKD protocol, Alice
chooses randomly U in a finite code and gives the value of
α(X, U) to Bob, who is then able to compute M(X, U)Y
which is a noisy version of U . One should note that the final
noise is just a “rotated” version of the noise Bob has on X : in
particular, both noises are Gaussian with the same variance.
This is true because the Gaussian distribution of the noise is
invariant under orthogonal transformations.
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Fig. 2. Capacity of the Gaussian channel and subcapacities for the
different binary channels mentionned in the text: Bi-AWGN channel
(corresponding to a rotation in R

n for n � 1), ”sign coding” [12]
and the mulidimensional reconciliation based on the properties of the
octonions

C. No leakage of information
In order to prove that α = M(X, U) does not give any

information about U ∈ C (where C is the code on which
Alice and Bob agreed beforehand), one needs to show that
the a priori distribution of U given α is uniform. This is true
because X and U have uniform distributions on S n−1 and on
C, respectively, and because the function:

fU : R
n −→ R

n

x 	−→ fU (x) = α with αi = (U |Aix)

has a constant Jacobian equal to 1 for each U ∈ C. To see
this, one should note that the rows of the Jacobian matrix of
fU are the AT

i U which form an orthonormal basis of R
n.

D. Resulting channel capacity between Alice and Bob
The channel between Alice and Bob is characterized by its

signal-to-noise ratio. The capacity is achieved for a Gaussian
modulation and is given by:

C = 1/2 log2(1 + SNR).

The reconciliation schemes presented above consist in the
definition of a binary channel QX which results in a sub-
capacity for the channel. Figure 2 shows the subcapacities of
the different cubes QX . First, if QX is a real n-dimensional
cube (with width 2/

√
n), then the channel defined by the

reconciliation is the so-called Bi-AWGN channel. It is the best
binary channel one can hope for and corresponds to a rotation
in R

n for n � 1. The subcapacities of the ”sign coding”
scheme [12] and of the rotations in R

8 are also displayed,
showing the improvement brought by the method presented in
this paper for a signal-to-noise ratio around 1.

IV. APPLICATION TO CONTINUOUS-VARIABLE QKD
Now that we have explained how efficient reconciliation of

correlated Gaussian variables can be achieved with rotations
in R

8, let us look at the implications for continuous-variable
QKD.

At the end of the quantum part of the continuous-variable
QKD protocol [15], Alice and Bob share correlated random
values and their correlation depends on the variance of the
modulation of the coherent states and on the properties of the
quantum channel. The channel can safely be assumed to be
Gaussian since it corresponds to the case of the optimal attack
for Eve [5], [6]. This means that it can be entirely characterized
by its transmission and added noise and Bob’s variable can be
written as:

Y = TX + ξ

where T is the channel transmission and ξ is a centered
Gaussian random variable. The channel transmission and the
variance of ξ are accessible to Alice and Bob through an
estimation step prior to the reconciliation. Once these param-
eters are known, one can calculate the signal-to-noise ratio
of the transmission, which is the ratio between the variance
of the signal (the variance of the Gaussian modulation of
coherent states in our case) and the variance of the noise. The
SNR quantifies the mutual information between Alice and Bob
when a Gaussian modulation is sent over a Gaussian channel:

I(X ; Y ) = 1/2 log2(1 + SNR).

A typical figure of merit to evaluate the efficiency of the
reconciliation protocol is the parameter β defined as the ratio
between the dimension of the code used by Alice and Bob,
and the mutual information between their data. In other words,
β expresses the ratio between the information really extracted
through the reconciliation and the information available.
Note that the efficiency of reconciliation only depends on

the correlation between Alice’s and Bob’s data, that is on
the SNR. Thus, for a given transmission and excess noise,
the secret key rate is a function of the SNR, which can be
optimized by changing the variance of the modulation of the
coherent states.
It is not easy to know exactly how the efficiency of recon-

ciliation depends on the SNR. However, each reconciliation
technique performs better for a certain range of SNR: slice
reconciliation is usually used for a SNR around 3 [16] while
rotations in R

8 are optimal for a low SNR, typically around
0.5.
Figure 3 shows the performance of rotations in R

8 compared
to slice reconciliation for the experimental parameters of the
QKD system developed at Institut d’Optique. Both approaches
achieve comparable reconciliation efficiencies (around 90%)
but for different SNR. One can observe two distinct regimes:
for low loss, i.e., short distance, slice reconciliation is better
but only rotations in R

8 allow QKD over longer distances
(over 50 km with the current experimental parameters).
Concerning the complexity of the reconciliation, one should

be aware that almost all the computing time is devoted to
decoding the efficient binary codes, either LDPC codes or
turbocodes. Compared to this decoding, the rotation in R

8

takes a negligible amount of time. Thus, the complexity of
the reconciliation presented here is comparable to the one of
slice reconciliation.
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experimental parameters [16]. The reconciliation based on rotations
in R

8 uses a LDPC code of rate 0.26 [17]

V. EXAMPLES OF FAMILIES A2, A4 AND A8

A. Notations
Let us introduce the following four 2× 2 matrices:

K0 = ( 1 0
0 1 ) , K1 = ( 0 1

1 0 ) , K2 =
(

0 −1
1 0

)
, K3 =

(
1 0
0 −1

)
, and

the tensor product Ki1,..,il
= Ki1 ⊗ ..⊗Kil

.

B. Examples

A2 = {K0, K2}
A4 = {K00, K32, K20, K12}
A8 = {K000, K332, K320, K312, K200, K102, K123, K121}

VI. CONCLUSION
We presented a new protocol for the reconciliation of

correlated Gaussian variables. Currently, the main bottleneck
of continuous-variable QKD lies in the impossibility for Alice
and Bob to extract efficiently all the information available, this
difficulty resulting in both a limited range and a limited rate for
the key distribution. The method described in this article is par-
ticularly well suited for low signal-to-noise ratios, which is the
situation encountered when one wants to perform QKD over
long distances. By taking into account the current experimental
parameters of the QKD link developed at the Institut d’Optique
[16], one shows that this new reconciliation allows QKD over
more than 50 km when previous schemes were limited to
30 km. Moreover, contrary to other protocols that have been
proposed to increase the range of continuous-variable QKD,
this protocol does not require any post-selection. Hence, the
security proofs based on the optimality of Gaussian attacks [5],
[6] remain valid, meaning that the protocol is secure against
general collective attacks.
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