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ABSTRACT

This paper investigates the use of a popular regularization
model, the Total Variation minimization (TV), to filter SAR
interferometric images (amplitude and phase data). This
model is extensively used for its property of preserving edges
and is therefore well adapted for urban areas. Using a TV
model adapted to multi-dimensionnal data, we propose to do
a joint filtering of phase and amplitude images. Due to the
many local minima, the minimization of such a model is hard
to perform. A new fast approximate discrete algorithm is
presented. The filtering is applied in the framework of 3D
reconstruction. Results on real images are presented.

Index Terms— SAR imagery, graph-cut, Markov Ran-
dom Field, interferometry

1. INTRODUCTION

There are nowadays many SAR satellite sensors (EnviSat,
Radarsat, ALOS ...) providing a huge amount of SAR images.
The popularity of such sensors is linked to their all-weather
and all-time capabilities, combined with their polarimetric
and interferometric potential. The interferometric data,which
are phase difference images, give either elevation or move-
ment information. The launch of new sensors with improved
resolution in 2007 (TerraSAR-X and CosmoSkyMed) opens
new fields of applications. Particularly, the computation of
Digital Elevation Models (DEM) becomes feasible with met-
ric interferometric images, specially when tandem configu-
rations will be available. These new data will contribute to
urban monitoring which is an important issue for governmen-
tal agencies (risk analysis, disaster management, environmen-
tal protection, urban development planning,...). In this paper
we are interested in filtering SAR images for the purpose of
building delineation to perform 3D reconstruction.

Although many works have already been dedicated to
SAR filtering, we explore in this paper thejoint filtering of
amplitude and phase data. We will formulate the problem
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as the Maximum A Posteriori estimation and considers the
minimization of an energy that combines two type of infor-
mation: a data driven term and a regularization term. As we
will see in the following, due to the physical mechanisms of
radar processing, this energy is not convex (whatever the reg-
ularization function) and optimization is a hard task. In this
paper, a dedicated algorithm is proposed which is based on
graph-cut approaches [1]. It provides an approximate solution
but it is fast and requires a limited amount of memory.

2. PROPOSED MODEL

It is assumed that an imageu is defined on a finite dis-
crete latticeS and takes values in a discrete integer set
L = {0, . . . , L}. We denote byus the value of the im-
ageu at the sites ∈ S. We note by(s, t) a clique of order
two related to a chosen neighborhood system and byNs the
local neighborhood of sites. A solution û regularizingu
is searched for. It can be shown that under the assumption
of Markovianity of û and with some independence assump-
tion onu conditionally toû, the MAP problem is an energy
minimization problem:

û(MAP ) = arg min
û

E(û|u)

with E(û|u) =
∑

s

U(us|ûs) + β
∑

(s,t)

ψ(ûs, ût)

U(us|ûs) = − log p(us|ûs) andψ is a function modeling the
prior chosen for the solution. In the case of the minimization
of the Total Variation,ψ(ûs, ût) = wst|ûs − ût| (wst = 1
for the 4-nearest neighbors andwst = 1/

√
2 for the 4 diag-

onal ones; we will not explicitly write the weightswst in the
following equations).

2.1. Distributions of interferometric phase and amplitude

The synthesized radar imagez is complex-valued. Its ampli-
tude|z| is very noisy due the interferences that occur inside
a resolution cell. Under the classical model of Goodman, the



amplitudeas of a pixels follows a Nakagami distribution de-
pending on the square root of the reflectivityâs. This likeli-
hood leads to the following energetic term:

U(as|âs) = M

[

a2
s

â2
s

+ 2 log âs

]

In the case of SAR interferometric data, the interferometric
product is obtained by complex averaging of the hermitian
productγ of the two SAR images. A good approximation
of the phaseφs distribution is a Gaussian which leads to a
quadratic energy:

U(φs|φ̂s) =
(φs − φ̂s)

2

σ̂2
φs

The standard deviation̂σ2
φs

at sites is approximated by the

Cramer-Rao bound̂σ2
φs

=
1−ρ2

s

2Lρ2
s

(with L the number of aver-
age samples andρs the coherence of sites). For low coher-
ence areas (shadows or smooth surfaces, denotedShadows
in the following), this Gaussian approximation is less relevant
and a uniform distribution model is betterp(φs|φ̂s) = 1

2π
. In

this paper, we are interested in high resolution interferometric
data. In many cases, the elevation range is contained within
one fringe so we do not have to handle the problem of phase
unwrapping.

