
Robust Overlay Network with Self-Adaptive
Topology: Protocol Description

Loïc Baud, Nguyen Pham, Patrick Bellot

Institut TELECOM, TELECOM ParisTech & LTCI CNRS UMR 5141
46 rue Barrault, 75634 Paris Cedex 13, France
{baud,pham,bellot}@telecom-paristech.fr

Abstract—We introduce a new overlay network named ROSA1.
Overlay networks offer a way to bypass the routing constraints
of the underlying network. ROSA used this overlay network
property to offer a resilient routing to critical applicati ons. Unlike
other overlay networks dealing with the routing resilienceissue,
we oriented our research towards building a robust overlay
network topology instead of a robust routing function. We tried
to maintain a path between any pairs of nodes of the network.
The routing resilience is obtained by forcing nodes to choose and
modify dynamically their neighbors set according to the ROSA
protocol. Moreover, ROSA is highly scalable.

Index Terms—Overlay network, Network resilience, Self-
organizing system.

I. I NTRODUCTION

Computer-based systems are nowadays present in the econ-
omy, medical processes and equipment, power and commu-
nication infrastructures. However, building systems thatare
guaranteed to be secure or to remain secure over time is still
an unachievable goal. Hence, security of information systems
becomes naturally a crucial concern for the governments and
the worldwide companies.

Studies from [13] and [18] have demonstrated that Internet
connectivity failures are not rare. In 1.5% to 3.3% of time,
failures prevent pair of hosts from communicating.

Let us imagine a distributed tool deployed on the network of
a company. This network could be spread over many countries
and therefore over many autonomous systems (AS) and sub
networks. The tool will need to exchange information between
these sub networks. We cannot tolerate that some failures
prevent these sub networks from communicating. Such a tool
needs to have guarantees on the efficiency and the resilience
of the routing of its datas.

Since BGP [3] can take much time, many minutes some-
times, to discover a failure and to reorganize the routes in a
consistent form [10], we have to find a solution in order to
assure a resilient routing to these kind of tool. The solution
that has caught our attention is the Overlay Network (ON).

This paper presents ROSA, an ON especially adapted to be
used as a backbone for large applications that need a very
robust routing. The rest of this paper is presented as follows:
the section II presents the necessary definitions; the section III

1This work has been granted through the IST FP6 DESEREC Project (CN:
026600) of the European Union.

presents the ROSA ON and its properties; the section IV
shortly presents an application of ROSA and the section V
presents a short conclusion ans a brief synthesis of this article.

II. D EFINITIONS

An Overlay Network (ON) is a virtual network built on
another network, usually the Internet, to provide a serviceto a
community of users. Significant examples of overlay networks
are peer-to-peer networks (P2P) Kademlia [11], Gnutella [7],
Chord [15], Skype [8], Domino [17] and Virtual Private
Networks (VPN) [16]. Each one of these overlay networks
has its own use. Kademlia and Gnutella are usually used for
file-sharing. Chord is used in CFS [6] as a backbone for a
distributed file system. Skype aims to provide VoIP to its users.
Domino detects intrusion on a system. VPN protects its users
from eavesdropping.

A node of ROSA is any computer of the underlying network
following our protocol. We call virtual link between two nodes
the protocol used (TCP, UDP, SSL, etc.) as well as the set
of the elements of the underlying network taking part in the
communication between these two nodes.

We call failures all events that prevent two nodes linked
together by a virtual link from communicating. These failures
can have numerous causes such as hardware failure, software
failure, attacks, power cut, etc.

III. ROSA

A lot of Overlay Networks have already dealt with the
problem of resilient routing. The most famous is undoubtedly
RON (Resilient Overlay Network) [2]. RON maintains a
virtual link between all pairs of nodes. Each node in RON
checks the availability and the capacity of the virtual links
between itself and the other nodes. Each node decides then,
based on its knowledge, if it should let packets flow directly
to other nodes, or if some indirections via other RON nodes
could be useful. But since each node in RON is linked with all
the other nodes, RON cannot exceed more than one hundred
of nodes.

This limit on the maximum number of nodes does not allow
to use RON as a backbone for our tool. To improve RON
scalability, the solution chosen by DG-RON [14] consists in
splitting the network into logical zones in such a way that

each node has to maintain and exchange information only with
nodes of its logical zone.

