
Utility Maximization in Load-Balancing
Maximisation de l’Utilité Appliqué au Partage de Charge

Federico Larroca & Jean-Louis Rougier

Département Informatique et Réseaux

Institut TELECOM, TELECOM ParisTech

May 2008

1

Abstract. Current data network scenario makes Traffic Engineering (TE) a very challenging

task. The ever growing access rates and new applications running on end-hosts result in more

variable and unpredictable traffic patterns. This context makes the need of sophisticated TE

techniques stronger than ever. Such mechanisms should make a good resource usage while

providing users with the best possible performance. Up to now, TE was purely concentrated

on the first point, typically striving to minimize a certain network cost defined in terms of

the link’s usage, assuming users would obtain a good performance as a consequence. In this

work, we show that such procedure can result in unfairness among users and sub-optimal

resource usage. We propose that the objective of TE should be to maximize a certain utility

function measured at the user level instead. We define such a utility function and apply

it to design a Load-Balancing scheme that is both fair and efficient. The solution to the

resulting optimization problem can be obtained both by a centralized as well as a distributed

algorithm, whose design we outline. We compare our proposal with prior TE mechanisms,

finding that it obtains a more balanced load distribution with improved performance.

Resumé. L’évolution actuelle des applications et des réseaux pose de nouveaux défi pour
l’ingénierie de trafic. L’augmentation des débits d’accès offerts aux utilisateurs et l’apparition
de nouvelles applications (P2P, overlays) ont augmenté considérablement la variabilité et
l’imprévisibilité du trafic. Or les techniques d’ingénierie de trafic utilisées aujourd’hui sont
mal adaptés dans ces cas, car nécessitant une bonne connaissance du traffic. Des techniques
d’ingénierie de trafic plus sophistiquée, notamment plus robustes face à ces variations, sont
donc plus que jamais nécessaire. Ces techniques devront conduire à une bonne utilisation
des ressources tout en offrant aux utilisateurs des performances adaptées à leurs services.

Le partage de charge est un outil d’ingénierie de trafic qui semble particulièrement adapté

pour faire face à ces nouvelles contraintes. En revanche, jusqu’à aujourd’hui, les techniques de

partage de charge existantes se sont concentrées sur l’optimisation des ressources, négligeant

l’aspect performance utilisateur (en supposant implicitement que la performance perçue par

les utilisateurs seraient bonne du fait de l’optimisation des ressources). Dans ce travail, nous

montrons que cette façon de procéder peut provoquer des inégalités entre les utilisateurs et

même une utilisation sous-optimale des ressources. Nous proposons une nouvelle technique

d’ingénierie de trafic consistant à maximiser une certaine fonction d’utilité, définie au niveau

des utilisateurs. Nous définissons une telle fonction et nous l’appliquons pour concevoir un

mécanisme de partage de charge qui est en même temps juste et efficace. Nous présentons

deux algorithmes, l’un centralisé et l’autre distribué, permettant de conduire à la solution au

problème d’optimisation présenté. Nous comparons notre proposition avec des mécanismes

antérieurs, et nous montrons que notre proposition conduit à une meilleure performance

offerte aux utilisateurs, avec des niveaux d’utilisation des ressources plus équilibré.

2

1 Introduction

Network convergence is a reality. Many new services are offered in the same network, increasing
the unpredictability of traffic patterns. To make matters worse, access rates had increased at
such pace that the old assumption that core links capacities are several orders of magnitude
bigger than access rates is no longer true. Thus, simply upgrading link capacities is now not
enough, since it is no longer an economically viable solution. This means that network operators
are, now more than ever, in need of Traffic Engineering (TE) mechanisms which are efficient
(make good use of resources), but also automated (as much self-configured as possible), more
tolerant with respect to network variations (changes in traffic matrix, or characteristics of
transported flows) and more robust (in case of node/link failures).

One such TE technique is Load Balancing. If an origin-destination pair (OD) is connected
by several paths, the problem is simply how should traffic be distributed among these paths.
This means, what portion of traffic (traffic distribution) should be sent through each of the
available paths in order to fulfill a certain objective.

The simplest approach is to find a fixed traffic distribution. If the set of possible traffic
matrices (TMs) were available, one can imagine static load-balancing schemes which can transit
all of them, provided there is enough capacity in the network. There exist several proposals,
differing both in the considered set and the objective. Notable examples are [1] and [2]. The
former considers traffic matrices belonging to a so-called polytope and set the traffic distribution
in order to minimize the biggest load in the network for the whole set. The latter considers that
all nodes in the network can send and receive at a certain maximum amount of traffic rate, and
by balancing load across all other nodes before arriving to its final destination, it can assure all
traffic matrices are supported with a relatively small total capacity.

Although simple, naturally stable and tolerant to changes in the traffic matrix within the
considered set, static load-balancing presents some disadvantages. First of all, the whole set of
possible traffic matrices have to be available. This data is not easy to obtain, and will probably
take months to do so. Moreover, if the set is not carefully chosen and at a given moment the
network faces an unforeseen TM, the resulting performance is unpredictable. Even if this is
not the case, since the scheme has to work for all traffic matrices, it will usually be the case
that at any given moment there are wasted resources across the network. So, there is a trade-
off between the size of the considered set and the performance under a given traffic matrix.
Finally, optimizing under uncertainty is much more difficult than “normal” optimization. This
increased difficulty forces the use of simpler optimization criteria and tend to result in a not so
good performance (for instance, it is known that minimizing the biggest link utilization in the
network generally leads to the use of long paths).

