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ABSTRACT

The new generation of Pleiade satellites will be able
to acquire High Resolution Satellite Image Time Series
(HRSITS). Thus algorithms characterizing time evolu-
tions are required. Since images are not radiometrically
calibrated, and since these HRSITS are temporally sub-
sampled, classical time interpolation methods can not
be applied. To overcome this problem, we use cluster-
ing algorithms and symbol based patterns retrieval al-
gorithms for generating a pixel evolution class image.
Those classes allow us to temporally characterize regions
obtained by segmentation. Indeed, at these resolutions,
relevant information are to be found at the region level.
The series we use was acquired for the ADAM (Data As-
similation for Agro-Modelling) project by CNES. Images
of the same scene were acquired by SPOT 1,2, and 4, and
they are geometrically registered
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1. INTRODUCTION

The ADAM Satellite Image Time Series (SITS) consists
in thirty eight 20m resolution images of the same zone
taken at variable time intervals by three different satel-
lites (SPOT 1, 2 and 4). We used three channels, the
wavelength ranges of which are:[0.5−0.59], [0.61, 0.68]
and [0.70, 0.59] µm. We are interested in the temporal
analysis of the series and more precisely in the character-
istic evolutions in the series. The variability of the sen-
sors, the atmospheric condition changes, the temporal sub
sampling as well as the brutal nature of some observed
phenomena (e.g.: harvest) prevent us from using tempo-
ral interpolation methods. However, it is visually easy
to detect zones evolving similarly. For instance, if one
follows two wheat fields through time, even if a a curve
does not fit the radiometric evolutions, it seems obvious
that they are subject to the same evolution.

In order to overcome the problem of temporal continuity,
we consider a purely symbolic framework. In this aim,
the image value space is quantized with an Expectation-
Maximization (EM) algorithm. In the resulting image
series, each pixel has a discrete value corresponding to
its cluster number. Then, the evolutions of each pixels
are considered: This evolution is a sequence of sym-
bols, each symbol being related to an EM class class.

Finally, the pixels are classified according to their evo-
lutions. This task can be a very resource consuming
one. Therefore, we propose to use a compact and effi-
cient data structure for storing and classifying evolutions
: tries [1, 2], a.k.a. prefix trees. By enriching those struc-
tures, we also store pixel positions, which, in turn, al-
lows us to efficiently build images of labels where each
label is related to an evolution class. Thus, we obtain a
classification image based on pixel evolutions. More de-
tails are to be found in Section 2. This technique being
pixel based, some zones covered by the classification can
present ”pepper and salt” noise which makes the interpre-
tation of the result difficult. Therefore, it is spatially reg-
ularized using a segmentation, which, in turn, if indepen-
dently considered, gives no information about temporal
behaviors. The results are easier to interpret as they de-
scribe the evolutions of regions. A fusion of the segmen-
tation series and a classification image is done by select-
ing for each segment, the class the pixels of the regions
voted for. It is to note that this method is very easily com-
putable. Details about segmentation series and evolution
class generation as well as explanations about the fusion
of the segmentation series with evolution classes images
are also given in Section 2. Section 3 details experiments
on ADAM SITS and gives quantitative and qualitative as-
sessment. Finally, Section 4 concludes this paper and ex-
pounds future works.

2. MIXING SEGMENTATIONS AND PIXEL
BASED EVOLUTION CLASSIFICATIONS

2.1. Generating segmentation series

In order to describe significant objects of the scene, we
need to segment the images. As the dynamic of the im-
ages changes through time, segmenting the images in-
dependently would not give segmentation of the same
scale at different times. Besides, the brutal radiometric
changes in time prevent us from using 3D segmentation
techniques as well. In order to overcome these problems
we use a multi segmentation method presented in [3].
This method extends the classical Minimum Description
Length (MDL) image segmentation method to SITS. The
MDL segmentation method [4, 5, 6] consists in modelling
the image as a partition of connected regions with inde-
pendent radiometric models. Knowing the partition, the
statistics of the regions are easily computable, but there



exist many possible partitions of the image. In order to
disambiguate this problem, the MDL principle is used.
MDL considers segmentation as a coding problem, and
tries to minimize the coding length: the image can be
coded into a two-part message, the first one being the
model part, and the second one, the image knowing its
model. This formulation gives a good compromise be-
tween the two following extreme cases in which: 1) The
partition considered is the absolute over partition (one re-
gion per pixel); in this case, the second part of the mes-
sage is null, but the first part is very large. 2) The partition
considered has only one region. In this case, the first part
of the message is null, but the second one is very high.
Generally, the regions of the ADAM SITS we are inter-
ested in are geometrically constant: the rivers generally
keep their shapes, as well as the forests, the towns, and
generally the fields. But sometimes, the regions can split
or merge: for instance during culture growth, crops or
cloud occlusion. In order to take these behaviour into ac-
count, we consider two hypotheses for two overlapping
regions at different times:

• Either they are independant and the two contours are
coded intependantly

• Or they remain constant: the second contour is
coded conditionally on the first one. This coding
scheme enables some segmentation errors for the re-
gions and some slight changes of the shape of the
region.