We can obviously see that the number of neighbors that
a node has to manage is decisive if we want our overlay
network to be scalable. Since we cannot do anything in order
to increase the number of neighbors that a node can manage, it
only remains to efficiently choose these neighbors. A solution
proposed in [1] consists in taking into account the underlay
network topology in order to construct the Overlay Network.
But the algorithm proposed can only be used to construct static
Overlay Network and cannot be applied to the construction of
self-organizing ones.

From these observations, we decided to build our overlay
network called ROSA for Robust Overlay network with Self-
Adaptive topology. ROSA, in order to maintain a path between
any pair of nodes, dynamically reorganizes the neighbors set
of the nodes according to:

• the topology of the underlying network ;
• the maximum number of neighbors of a node ;
• the failures on the elements of the virtual links.

A. ROSA architecture

We introduce the notion of lump. The lumps allow each
node to compute the robustness of the network at its virtual
neighborhood.

A lump is a set of fully virtually connected nodes. In
Figure 1, we can see an overlay network with three lumps.

We notice that the network in the Figure 1 includes more
than 3 lumps. Indeed, some lumps include sub-lumps. How-
ever, the interest of these sub-lumps being null for us, we
ignore them. We only consider the maximum lumps according
to set inclusion relation.

Fig. 1: a) An overlay network b) The 3lumpsof this network.

From this definition, we can consider an overlay network
as an entanglement of lumps. RON, for example, can be seen
as a single lump since each node is linked with all the other
nodes of the network. We call member of a lump each node
that belongs to it.

B. Density of a lump

Let l be a lump, we call density ofl the quantification of
its capacity to maintain a path between all its members in
the presence of a virtual link failure. We assume that each
node is able to identify and distinguish the elements of the

underlying network composing the virtual links that connect
it to its neighbors. In the case of IP, thetraceroute utility
[9] allows to do this. The density is defined as the minimal
number of failures on the elements of the virtual links of the
lump that are necessary to isolate a node of the lump. In such
a way that if the number of failures is less than the density,
we can affirm that there exists a path between any two nodes
of the lump. This density will be notedd(l).

One can remark that if all the virtual links are disjoints, the
density of a lump is simply equal to the cardinal of the lump
minus one, i.e. #l - 1. We also use the cardinal of the lump to
compute the density in the case where the nodes are not able
to know the composition of the virtual links. Nevertheless,this
does not give good results since the topology of the underlying
network is not taken in account.

In the future, we plan to use other formulas to compute
the density. For instance, we could use a formula that takes
into account the type of the elements that compose the virtual
links. The only condition to respect is that each member of a
lump must possess all the necessary information to calculate
the density. The acquisition by a node of this information is
performed when the node joins a lump.

Figure 2 illustrates a lump. We can see that all the virtual
links share a common element. A failure of this element is
sufficient to break down all the virtual links. Therefore, the
density of this lump must be weak: indeed, it is equal to 1. If
the virtual links connecting the members of the lump together
were disjoints, then the density of this lump would be 3.

! " # $%& ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?@ABCDEFGH I J K LMNOPQRSTUVWXYZ [\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

a) b)

Fig. 2: a) A lump b) The underlying network.

We will call density of the ROSA network the density of the
weakest lump. The weakest lump is the lump with the weakest
density. Since each node belongs to at least one lump, we can
be sure, that if the number of simultaneous failures on the
virtual links is inferior to the density of ROSA, there exists a
path between any two nodes of the network.

C. Principle of ROSA

As it will be explained in the following part, nodes in ROSA
periodically exchange lump with poor density in such a way
that each node is always in possession of a set of lumps of
weak density. In order to enhance the density of the lumps,
each node tries to join the weakest lump that it knows.

If a node wants to join a lump, it has to compute the
theoretical density of the lump in the case of it joins it. Then,
two cases are possible:

• The node can join this lump and the number of its
neighbors does not exceed its maximum. Then, the node
joins the lump and informs other members of the lump
about it.
• Otherwise, the node has to leave some of its neighbors
if it wants to be able to join the lump. This will be done
only if the fact of leaving these neighbors does not imply
that this node leaves a lump with a smaller density than
the one it wants to join.