In order to remedy the above mentioned shortcomings and to make the network as flexible
as possible, dynamic load balancing has been proposed and studied in the past. In this schemes,
paths are configured a priori and the portion of traffic routed through each of them depends on
the current traffic matrix and on the state of the network. This makes them more robust and
efficient in resource usage. If the algorithm that adapts the portion of traffic routed through
each path is also distributed (in the sense that each router makes its choices independent of the
rest) the resulting scheme will also be automated. Actually, since TMs have a time-scale in the
order of some few minutes [3], it is clear that as network size increases a centralized algorithm
that solves the optimization problem for the current TM will not meet the time requirements.
So, in this context, a distributed algorithm is not only desirable but, if the network’s size
is considerable, necessary. This distribution, however, leads to the problem of oscillations. If
these decentralized, and thus uncoordinated, adjustments are not carefully designed, they can
give place to severe unwanted oscillations, as it already happened with the early ARPAnet
routing [4].

3

Although there are several proposals in this direction, we shall highlight the two most
representative ones. In TeXCP [5], the objective is to minimize the biggest load in each path.
A simplified version of the algorithm is that when a router sees less load in one of its paths,
he increases the portion of traffic he routes through it. Such method can be seen as selfish
load-balancing, where each router acts in its own interest. This kind of mechanisms can result
in inefficient resource usage [6], and it is natural to believe that in the context of intra-domain
TE routers should collaborate and not compete between them. In MATE [7] a certain function
φl(ρl) is defined for each link l, which represents the cost of the link as a function of its current
load ρl. The objective is then to minimize the total cost in the network defined as the sum of all
link’s costs. If φl(ρl) is convex, the resulting optimization problem is convex and can be solved
in a distributed fashion. The specific cost function used is φl(ρl) = 1/(cl − ρl), where cl is the
capacity of the link.

Although it is true that the total load traversing the links is very related with perceived
performance, simply minimizing the total network’s cost is not enough. For instance, consider
the example in Fig. 1. In it, only the router serving source 1 has more than one path to choose
from, link capacities are all the same and the demand generated by each source is also the same.
It is relatively simple to show that for both of the above mentioned schemes, the optimum is
that the traffic from source 1 is equally distributed among both paths. However, since the upper
path “disturbs” two sources (source 3 and 4) while the lower one disturbs only one (source 2),
it makes more sense from a fairness point of view to route more traffic from source 1 through
the lower path.

(1 - p) * d

d

p * d

3
d

d

4

2

1

Fig. 1. An example in which if the total cost of the network is minimized the resulting optimum is
unfair (popt = 0.5).

Inspired on TCP congestion control [8], particularly in the multi-path case [9], we propose
that load-balancing (and more generally Traffic Engineering) should not have as an objective
to minimize a certain link-level cost, but rather to maximize a source-level utility. If this utility
function is carefully chosen, it will lead not only to good resource utilization, but also to fairness
among sources. This paper is a first step towards defining such utility function and solving the
resulting optimization problem.

The rest of the paper is organized as follows. The following subsection defines the network
model and associated notation. In section 2.2 we present the utility objective function. In section
3 we address the resolution of the problem. Two approaches are presented. In section 3.1 we
solve it in a centralized fashion, and in section 3.2 we outline a distributed algorithm. We
present some flow-level simulations in section 4, where we show the advantages of the scheme
over other TE techniques and the performance of the distributed algorithm. In section 5 we
discuss some implementation issues, and present some packet-level simulations. We finish the
paper on section 6.

4

2 Source-Level Utility Maximization

2.1 Network Model

In order to minimize the added complexity in the network, we will assume that the router
through which traffic of a certain OD ingress the network is the one in charge of distributing
this traffic among paths. We shall call this node the OD’s source node, and in the sequel we
will reference an OD pair by its source node.

We will represent the network as L unidirectional links, indexed by l = 1 . . . L. The capacity
of each of these links is given by the column vector c = [c1 . . . cL]T . There are a total of S sources
in the network, indexed by s = 1 . . . S. Each source s has ns possible paths to its destination,
indexed by i = 1 . . . ns. Rsi is a column vector of length L, whose l-th entry is 1 only if source
s uses link l in its i-th path, and 0 otherwise. Finally, we define Rs = [Rs1 . . . Rsns] and the
incidence matrix is then R = [R1 . . . RS].

All traffic in the network is assumed to be elastic (i.e. controlled by TCP). We will suppose
flows arrive to source s as a Poisson process of intensity λs, each of them trying to transmit
a certain workload (which has an arbitrary distribution of mean ωs). This means that each
source s generates a total demand ds = λsωs. Incoming flows will be routed through path si
with probability psi. Once their path is chosen, they will remain there until they are finished
with their transmission. The demand in path si is then psids = dsi. The traffic distribution is
defined simply as d = [d11 . . . d1n1 . . . dS1 . . . dSnS

]T , meaning that the total load on link l (ρl)
can be easily calculated as the l-th entry of R × d. Under these assumptions, if ρl is strictly
smaller than cl for all l, the number of flows in the network will not go to infinity [10], meaning
that the network supports the given traffic distribution.