Region radiometries are considered to be drawn indepen-
dently through time and are thus coded for all the regions
of all images. Within each region, the pixels are consid-
ered independent and identically distributed and follow a
3D gaussian model. In order to optimize this description
length, a merging algorithm (similar to the one presented
in [5]) is used: the algorithm is initialized with series of
over segmentations. For each spatially connected regions
for all images, the cost (can be negative) of merging as
the difference of the description length of the SITS after
and before merging is computed. Noticing that only few
regions description length change after a fusion enables
computing this cost easily. This stack of merges is then
sorted according to their merging cost, and the best two
candidates are merged. At each step, the cumulative cost
(corresponding to the STIS description length minus the
initial oversegmentation description length) is computed,
and the best series of segmentation is obtained at its min-
imum.

2.2. Generating an evolution classes image

As written in Section 1, pixel values are, for each im-
age, linked to one single class. More precisely, for each
image, a EM algorithm based on a mixture model of the
image radiometry is run. Several channels are taken into
account and classes number is user-defined.

Then, for each pixel, an ordered list of symbols
s1, s2, . . . , sI is built, whereI is the number of images
in the SITS and theith symbol of the list directly refers to
the class the pixel belongs to in theith image of the time
series. This list is denoted bys1 → s2 → . . . → sI and
it is referred to as apixel evolution. If classes, images
and pixels are numerous, pixel based evolution classifi-
cation becomes a very resource consuming task. It either
does not fit into memory or it requires, in the worst case
scenario, a processing triggeringP∗(P−1)

2 comparisons

of pixel evolutions, withP the number of pixels of one
image. For more details, the reader is referred to [7]. An

Figure 1. Trie obtained for a toy example (C = 6).

efficient way of processing this type of data is to build a
compact data structure such as a trie, a.k.a. prefix tree.
This data structure has been proposed by de la Briandais
[2] and Fredkin [1]. It has been widely used, for instance
for improving telecommunication and data mining tech-
niques (e.g. [8], [9]). For the sake of clarity, we present
here tries by adapting the description to our application.
A trie can store in an optimized way all different pix-
els evolutions by storing only once the prefixes that are
shared by evolutions. Those evolutions are in turn easy
to retrieve as each path from the root to a leaf refers to a
given evolution. Thus, if we store into the trie the pixel
positions of each evolution class, then we just have to
browse once the trie for generating an evolution class im-
age. Let us consider the toy example depicted in Figure 1.
In this example, the input dataset is a SITS that contains 4
images of 9 pixels each (p1 to p9, in raster order). Three
symbols (’red’, ’blue’ and ’yellow’) are defined for de-
scribing reflectance values over the whole SITS. These
images had been acquired at timet1, t2, t3 andt4. For
each pixel, we insert its pixel evolution into a trie (see
Figure 1). If an evolution already exists, i.e. a full path
from root node to a leave corresponding to this evolution
exists, then no branch or node is created. On the contrary,
if there is no corresponding path, then appropriate nodes
and branches are generated. As can be observed in Fig-
ure 1, a class symbol as well as the instances positions
are linked to each leave, . For instance, pixel evolution
red → blue → red → red holds for pixelsp1 andp4
and they fall into classC1. This corresponds to the left
branch of the trie. The first (w.r.t. root node) two nodes
of this branch also store the common prefixred → blue
shared by classesC1, C2 andC3. As can be observed,
this data structure efficiently takes part to reduction by
storing only once common prefixes. Processing times are
good as they are bounded byP ∗ 1

2 (s + 1)logsP , with s
the average number of son nodes for a given father node.
Implementation details are to be found in [7].

2.3. Fusion of a segmentation series with an evolu-
tion class image

The obtained classification is difficult to interpret since
it contains ”pepper and salt” noise. One would like to be
able to deduce from it the radiometric evolutions of the
objects of the scene. In order to interpret the classification
that way, we propose to use a segmentation and to com-



bine it with the first classification. This problem can be
seen as a classifier combination problem. There has been
recently a large interest given to this field: [10, 11, 12]
among many others.
As mentioned in [10], the classifier combination problem
can be divided into three types depending on the informa-
tion level of the output of the classifiers to combine:

• the abstract level: the classifiers output only the
class selected for each sample. Or, for some exten-
sion, they output a subset of the possible classes.

• the rank level: each classifier outputs an ordered list
(of a subset) of the possible labels for each sample.

• the measurement level: each classifier outputs a con-
fidence measure for each class (of a subset) of the
possible labels for each sample.