This principle ensures that unless if some failures occur, the
density of ROSA cannot decrease.

D. Protocol of ROSA

1) Node, neighbor and lump representation:Each node in
ROSA has an identifier, a list of lumps. a list of neighbors
and a maximum number of neighbors. The identifier must
be unique. We use a hash based of the IP address of the
underlying network and some other node characteristics, in
such a way that the hash obtained is unique. The list of lumps
is composed of the lumps the node belongs to. The list of
neighbors is composed of the nodes that are members of the
lumps of the previous list. The maximum number of neighbors
can vary according to each node capacity.

A neighbor is simply represented by its identifier. A lump is
represented by the list of the identifiers of its member and by
all the information that is needed to compute the lump density.
Therefore when it is said that a node sends a lump the reader
has to understand that the node sends the representation of this
lump. By this way, a node receiving a lump is able to compute
its density. A node can add a lump into its lumps set only if
there is no lumps in the set that include the new one. When a
node adds a lump into its lumps set, it removes all the lump
included into the new one.

The pseudo code of a ROSA node is presented in
Agorithm 1. If the node is the first node of the network we
have to set thecreate_rosato true. This will force the node to
initiate the ROSA Network (line 2). Elsebootstrap_node_ip
must contains the IP address of a node in order to join ROSA,
(line 3).

The state of a node determines whether or not the node is
active on a ROSA network. The functionsend_alive() (line
3) aims to notify neighbors that the node is operational. It aims
by the way to propagate knowledge about lumps to join. We
deal more in details with this function in Section III-D4. The
function check_neighbors() (line 4) is used to detect and
handle failures. It is also used to keep the number of neighbors
below the limit number. This is explained in Section III-D5.
The functionreconfigure() (line 5) is the most interesting.
This function allows the node to join some lumps in order
to enhance ROSA topology robustness. See Section III-D6 to
learn more about it. Once these three functions are performed,
the node waits a small amount of time before repeating these.
During this waiting time, the node keeps listening and handling
other nodes messages. This amount of time determines the
reactivity to failures and the overhead generated by ROSA.

The lower this amount of time is, the faster the reactivity is
and the more important overhead is.

Algorithm 1: Node

input
time_interval ; // Time interval in seconds

max_neighbors_number ; // Maximum number of neighbors

create_rosa ;
bootstrap_node_ip ;

variables
state← OFF ; // Node current state

neighbors_set← ∅ ; // Set of the neighbors of the node

lumps_set← ∅ ; // Set of the lumps to which the node belongs

known_lumps_set← ∅ ; // Set of received lumps

node
if create_rosathen

init_rosa() ;1
else

join_rosa(bootstrap_node_ip);2

while state = ONdo
send_alive() ;3
check_neighbors() ;4
reconfigure() ;5
sleep(time_interval) ;6

handles receiveid request ...

2) Initiating ROSA:The first node has to initiate the ROSA
network. It simply has to add a new lump to its lumps set.
This lump has only the node for member. The pseudo code
corresponding is described in Agorithm 2.

Algorithm 2: Node.init_rosa

node.init_rosa
lump ← new Lump ;1
lump.members ← lump.members ∪ {node} ;2
node.lumps_set ← lump ;3
node.state← ON ;4
return ;5

3) Joining ROSA:In order to join the ROSA network a
node must know the IP address of a node already connected
to the network. We call this node the bootstrap node. Once
this IP address is known, the node willing to join has to send
a messageHello to the bootstrap node, see Agorithm 3.

Algorithm 3: Node.join_rosa
input

bootstrap_node_ip ; // IP address of a node of ROSA

node.join_rosa
send(Hello) to bootstrap_node_ip ;1
return ;2

A node receiving such a message replies by a message
FirstLump containing the lump to which it belongs that
possesses the lower density. Therefore, the node that wantsto
join receives a messageFirstLump from the bootstrap node. It
joins the lump contained in the message. How the messages
Hello andFirstLumpare handled is described in Agorithm 4.
We will explain how a node join a lump in the Section III-D7

Algorithm 4: Hello andFirstLump messages handling
Messages handling

...

upon receive(Hello(lump)) from node n do
send(FirstLump(get_weakest_lump(node.lumps_set))) to n ;1
return ;2

upon receive(FirstLump(lump)) from node n do
if node.lumps_set6= ∅ then return ;3
lump.members← lump.members∪ node ;4
foreach m ∈ lump.membersdo

if m 6= nodethen
node.neighbors_set← node.neighbors_set∪ {m} ;5
send(JoinLump(lump)) to m ;6

node.lumps_set← node.lumps_set∪ {lump} ;7
node.state← ON ;8
return ;9

...