It is worth noting that we consider a dynamic context, in which flows appear and have a finite
lifetime. This consideration is not always made in TE related research (see [11] for instance),
but we consider it more realistic in the timescale (minutes) at which TE is interested. It is
also important to highlight that we are enforcing flow-level load-balancing. Packet-level load-
balancing (where packets from the same flow can take different paths) can have a negative
impact on TCP performance due to packet reordering on the receiver’s side.

2.2 The Utility Function

We shall consider that all traffic generated by a source as a unit. This means that its perceived
performance is the performance perceived by the source from all its paths “as a whole”. This
assumption is true if, for example, we are interested in the communication between the OD
routers, if we are doing packet-level load-balancing (which we are not) or if we take into account
that each flow does not represent a user, since any of such flows is part of a bigger session.

Our proposal is to first define a certain revenue function us(d) which measures the perfor-
mance perceived by source s with traffic distribution d. The question is how this revenue should
be distributed among sources. We could for instance maximize the average, or the smallest of
them. A more general approach is to define a concave non-decreasing utility function Us(us)
that represents the satisfaction source s has with its revenue us(d), and maximize the sum over
all sources. The problem in this most general version reads like this:

maximize
d

S∑
s=1

dsUs(us(d)) (1)

restricted to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

5

We multiply by ds each utility to give more weight to those nodes generating more traffic.
The restrictions assure that the number of living flows is finite, that there are no negative
demands and that all traffic is routed.

A typical example of Us is the utility function that leads to the so-called α-fairness [12]:

Us(x) =

{
(1− α)−1x1−α, α 6= 1
log x, α = 1

(2)

The parameter α sets the fairness of the optimum. For α = 0, it maximizes the sum of us,
and for α →∞ it results in max-min fairness.

Probably the most delicate part of the problem is to define us(d). We can think of many
possibilities, but a “good” us should have the following characteristics:

– Versatility in the sense that a low value should indicate bad performance for various criteria
– Easily measured and/or calculated by the node
– Mathematical properties that makes it amenable to optimization

A relatively simple path performance measure is its available bandwidth (ABW). The ABW
of path si is defined as: ABWsi = min

l∈si
{cl − ρl}. This indicator is twofold. On the one hand,

is a rough estimator of the throughput TCP flows will obtain from the path [13, 14]. On the
other hand, a path with a big ABW is a “healthy” path, in the sense that he can accommodate
future unexpected increases in traffic. Our definition for us will be the average ABW seen by
source s in all its paths. Substituting us in (1) results then in:

maximize
d

S∑
s=1

dsUs

(
ns∑

i=1

psimin
l∈si

{cl − ρl}
)

(3)

restricted to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

If we consider as true that TCP flows traversing path si will achieve a mean rate equal to
ABWsi, the above problem is very similar to the multi-path TCP problem (see eq. 4 in [9]).
In the rest of the paper we address its resolution, we outline an approximative distributed
algorithm, and show its performance on some scenarios.

3 Solving the Problem

3.1 Centralized approach

It has been said that “the great watershed in optimization isn’t between linearity and non-
linearity, but convexity and nonconvexity” [15]. So, the first obvious approach in solving an
optimization problem is to try and find an equivalent convex problem. This task has however
proved impossible, for we could not find a convex problem with the same optimum as (3). What
we could find was a similar convex problem that when combined with simple search heuristics
yields a very good approximation to the optimum.

Let us take a look at the following problem:

maximize
d

S∑
s=1

dsUs




√√√√
ns∑

i=1

psimin
l∈si

{cl − ρl}

 (4)

restricted to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

6

If Us(x) was like in (2), a simple change in the value of α in the exponent for this last
problem would make its optimum and the one of (3) the same. On the other hand, a simple
application of the Cauchy-Schwartz inequality yields that

√∑
i xi ≥

∑
i

√
xi/

√
n. Actually, as

long as the elements of the sum are relatively similar, the upper bound is a good approximation.
Substituting it in (4) results in:

maximize
d

S∑
s=1

dsUs

(
1√
ns

ns∑

i=1

√
psimin

l∈si
{cl − ρl}

)
(5)

restricted to Rd < c, d ≥ 0 and
ns∑

i=1

dsi = ds

This approximated problem can be transformed into an equivalent convex problem. Since Us

as well as the square root are non-decreasing functions, we can introduce the auxiliary variable
tsi:

maximize
d

S∑
s=1

dsUs

(
1√
ns

ns∑

i=1

tsi

)
(6)

restricted to tsi ≤
√

psi(cl − dl) ⇒ t2si

psi
≤ cl − ρl ∀s, i ∀l : l ∈ si

Rd < c , d ≥ 0 and
ns∑

i=1

dsi = ds

The objective is concave in tsi, the first restriction is convex (the quadratic over lineal
function is convex in both variables [16]) and the rest of the restrictions are affine. This means
that the optimum can be rapidly calculated by any standard convex solver.