Our case corresponds to the first type: in each region,
each pixel can be considered as a classifier outputting his
guess for the class of the region. Selecting a class for the
region can thus effectively be seen as a classifier combi-
nation problem: each pixel is considered as an elector,
voting for the region’s evolution among all the possible
evolutions.
Let us represent each regionRi i ∈ [1, Nr] by aK ×|Ri|
matrix, (Aj,k), where|Ri| is the number of pixels in the
region, andK the number of evolution classes. Each
column vectorAk represents thekth pixel decision: ie
it has a unique non zero entry corresponding to its evo-
lution class label. The criteria we consider to affect
one evolution class for the region is strictly speaking the
”plurality vote”: select classk such that

∑|Ri|
j=1 Aj,k =

maxl∈[1,K]

∑|Ri|
j=1 Aj,l, but, it is generally referred to, in

the literature, as the majority vote. It can in fact be seen
as a majority vote if the number of outcomes is reduced
to two: ”correct decision” and ”wrong decision”, thus
falling into a binary case in which plurality vote and ma-
jority vote are equivalent [13].

3. EXPERIMENTS

3.1. Input data and pre-processing

Before generating the evolution class images, the image
value space must be quantized to reduce the size of the
tree to build. In that aim, we perform an EM clustering
on the images. We chose this clustering method because
it is based on a mixture model and enables therefore each
data point to be attached to different cluster centers with
different weights (the probability of the data point to be
attached to one cluster center). This algorithm thus per-
forms well on intricate data. Once the algorithm has con-
verged, we harden the result by assigning to each data
point the index of the Gaussian parameters maximizing
the a posteriori probability. For further details on EM
clustering algorithm, the reader is referred to [14]. In
order to choose the number of clusters for each image,
we use the MDL principle: for different number of clus-
ters, we compute the EM clustering and the resultant de-
scription length. The chosen number of clusters is the
one minimizing the description length. The coding of the
Gaussian parameters (mean and covariance for each clus-
ter) has the following length:

L(M) =
K

2

[

d(d + 1)

2
+ d

]

log(N) (1)

Figure 3. Pixel evolution classification results. The cor-
responding number of classes is782823.

where,n(k) is the number of pixels attached to the cluster
k, d is the space dimension (3 channels in our case), and
N the number of pixels in the images. The fidelity term
can be approximated as:

L(D|M) = Nd
2 (log(2Π) + 1) + (2)

∑

k=1 Kn(k) {log(|Γk|) − log(p(Γk, µk))}

Let us note that the approximation done

(
∑

x∈ck

(x−µk)T Γ−1

k
(x−µk)

2 ≈ n(k)d
2 ) is justified

only in the case where a large number of points are
attached to each cluster. For some images, the minimum
seems not to be reached although the maximum number
of clusters considered is quite high (60). However, there
always exist one local minimum. We decided to choose,
for each image, the number of clusters corresponding
to this first minimum. The chosen number of clusters
ranges from8 to 33. Figure 2a) shows a crop of the
1st, the11th, and the last original images. The resulting
clustering images are shown in Figure2c).

Figure 3 shows the pixel evolution classification, and Fig-
ure 2b) shows the segmentation series.

3.2. Results

The final series of object evolution classifications is pre-
sented in Figure 2d) for the EM-MDL clustering. The
number of evolution classes for all the regions of all the
images is40209 which corresponds to a reduction of95%
of the number of classes before fusion (782823).
In order to quantify the error induced by the fusion, one
can compute the increase in the description length of the
data knowing the resulting clustering series and the data
knowing the input clustering series:

∆L(D|M) =
∑

x changed class

log

(

(x − µb)
T Γ−1

b (x − µb)

(x − µa)T Γ−1
a (x − µa)

)

(3)
wherea stands for ”after fusion” andb stands for ”before
fusion”. The results are shown in Figure 4. This error is
due to the misclassification in the majority vote step. It
could probably be reduced a lot by techniques handling
better the case where there is more than one representa-
tive class. The final object evolution classification can
be used to find regions evolving similarly throughout the
whole sequence. An example of such regions is given in
Figure 5.

4. CONCLUSION

In this paper, we proposed to generate a spatio-temporal
description of the SITS by merging an evolution class im-



a) b)

c) d)

Figure 2. a)400×400 crop of the1st, 11th, and last original images of the ADAM Series. (c©cnes). b) Input segmentation
series. c) EM clustering result. d) Final Result: Object evolution classification for input quantization with EM algorithm.

Figure 4. This Figure shows the reconstruction error.µ = (µ1, ..., µK), Γ = (Γ1, ..., ΓK), and ther index stands for
reconstructed. The first image has far largest reconstruction error.

age and a segmentation. Final result is simpler than the
input classification and adds temporal evolution informa-
tion to the input segmentation. Furthermore, meaningful
objects can be easily identified. For the combination of
classifiers, we used a very simple method and however
achieved some interesting results. Using a more precise
combination framework enabling for instance mixtures of
evolution classes to characterize a region would probably
give better results. An other possible improvement could
be achieved by choosing the best segmentation according
to a minimization of the description length of the final
result instead of fixing it at the beginning. Finally, con-
sidering the regions objects throughout the whole method
from the beginning to the end would certainly give more
easily interpretable results. In fact using the pixel based
evolution classification before fusing it with the segmen-
tation series presents the drawback that there is as much
series reconstructions as images. Such a method requires
an efficient region matching algorithm.
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