4) Propagating lumps information: The propagation
of lumps information is performed by the function
send_alive(). It consists for a node to send a message
Alive to each of its neighbors. This message contains a lump
having the node as member. This lump will be used in
the reconfiguration process to enhance the ROSA topology
robustness. The pseudo code of this function can be found in
Algortihm 5.

Algorithm 5: Node.send_alive

variables
lump_to_send ;

node.send_alive
foreach n ∈ node.neighbors_setdo

lump_to_send← find_appropriate_lump(n) ;1
send(Alive(lump_to_send)) to n ;2

return ;3

The lump that has to be sent to a neighbor is se-
lected as follows: that is the lump that have the low-
est density among those that do not have the neighbor
for member. This selection is performed by the function
find_appropriate_lump(neighbor) (line 1). A node that
receives a messageAlive from one of its neighbors, considers
that this neighbor is operational and adds the lump contained
in the message to its set of known lumps. This is described in
Algorithm 6.

Algorithm 6: Alive messages handling
Messages handling

...

upon receive(Alive(lump)) from node n do
if n 6∈ node.neighbors_setthen return ;1
n.flag_alive← true ;2
node.known_lumps_set← node.known_lumps_set∪ {lump} ;3
return ;4

...

5) Failures detection:Nodes do not directly detect underlay
network failures but detect when virtual links are broken. A

node considers that the virtual link between itself and one
of its neighbor is broken when it has not received at least
one messageAlive from this neighbor between two failures
verifications.

When a node detects that a virtual link is broken, it sends
a messageSplitLumpto some of its neighbors. The concerned
neighbours are the members of lumps that have the node
and the failing neighbor as members too. Then the node
removes the failing node from its neighbors set. This message
SplitLump contains the identifier of the failing node. The
failures verfication is performed by thecheck_neighbors()
function. The pseudo code of this function can be found in
Algorithm 7.

This function also keeps the number of neighbors below
the limit (lines 3-4). The functionfind_neighbor() returns
the neighbor such that if node separates from it then it will
cause the minimum of loss according to the ROSA topology
robustness quantification. We will not describe in details this
function in this paper, its pseudo code is in Algortihm 8.

Algorithm 7: Node.check_neighbors

node.check_neighbors
foreach n ∈ node.neighbors_setdo

if n.flag_alive = falsethen
foreach l ∈ node.lumps_setdo

if n ∈ l then
foreach m ∈ l.members do

if m 6= node & m 6= n then
send(SplitLump(lumps,n)) to m ;1

l.members← l.members \ {n} ;

node.neighbors_set← node.neighbors_set\ {n} ;2
else

n.flag_alive← false ;3

while # node.neighbors_set> node.max_neighbors_numberdo4
neighbors_set← neighbors_set\ {node.find_neighbor()};5

return ;

How a node hanldesSplitLumpmessages is described in
Algorithm 9. A node receiving a messageSplitLumpfrom a
neighbor removes the lump contained in the message and adds
two lumps to its lumps set. The members of these two lumps
are the members of the removed lump without the neighbor
that sends the message for the first one (line 2) and without
the node contained in the message for the second one (line 3).

An example of failure detection can be found in Figure 3.
We can see in the top left a ROSA network composed of two
lumps A and B. In the top right we can see that the node in
red does not send a messageAlive to one of its neighbors.
That means that the virtual link between these two nodes is
broken. In the bottom of the Figure, we can see how the
ROSA network has self-reconfigured. The two initial lumps
were splitted in two parts each.