The solution of (6) yields a very good estimation of the optimum of (3) (which we shall note
d∗) as long as the corresponding p∗siABW ∗

si do not differ very much between paths of the same
source. We already mentioned that the alternative objective function is a good approximation
of the original one as long as all the elements in the sum are relatively similar. If d∗ does not
verify this condition the objective functions will be very different at it, thus the optimum of (6)
will not result in d∗.

However, we will assume it a good starting point to search for the real optimum. Our simula-
tions indicate that this is actually an excellent starting point, and that a simple steepest ascend
method results in the optimum (for those simple cases that can be analytically calculated), or
points where much more sophisticated methods obtain only marginal improvements.

This centralized solution is actually not a bad one, and can be useful for relatively small,
not very dynamic networks. In such cases one can imagine a scheme where measurements of the
traffic matrix are gathered periodically by a central entity, which performs the optimization and
send every source node the new optimal traffic distribution. This is actually how most networks
are managed today, with the period being days or months. We will see the advantages of our
proposal over link-level cost functions in the simulation section.

7

3.2 Distributed Approach

Let us take another look at (3), using once again the auxiliary variable tsi and substituting the
constraint on the load on each link by an equivalent restriction on tsi:

maximize
d

S∑
s=1

dsUs

(
ns∑

i=1

psitsi

)
(7)

restricted to tsi ≤ cl − ρl ∀s, i ∀l : l ∈ si

tsi > 0 , d ≥ 0 and
ns∑

i=1

dsi = ds

Although all restrictions are affine, the objective function is not concave, meaning that
methods solving the dual problem will only find a lower bound of the optimum. How near is
this lower bound (i.e. how small is the duality gap) is closely related to the lack of concavity of
the function [17]. Intuitively, the more concave the objective function, the smaller the duality
gap. Anyway, calculating this lack of concavity can be very difficult. We estimated it by monte-
carlo simulation for several possible network configurations, and found that it is relatively
small and decreases with the number of paths. In the view of these results, we applied the well-
known Arrow-Hurwicz method (see for instance [18]) and confirmed that the resulting traffic
distribution is a very tight approximation of the optimum.

The method is an iterative one that at each step updates the value of the dual (primal)
variables moving them in the direction of (opposite to) the gradient of the Lagrangian function.
In this case, the Lagrangian function is:

L(p, t, µ, µ, γ, λ, θ) = −
S∑

s=1

dsUs

(
ns∑

i=1

psitsi

)
+

S∑
s=1

µs

(
ns∑

i=1

psi − 1

)
−

−
S∑

s=1

ns∑

i=1

(psiγsi + tsiλsi) +
S∑

s=1

ns∑

i=1

∑

l:l∈si

θsil(tsi − cl + ρl) (8)

The Lagrange multipliers that enforces that psi and tsi are positive (γsi and λsi), as well as
the one that makes the addition of the psi equal to one (µs), are not actually very important.
Paths with zero ABW will not be used, and the conditions on psi will at all stages of the
algorithm necessarily be true (normalization should be carefully done, though). However, the
multiplier θsil plays a very important role in the algorithm since it represents the cost of the link

l generated by source s in its path i, resulting in a total cost θ̂l =
S∑

s=1

∑

i:l∈si

θsil. The derivatives

of (8) with respect to ps0i0 and θs0i0l0 are:

∂L

∂ps0i0

= −ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ts0i0 +

∑

l∈s0i0

S∑
s=1

∑

i:l∈si

ds0θsil

∂L

∂θs0i0l0

= ts0i0 − cl0 + ρl0

The auxiliary variable tsi does not have much physical meaning, except that for any given
p its optimal value is the ABW in path si. The derivative on θsil does not tell us much then,
except that it should decrease when l is not the bottleneck of si (which means that in such case
its value should tend to zero). This forces us to estimate the value of θsil. Before discussing
possible estimations, we will present the distributed algorithm:

8

– Link’s algorithm. At times t = 1, 2, . . . link l:
1. Receives path demands dsi(t) from all sources using it, and estimates its total load ρl(t).
2. Computes its cost for each path θsil(t) and its total cost θ̂l(t).
3. Communicates this last value and its ABW to all sources traversing him.

– Source’s algorithm. At times t = 1, . . . source s:
1. Receives from the network the cost of all links he uses (θ̂l(t)) and their ABW.
2. Computes the available bandwidth in each of its paths (ABWsi(t)).
3. For each of its paths, he calculates the number:

∆si(t) = ds(t)U ′
s




ns∑

j=1

psj(t)ABWsj(t)


 ABWsi(t)− ds(t)

∑

l∈si

θ̂l(t)

4. He finds the path imax with the biggest ∆si(t) (∆max
s (t)). He then updates each psi in

the following manner:

psi(t + 1) = [psi(t) + γ(∆si(t)−∆max
s (t))]+

psimax(t + 1) = 1−
∑

i=1...ns
i 6=imax

psi(t + 1)

where γ is a small constant.

If in step 4 the source finds that there is more than one path with maximum ∆si(t), he
distributes the “remaining” probabilities evenly between them.

What is left is finding a good estimation of θsil. We have several guidelines as to what this
cost should look like:

– It should be zero unless link l is the bottleneck of path si.
– Should avoid as much as possible the use of information not local to the link.
– Big values should indicate that this particular link is very important to path si, and so

sources should, if possible, avoid using it.

One possible cost function that presents almost all of the above mentioned characteristics
(specially the third one) is the derivative of the total utility with respect to tsi. If the KKT
conditions [16] where applicable in this problem, at optimality the derivative of (8) with respect
to tsi should be zero. This means that at optimality for all ts0i0 > 0:

−ds0U
′
s0

(ns0∑

i=1

ps0its0i

)
ps0i0 +

∑

l:l∈s0i0

θs0i0l = 0

If path si would have only one bottleneck, there would only be one θsil not zero in the
addition. This suggest the following estimation:

θsil =





dsiU
′
s (

∑ns

i=1 psiABWsi) if l = argmin
l∈si

{cl − ρl}
0 otherwise

(9)

However, the link does not know the source’s mean ABW, nor the utility function he uses.
The latter makes necessary the assumption that all sources use the same utility function, known
by all entities in the network. The former will force the link to make an estimation in order
to maintain communication between elements in the network as restricted as possible. He will

9

assume all links in the network are as loaded as he is, in which case source s would have a mean
ABW equal to his ABW. Then the link’s estimation of θsil will finally be:

θsil =





dsiU
′ (cl − ρl) if l = argmin

l∈si
{cl − ρl}

0 otherwise
(10)

Consider the case of U(x) = log(x). If the ABW was the service rate of a PS queue, the
estimation can be seen as the average number of living flows in the system.

This is the cost function we will use, thus finishing the specification of the algorithm. As we
will see in the next section, it yields a very good approximation of the optimum.

4 Fluid-Level Simulations

4.1 Centralized - The benefits of Maximizing the Utility

Before presenting simulations of the distributed algorithm, we will see some examples where the
advantages of maximizing source-level utility over minimizing link-level cost can be appreciated.

We will begin by the case scenario in Fig. 1. In it, all links have a capacity equal to 5.0
and all sources generate the same demand d, except for source 1 who generates d1. Finally, the
utility function is U(x) = log(x). In Fig. 2 we can see the optimum value of p as a function of
d1 for different values of d. As can be appreciated in the graphs, while d1 is relatively small
compared to d and the ABW on the lower path is high enough, source 1 will only use this
path. When any of this two conditions is not true, p will rapidly go towards 0.5, but always
privileging better conditions on the upper path. Both MATE and TeXCP will have its optimum
at p = 0.5 for all configurations.

0 2 4 6
0

0.2

0.4

0.6

d
1

p op
t

d=2

0 2 4
0

0.2

0.4

0.6

d
1

p op
t

d=3

0 1 2
0

0.2

0.4

0.6

d
1

p op
t

d=4

Fig. 2. The optimum value of p for different values of d in the network of Fig. 1

We will now make a comparison in a more complicated and neutral case. We will use Abilene,
an academic network which consists of 12 nodes and 15 bidirectional links (see Fig. 3) all with
a capacity of 100. The network is then rather small both in the number of nodes and links,
and results obtained from it should not be considered as conclusive. However, it is one of
those few real networks whose topology and several TMs are publicly available, and as such is
an obvious first example to be studied. The paths we used were constructed by hand, trying
to give sources as much path diversity as possible (i.e. presenting the source with disjoint
paths when possible). The optimization for MATE was made using CVX [19], a MATLAB
convex solver. For our proposition (UM from now on, as in Utility Maximization) we used the
distributed algorithm. As we mentioned, when the number of sources is relatively big, the results
obtained by the distributed algorithm are very good, even better than the ones obtained by the
centralized heuristic we presented. As in the previous example, all source’s utility function was
Us = log(x).

10

Fig. 3. The Abilene network topology

We will compare our proposition with MATE in terms of two indicators: mean ABW per-
ceived by sources (us) and link load. To give a precise picture, for any given TM we will measure
the mean, the 25% (75%) quantile and the minimum (maximum) us (link load). The comparison
will be made by dividing between the value obtained by UM and the one obtained by MATE
for each TM (gain of UM over MATE).

Most of the real TMs available do not load the network significantly, so a re-scaling is
necessary. We used dataset X11 from [20] but with all its entries divided by 2.5 × 106, which
yield a mean link load of around 25. In Fig. 4 we can see the boxplots of the us and link
load indicators. Let us first turn our attention to the mean ABW indicators. The mean us is
always bigger in UM than in MATE, although the difference is generally not very important,
being mostly between 1-2%. However, there are some TMs for which the gain can be relatively
significant, achieving values as big as 8%. The gain on the minimum us is more significant,
being mostly between 3% and 12%. This is because generally the source with the smallest us

is the source with the biggest ds, thus it is the most “important” node in the optimization.
Let us now consider the link load indicators. In this case the mean and 75% quantile link load
are generally bigger in UM than MATE. However, the maximum link load is most of the times
smaller for UM than MATE (as much as 13% smaller). This means that link load values in UM
are concentrated while they are more dispersed in MATE, making UM’s load distribution more
balanced.