6) Reconfiguring:Once the messagesAlive are received,
the node knows a set of lumps with low densities. By definition
the node, is not a member of these lumps. The reconfiguration
is performed by the functionreconfigure(). The pseudo
code of this function is described in Algorithm 10. The

Algorithm 8: Node.find_neighbor
output

selected_neighbor ; // the neighbor which the separation will cause the

minimum loss

node.find_neighbor
foreach l ∈ node.lumps_setdo

if l.density > 2 then
return(node.find_neighbor_by_density()) ;

return(node.find_neighbor_by_size()) ;

variables
max_min_density ;
min_density ;
tmp_lump ;

node.find_neighbor_by_density
max_min_density← 0 ;
selected_neighbor← null ;
foreach n ∈ node.neighbors_setdo

min_density← ∞ ;
foreach l ∈ node.lumps_setdo

if n ∈ l then
tmp_lump.members ← l.members\ {n} ;
if tmp_lump.density< min_densitythen

min_density ← tmp_lump.density ;

if min_density> max_min_densitythen
max_min_density ← min_density ;
selected_neighbor ← n ;

return(selected_neighbor) ;

variables
max_min_size ;
min_size ;

node.find_neighbor_by_size
max_min_size← 0 ;
selected_neighbor← null ;
foreach n ∈ node.neighbors_setdo

min_size← ∞ ;
foreach l ∈ node.lumps_setdo

if l.size< min_sizethen
min_size ← lump.size ;

if min_size> max_min_sizethen
max_min_size ← min_size ;
selected_neighbor ← n ;

return(selected_neighbor) ;

Algorithm 9: SplitLump messages handling
Messages handling

...

upon receive(SplitLump(lump,dead_node)) from node n do
if n 6∈ node.neighbors_setthen return ;
if lump 6∈ node.lumps_setthen return ;
node.lumps_set← node.lumps_set\ {lump} ;1
lump1.members ← lump.members \ {n} ;2
lump2.members ← lump.members \ {dead_node} ;3
node.lumps_set← node.lumps_set∪ {lump1} ∪ {lump2} ;4
return ;

...

reconfiguration consists for the node in joining the lump of
this set that has the lowest density (line 1). The node will join
this lump unless if joining this lump increases its density (line
7).

7) Joining a lump:In the previous sections, we said that the
nodes join lumps without explaining how it was performed.
In this section we will make this point clearer. When a node
wants to join a lump, it first adds itself to the list of members.
It adds then all the information that will be needed to compute

Fig. 3: Failures detection.

Algorithm 10: Node.reconfigure
variables

lump_to_join ; // lump_to_join that the node will try to join

old_density ; // density of lump_to_join before that the node join it

new_density ; // density of lump_to_join if the node join it

node.reconfigure
lump_to_join← get_weakest_lump(node.known_lumps_set) ;1
node.known_lumps_set← ∅ ;2
old_density← lump_to_join.density ;3
lump_to_join.members← lump_to_join.members∪ {node} ;4
new_density← lump_to_join.density ;5
if old_density≥ new_densitythen return ;6
foreach m ∈ lump_to_join.members do

node.neighbors_set← node.neighbors_set∪ m;7
send(JoinLump(lump_to_join)) to m ;8

node.lumps_set← node.lumps_set∪ {lump_to_join} ;9
return ;10

the density of this lump. It sends then a messageJoinLump
to the members of this lump and adds these members to its
neighbors set. This message contains the lump that the node
wants to join. To finish, the node adds the lump to its lump
set. The pseudo code corresponding to this process is shown
in Algorithm 10 lines 3 to 9.

A node receiving a messageJoinLump, as it can be seen
in Algorithm 11, checks that it is a member of this lump. If
it is, the node adds the lump contained in the message to its
lumps set and adds the node that has sent the message to its
neighbors set.

8) Leaving ROSA:To complete the protocol description,
we have to describe how a node leaves the network. It can
simply stop sending messagesAlive to its neighbors. The node

Algorithm 11: JoinLump messages handling
Messages handling

...

upon receive(JoinLump(lump)) from node n do
if node 6∈ lump.membersthen return ;
node.lumps_set← node.lumps_set∪ {lump} ;1
node.neighbors_set← node.neighbors_set∪ {n} ;2
return ;3

...

will be naturally removed from all the nodes neighbors sets.
The second solution consists for the node that leave ROSA
in sending a messageLeave to its neighbors. This solution
generates less overhead that the first one.