Mean 25% quantile Min
0.9

1

1.1

1.2

1.3

M
ea

n
A

B
W

 (
ga

in
)

Mean 75% quantile Max

0.9

0.95

1

1.05

Li
nk

 L
oa

d
(g

ai
n)

Fig. 4. Boxplot of the gain of UM over MATE for the us and link load indicators using real TMs

To further explore the relative performance for this topology we generated random TMs.
In particular, we are interested in the effect of the number of active OD pairs. This study was
done using the following simple model: an origin node will send traffic to a certain destination
node with probability p, and the entry in the TM (i.e. the corresponding ds) will be a random
log-normally distributed number.

In Fig. 5 we can see the boxplots of us and the load indicators for 200 random TMs with
p = 0.05 and mean ds equal to 30. The mean us is mostly 1%-5% bigger in UM than in

11

MATE, although it can be as big as 16%. The minimum us shows better results, the gain being
generally between 1% and 10% but achieving a maximum of 34%. On the other hand, similar
to the previous example, the mean and 75% quantile load is most of the times bigger in UM
than MATE, while the maximum load is generally smaller for UM than MATE.

mean 25% quantile min

0.9

1

1.1

1.2

1.3

M
ea

n
A

B
W

 (
ga

in
)

mean 75% quantile max
0.6

0.8

1

1.2

1.4

1.6

Lo
ad

 (
ga

in
)

Fig. 5. Boxplot of the gain of UM over MATE for the us and load indicators for p = 0.05 and mean ds

equal to 30

Fig. 6 presents the results for 200 random TMs with p = 0.25 and mean ds equal to 3. The
gain obtained by UM over MATE for the us is smaller than in the previous case. However, the
load tendency is maintained. The maximum load in the network is significantly smaller for UM
than MATE, the difference being mostly between 5% and more than 20%.

From these two results we can conclude that as the number of active OD pairs augments,
the two schemes show similar results. Intuitively, if all nodes communicate with each other,
a scheme that looks at the paths’ condition and one that considers the links’ will not differ
substantially.

Mean 25% quantile Min

0.9

1

1.1

1.2

M
ea

n
A

B
W

 (
ga

in
)

Mean 75% quantile Max

0.6

0.8

1

1.2

1.4

Li
nk

 L
oa

d
(g

ai
n)

Fig. 6. Boxplot of the gain of UM over MATE for the us and load indicators for p = 0.25 and mean ds

equal to 3

As a conclusion from these experiments we may say that, for this topology, the mean us is
almost always bigger with UM than MATE, although this increase is generally not very big.
However, there are cases where the improvement can be important. On the other hand, the load
is more evenly distributed among links in UM than MATE, resulting in a significantly smaller
maximum link load.

4.2 Distributed

In this section we shall present some simple examples to see how the distributed algorithm
converges, and how far from the optimum is the resulting traffic distribution. We shall first

12

present some fluid-level simulations to see how it behaves in an idealized context. We have also
included some packet-level simulations to see the effect of unprecise and delayed measurements,
which are presented in the next section.

The first example we will consider is the simplest one: a single source has two possible paths
to choose from. Each of these paths have a capacity of 3.0 and 4.0 respectively. In Fig. 7 we can
see the values of p1 (the portion of traffic routed through the path with the smallest capacity)
and p2, both for the distributed and the centralized algorithm, as a function of the demand
generated by the source.

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

p

p
1
 opt

p
2
 opt

p
1
 dist

p
2
 dist

Fig. 7. p1 and p2, both for the centralized and distributed algorithm, in a two paths single source
scenario

The first remarkable thing is that the distributed algorithm approximates very well the
optimum, being the biggest difference less than 0.05. The second aspect that is worth noting is
that the distributed algorithm always tends to “over-use” the widest path. This can be explained
by the approximation we made from (9) to (10). Since U(x) is concave, U ′(x) is a non-increasing
function, meaning that if x1 > x2 then U ′(x1) ≤ U ′(x2). So, when a link has an ABW bigger
than the source’s average, its estimation of the price will be smaller than it originally would be.
In this case, it means that link 1 will calculate a smaller price than he should, resulting in the
source sending more traffic through it than the optimum.

Consider now the example in Fig. 8. In it, all links have a capacity of 4.0. Source 2 generates
a total demand of 1.0 (d2), and we analyze what is the optimum traffic distribution while
varying d1. Notice how the ABW on the lower path is the same as in the last example, but
how source 1 concentrates more of its traffic in the wider path than before. It is also worth
noting that in this case the distributed algorithm approximates even more the global optimum,
so much that it is very difficult to tell them apart in the graph.

In Fig. 9 we present the evolution of the traffic distribution with the network of Fig. 1.
In this particular example, the demand generated by source 1 is d1 = 2, while the rest of the
sources generate d = 3. We used γ = 1.5×10−3. We can see two things from this example. First,
and as can be seen comparing the converged probability and Fig. 2 (b), the global optimum and
the probability resulting from the distributed algorithm are very similar. Secondly, the initial
traffic distribution is not supported by the network, which does not prevent the algorithm from
rapidly moving to a supported distribution, slowly converging towards the optimum afterwards.

5 Implementation Issues

So far we have described the algorithm theoretically, without discussing practical issues. The
first clear necessity of the algorithm is that border routers should be able to send arbitrary
portions of traffic through the different paths. Secondly, in order to measure dsi, interior routers
should distinguish between traffic belonging to a given path that is traversing its links.

13

1

2

p 2 * d 1

d 2

p 1 * d 1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

d
1

p

p
1
 opt

p
2
 opt

p
1
 dist

p
2
 dist

Fig. 8. The example topology, and its optimum traffic distribution as function of d both for the cen-
tralized and distributed algorithm.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Iteration

p

p
11

p
12

Fig. 9. Probability of sending through the upper path (p11) and the lower one (p12) for the example in
Fig. 1

These requirements are accomplished for instance by MPLS. Hashing can be used in order
to load-balance traffic with an arbitrary distribution. Packets belonging to a given si can be
identified by its label header. Interior routers should then keep a counter indicating the number
of bytes they have routed of a given label. They periodically calculate the corresponding dsi

that had traversed them by dividing this counter between the measurement period time, after
which they reset the counter. In order to avoid measurements that are too noisy, some filtering
should be applied. In our simulations, a simple exponential filter is enough. The total load ρl

is then calculated as the sum of all dsi that use the link. Available Bandwidth of link l can be
easily calculated as the difference between the total capacity and this value. However, and in
order to avoid numerical problems, all calculations that includes it should use the maximum
between the ABW and a relatively small value (for instance cl/100).

Another important aspect is the communication between link and source. The source com-
municates with the link implicitly, since communication in that sense is simply how much traffic
source s is sending through link l. It is true that what actually reaches the link will always be
smaller or equal than originally at the source node, but such an approximation is not too
important.

The most challenging communication is from the link towards the source. We will use the
same approach as TeXCP and use probe packets, which in our case will contain the path’s ABW
and total cost (

∑
l:l∈si θ̂l). Periodically, the source sends probe packets, initially indicating as

the path’s ABW and cost ∞ and 0.0 respectively. As this packet advances from the source
towards the destination, each interior router sees which is the ABW indicated in it. If he sees
that the packet has a smaller value than the one of the outgoing link, he will overwrite it and put
this new value instead (and “remember” it). When the probe packet reaches the destination,

14

it goes back to the source exactly in the opposite direction. As it is going back to the source,
each interior router will check whether the final ABW indicated on the packet is the one the
router had when it first passed. If so, it means that he is the bottleneck of the particular path.
He then calculates θsil accordingly, update the link’s total cost θ̂l, and add this value to the
total path cost indicated on the packet. As a result of this, the source will finally receive the
path’s ABW and total cost.

5.1 A Simulation

We implemented the algorithm in an ns-2 [21] simulation script to see its performance in a
realistic context. In Fig. 10 we can see a simple case scenario. There are two sources and each
of them can use two paths, one of which is shared with the other. All links have a capacity
of 1.0 Mbps, except for the “access” ones which have 2.0Mbps. Traffic consists of elastic flows
with an exponentially distributed size whose mean is 20kB, arriving as a Poisson process of
the corresponding intensity so as to generate a given demand. The chosen utility function is
the natural logarithm. The exponential filter’s parameter is set to α = 0.7, and γ is set to
5 × 10−9. The initial probabilities are set on both sources so that the shared link is not used.
This will maximize the likeness of oscillations. Load measurement periods should always be
smaller (several times smaller) than the probability update period. It is important that the
source receives measurements as updated as possible in order to see the effects of the previous
probability update. Probabilities are updated every 50 seconds for both sources and the load
measurements are made every 10 seconds. Sources are however not coordinated between them
and update their probabilities at different moments. Both sources generate the same demand,
approximately 1.1 Mbps, which the network cannot initially support. The optimal distribution
is then that both sources send a third of their traffic through the shared path.

1

2

p 1 2

p 2 2

p 1 1

p 2 1

Fig. 10. The example topology

As can be seen in Fig. 10, both sources at first rapidly change their probability to start
using the middle path. It take them a little while to realize that another source is also using
this path, and start augmenting the direct path probability, but slower than before, since the
price difference between them is not so big now. After a little longer the probabilities finally
converge to the optimum. This whole process takes approximately 15 minutes, not too much
considering the time-scale and that it is an extreme case. It is important to notice that load
measurements need not be very precise, and that the algorithm supports a little bit of noise.
This suggest that maybe some of the measured variables (e.g. dsi) could be inferred from
more “global” and readily available measurements (e.g. ρl) without affecting the algorithm’s
performance.

15

0 1000 2000 3000 4000
0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

p

p
11

p
21

0 1000 2000 3000 4000
0

0.5

1

1.5

2
x 10

6

Time (sec)

Lo
ad

 (
bp

s)

Upper Link
Lower Link
Middle Link
Access Link 1
Access Link 2

Fig. 11. The evolution of p and link load over time

6 Conclusions

In this work we presented a TE mechanism that takes into account the needs of both the network
operator (uncongested links) and the users (uncongested paths, leading to faster transfers). We
achieved this by defining an objective function that is not a cost at a link level, but a utility
at a user level (actually, at the border router level, the source). This lead to an optimization
formulation very similar in spirit to Multi-Path TCP [9], where we maximize the sum of an
utility function whose argument is the average ABW each source sees in its path. The resulting
optimization problem was not convex. Two kinds of resolution algorithms were presented: a
centralized and a distributed one. The centralized one can be applied to relatively small, not
too dynamic networks. As the network increases in size, the centralized algorithm is no longer
a solution. For this case, a distributed algorithm was outlined which, although based on a
resolution method for convex problems, finds very tight approximations to the optimum in a
relatively short time.