A messageLeavedoes not contains anything. When a node
receives such a message from one of its neighbor, it removes
this neighbor form its neighbors set and remove this neighbor
form all the lumps in the lumps set. See Algorithm 12.

Algorithm 12: Leave messages handling
Messages handling

...

upon receive(Leave()) from node n do
if n 6∈ node.neighbors_setthen return ;
foreach l ∈ node.lumps_set do

if n ∈ l.members then
l.members ← l.members \{n} ;1

node.neighbor_set← node.neighbor_set\{n} ;2
return ;3

...

E. Routing data in ROSA

ROSA proposes for now, two routing modes: routing by
flood and routing by path. These two routing modes possess
some advantages and some drawbacks. These advantages and
drawbacks define in which cases we have to use the first
routing mode and in which cases we have to use the second
one.

1) Routing by flood:A node willing to send a message to
a target using the flooding mode, sends this message to all its
neighbors. The target could either be a single node than a set
of nodes. This message contains, in addition to the payload,
a unique identifier that allows to a node to distinguish this
message from another, and the target identifier. Each node
that receives a message by flooding first checks that it didn’t
already receive it. If the message was already received, the
node simply discards it. Else, the node checks if it is a target
of this message. If it is, the node handles the payload of
the message. Then the node sends, using the flooding mode,
the message to all its neighbors. The routing by flood offers
numerous advantages. Especially, the one to send a message to
a set of nodes without knowing anything about the localization
of these on ROSA. An other advantage is that this routing
mode ensures that all the targets will receive the message. On
the other hand, there is a major drawback; this routing mode
produces much traffic on the network.

2) Routing by path:A node willing to send a message to
an other node using the routing by path has to already know
a path in ROSA between itself and the target node. A path is
a sequence of node identifiers; these nodes have to link the
source node to the target node. We will see later how to obtain
this kind of paths. The message to send has to be composed by
the path and the payload. Each node receiving such a message
seeks its identifier in the path contained by the message, and
deduces from this the next node to which it has to send the
message. The message, thus relayed along the path, reaches
its destination. Contrary to the routing by flood, the routing by
path produces less traffic. Nevertheless, it has the drawback
to impose to the node that wants to use it to have knowledge
about the ROSA topology. Moreover, ROSA is dynamic and
so the virtual links are able to be broken and it is possible that
old paths are not valids anymore.

3) Path discovery:The simplest way, for a node to discover
a path between itself and an other node, is to use send,
using the routing by flood, a messagePathDiscoveryto this
targeted node. This message contains, as all the flooded
messages, an unique identifier and the targeted node identifier.
It also contains the list of the identifiers node by which the
message was relayed. Each node receiving for the first time
this message has to add its identifier in the end of this list.
Therefore when the message reaches the targeted node, the list
contains a path linking the source node to the targeted node.
Then, the targeted node has just to reply to the source node
by a message containing the path. The reply can be flooded
or simply routed using the path recently obtained.

4) Uses of the different modes of routing:It does not exist
a routing mode absolutely better than an other. We have to
determine the routing mode to use according to what we
want to do. There are two factors to take in account, the
amount of traffic produced and the assurance that the message
will effectively be received. We recommend using the routing
by flood to send urgent and important messages. We also
recommend using this routing mode when we want to send
the same message to a large group of nodes. The routing by
path has generally to be used only when two nodes want to
exchange a huge amount of messages in a small amount of
time.

IV. A TOOL FOR MANAGING A NETWORK

ROSA overlay network has been tested in real condition
within the context of the DESEREC Project of the European
Union. The goal of this project is to provide a framework
that will increase the dependability of networked informations
systems.

For this project Telecom Paristech has developed a dis-
tributed tool that aims to manage a network.

It can be splitted in three parts:
• a set of captors deployed over the network ;
• a security policy ;
• the resilient routing (ROSA overlay network).