When compared with other load-balancing mechanism, the obtained distribution improves
perceived performance with a more balanced load distribution. The obtained results were
promising but we tested our proposition in only one relatively complicated network. This means
that these results are not conclusive, and more topologies and TMs must be explored, including
real as well as randomly generated ones.

There are many more things left to do. We considered that only elastic traffic is present in
the network, and the utility function was designed with this in mind. However, streaming traffic
does exist, and its requirements are different from elastic one. Although our scheme indirectly
avoids paths with big queueing delays and losses, the propagation delay should also be taken
into account. If for instance a source has two paths to choose from, he could prefer the shorter
one if the ABW is enough in it, which would actually benefit both streaming and elastic traffic.
Maybe a small change in the utility function is enough. We are currently investigating this
possibility.

With respect to the distributed algorithm, there are also many things to investigate. A
convergence analysis should be made, and the stability of the algorithm analyzed. Taking into
account that potential oscillations are what make operators most uneasy when offered with this
kind of adaptive schemes, this study is very important.

When applying the distributed algorithm, one rapidly realizes that the value of γ (the
adaptation step) is very important. This value indicates how fast the probabilities adapt. A
very big value makes the algorithm unstable, while a very small one makes it unresponsive.
The problem is that a “good” choice of γ depends on the network topology, but also on the
current load. A value that works when the network is too congested, may make the network
unresponsive when the network is lightly loaded. In this last case one may think that is not
really important what the traffic distribution is, or at least is not very urgent to change it to

16

the optimum. However, and in order to make the algorithm as self-configured as possible, we
are exploring a possible alternative mechanism, where probabilities are always augmented in
the same quantity, independent of the current load.

Another practical aspect to be explored is the need of all the measurements. Our simulations
indicate (see Fig. 11) that loads are not required to be measured too precisely for the algorithm
to work. Maybe link prices can be inferred from the total’s link load. If this can be done, we
may be able to remove the need of MPLS, making the algorithm less technologically specific.
We will still need a way to send arbitrary portions of traffic through specific paths. Maybe an
alternative to MPLS could be Muti-Topology Routing [22].

7 Acknowledgements

We would like to thank Paola Bermolen, Irène Charon, Olivier Hudry, Jim Roberts and Sara
Oueslati for the fruitful discussions that enabled this report to be written.

References

1. Ben-Ameur, W., Kerivin, H.: Routing of uncertain traffic demands. Optimization and Engineering
6(3) (september 2005) 283–313

2. Zhang-Shen, R., McKeown, N.: Designing a predictable internet backbone with valiant load-
balancing. In: IWQoS. (2005) 178–192

3. Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic matrices to the
research community. SIGCOMM Comput. Commun. Rev. 36(1) (2006) 83–86

4. Khanna, A., Zinky, J.: The revised arpanet routing metric. SIGCOMM Comput. Commun. Rev.
19(4) (1989) 45–56

5. Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the tightrope: responsive yet stable traffic
engineering. In: ACM SIGCOMM ’05. (2005) 253–264

6. Roughgarden, T., Éva Tardos: How bad is selfish routing? J. ACM 49(2) (2002) 236–259
7. Elwalid, A., Jin, C., Low, S., Widjaja, I.: MATE: MPLS adaptive traffic engineering. INFOCOM

2001 3 (2001) 1300–1309
8. Kelly, F., Maulloo, A., Tan, D.: Rate control in communication networks: shadow prices, propor-

tional fairness and stability. In: Journal of the Operational Research Society. Volume 49. (1998)
9. Key, P., Massoulie, L., Towsley, D.: Path selection and multipath congestion control. In: IEEE

INFOCOM 2007. (May 2007) 143–151
10. Bonald, T., Massoulié, L.: Impact of fairness on internet performance. In: ACM SIGMETRICS

’01. (2001) 82–91
11. He, J., Bresler, M., Chiang, M., Rexford, J.: Towards robust multi-layer traffic engineering: Opti-

mization of congestion control and routing. Selected Areas in Communications, IEEE Journal on
25(5) (June 2007) 868–880

12. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw.
8(5) (2000) 556–567

13. Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-min fairness,
proportional fairness and balanced fairness. Queueing Syst. Theory Appl. 53(1-2) (2006) 65–84

14. Bonald, T., Proutière, A.: On performance bounds for balanced fairness. Perform. Eval. 55(1-2)
(2004) 25–50

15. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2) (1993) 183–238
16. S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press (2004)
17. Pappalardo, M.: On the duality gap in nonconvex optimization. Math. Oper. Res. 11(1) (1986)
18. M. Minoux: Programmation Mathématique: théorie et algorithmes. Dunod (1983)
19. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (March 2008)
20. Yin Zhang: “Abilene Dataset” http://www.cs.utexas.edu/∼yzhang/research/AbileneTM/.
21. : The Network Simulator - ns http://nsnam.isi.edu/nsnam/index.php/Main Page.
22. Kvalbein, A., Lysne, O.: How can multi-topology routing be used for intradomain traffic engineer-

ing? In: INM ’07: Proceedings of the 2007 SIGCOMM workshop on Internet network management.
(2007)