The captors are used to detect: attacks, failures, services
bugs, etc. In order to do it, Security Assurance (SA) are

continually computed for different components of the networks
(workstations, servers, gateways, routers, sub networks,etc).
The SA is the objective confidence that an entity meets its
security requirements. More precisions about SA are given
in [4] and [5]. When the SA value of a network component
decreases going down, the security policy has to be applied.
In the current implementation of our tool, the security policy
has only 2 rules. The first rule is applied when the SA value
of a router or a gateway is decreasing below a threshold level.
This rule consist in finding an alternative gateway to replace
the failing one. If such gateway is found, the routing tablesof
the network components are modified to use the new gateway.
Else the tool waits that the failing gateway be repaired. The
second rule is applied when the SA value of a sub network
is decreasing. This can occurs if the sub network go through
a DDoS or a worm attack. In this case the sub network is
isolated in order to prevent attacks propagation.

ROSA is in charge of routing the data collected by te
captors to the tool, the internal messages of the tool, and the
network reconfiguration messages of the tool to the network
components.

This tool was deployed on the INFRES (Computer Science
and Networking Department, TELECOM ParisTech). This
network consists in: three Foundry routers, five sub networks,
different Sun stations, and four servers whose two acting as
perimeter servers between sub networks. Each station and
server runs the ROSA protocol and so is a ROSA node. This
screenshot of this application is shown in Figure 4. The Sun
stations are the green squares, the routers are oranges and the
purple ones are the servers.

Fig. 4: The INFRES network architecture (security cockpit).

A more complete description of this tool can be found in

[12]. We induced failures on the elements of the network and
verify that with a small number of neighbors by nodes (only
ten) ROSA was able to route the messages of the tool.

A demonstration movie of the experimentation can be found
on: http://www.telecom-paristech.fr/b̃ellot/FT.html.

V. CONCLUSION

In this paper, we presented a new self-organizing and scal-
able Overlay Network ROSA. ROSA is designed to provide
resilient routing. We validated this properties by testingROSA
upon the INFRES network. We only focused on the description
of the protocol of ROSA.

The next step of our work will consist in studying in details
all its properties. We will test ROSA on a very large network
and with many nodes, in order to improve its scalability. We
will measure the overhead generated by the reconfiguration
and by the failures detection processes and compare it to those
generated by other overlay networks. We will also validate
our approach by model checking, this will be done by the
Budapest University of Technology and Economics (BUTE).
At the present time, our works aim to give ROSA a resilient
distributed storage function.

REFERENCES

[1] N. Akihiro, P. Larry, and B. Andy. Scalable routing overlay networks.
SIGOPS Oper. Syst. Rev., 40:49–61, 2006.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient overlay networks. InSymposium on Operating Systems
Principles, pages 131–145, 2001.

[3] BGP. A border gateway protocol 4 (BGP-4): RFC 1771.
[4] M. Bishop. Computer Security: Art and Science. Addison-Wesley

Professional, 2002.
[5] CC. Common criteria for information technology security evaluation.

part 1: Introduction and general model, part 2: Security functional
requirements, part 3: Security assurance requirements, 2005.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with CFS. InProceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Chateau Lake
Louise, Banff, Canada, Oct. 2001.

[7] Gnutella Community. Gnutella protocol specification v0.4, 2001.
[8] S. Guha, N. Daswani, and R. Jain. An experimental study ofthe skype

peer-to-peer voip system, 2006.
[9] V. Jacobson. traceroute : ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

[10] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayedinternet
routing convergence. InSIGCOMM, pages 175–187, 2000.

[11] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. InProceedings of IPTPS02, Cambridge,
USA., 2002.

[12] Nguyen Pham, Loic Baud, Bellot Patrick, Michel Riguidel. Towards a
security cockpit. InThe 2nd International Conference on Information
Security and Assurance, pages 374–379, 2008.

[13] V. E. Paxson.Measurements and Analysis of End-to-End Internet Dy-
namics. PhD dissertation, University of California, Lawrence Berkeley
National Laboratory, April 1997.

[14] S. Qazi and T. Moors. scalable resilient overlay networks using
destination-guided detouring. InProceedings of the IEEE International
Conference on Communications (ICC), 2007.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internetapplications.
In Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–
160, 2001.

[16] VPN. A framework for IP based virtual private networks:RFC 2764.
[17] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in

the domino overlay system, 2004.
[18] Y. Zhang, V. Paxson, and S. Shenker. The stationarity ofinternet path

properties: Routing, loss, and throughput.ACIRI Technical Report, 2000.