2.2. Regularization term

The proposed method aims at preserving simultaneously
phase and amplitude discontinuities. Indeed, the phase and
amplitude information are hopefully linked since they reflect
the same scene. Amplitude discontinuities are thus usu-
ally located at the same place as phase discontinuities and
conversely. We propose in this paper to perform the joint
regularization of phase and amplitude. To combine the dis-
continuities a disjunctivemax operator is chosen. The joint
prior model is defined by:

E(â, φ̂) =
∑

(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|), (1)

with γ a parameter that can be set to 1, and otherwise accounts
for the relative importance given to the discontinuities ofthe
phase (γ > 1) or of the amplitude (γ < 1). The global joint
energy term is then (with some weighting of the likelihood
terms):

E(â, φ̂|a, φ) =
1

βa

∑

s

M [
a2

s

â2
s

+ 2 log âs]

+
γ

βφ

∑

s

(φs − φ̂s)
2

σ̂2
φs

+
∑

(s,t)

max(|âs − ât|, γ|φ̂s − φ̂t|)

Shadow areas Due to the specific properties of shadow ar-
eas (random phase implying no likelihood term), they are sep-
arately detected and an adapted regularization term is defined.
The regularized fieldŝa and φ̂ at sitess located inside the
detected shadow areasShadows are governed only by the
regularisation term. With the prior term defined in equation
(1), the phasêφs for s ∈ Shadows that minimizes the en-
ergy corresponds to an interpolation of the phase value at the
surrounding sites. Shadow areas however are most of the
time at ground level and not at an intermediate height be-
tween the top of the structure that creates the shadow and the
ground at the shadow end. A modified regularization term
that better describes this prior knowledge is therefore used
for cliques involving one or both site(s) inside the shadow
regions:E(â, φ̂) =

∑

(s,t)E(â, φ̂)(s,t) with E(â, φ̂)(s,t) de-
fined as:

(i) if s /∈ Shadows andt /∈ Shadows,
E(â, φ̂)(s,t) = max(|âs − ât|, γ|φ̂s − φ̂t|),

(ii) if s ∈ Shadows andt /∈ Shadows andφ̂s ≤ φ̂t

E(â, φ̂)(s,t) = |âs − ât|+ γ|φ̂s − φ̂t|,

(iii) if s ∈ Shadows andt /∈ Shadows andφ̂s > φ̂t

E(â, φ̂)(s,t) = |âs − ât|+ 2γ|φ̂s − φ̂t|,

(iv) if s ∈ Shadows andt ∈ Shadows
E(â, φ̂)(s,t) = |âs − ât|+ γ

(

φ̂s − φ̂t

)2

.

The cases wheres /∈ Shadows andt ∈ Shadows are treated
in a symmetrical manner. Outside shadow areas (case i), the
regularization term is the same as previously. To limit the
effect of a given shadow area on the regularization of the am-
plitude, we independently regularize phase and amplitude in
and at the limit of the shadows (cases ii to iv). To force the
regularized phase inside a shadow to follow ground level, we
penalize more heavily over-estimation (case iii) than under-
estimation (case ii). Finally, a quadratic constraint (case iv)
enforces a flat/smooth ground inside a shadow area. Note
that in each case (i to iv) the prior termE(â, φ̂)(s,t) is con-

vex and so is the prior energyE(â, φ̂). The convexity of the
prior energy is essential to apply the minimization algorithm
described in the following section.

3. ENERGY MINIMIZATION

Minimizing a non-convex energy is a difficult task as the al-
gorithm may fall in a local minimum. Algorithms such as
the Iterated Conditional Modes require a “good” initialization
and then performs local changes to reduce the energy. Graph-
cut approach provides a way to explore a combinatorial set of
changes involving simultaneously all pixels. Following [1],
we denote such changeslarge moves. Instead of allowing a
pixel to either keep its previous value or change it to a given



one (α-expansion), we suggest that a pixel could either re-
main unchanged or its value be increased (or decreased) by a
fixed step. Such an approach has first been described indepen-
dently in [2–4] and applied recently with unitary steps in [2].
We however use these large moves in a case of non-convex
data term. The trial steps are chosen to perform a scaling
sampling of the set of possible pixel values. We express the
algorithm in the general case of joint regularization.

3.1. Local minimization

First, let us introduce the set of images that lie within a single
move in our algorithm. For the sake of generality, we denote
by û the vectorial field arising by associating to each compo-
nent one of the images to jointly regularize. Then,

Sd(û(n)) = {û / ∀s ∈ S, ∃ks ∈ {0, 1}, ûs = û
(n)
s + ksd}

is the set of images whose pixel valueûs is either unchanged
or increased by stepd. We define the “best” movêu(n) 7→
û

(n+1) has the one that minimizes the restriction of the energy
to the setSd(û(n)):

û
(n+1) = arg min

û(n+1)∈Sd(û(n))

E(û(n+1)|u).

The restriction of the energy toSd(û(n)) corresponds to
an energy involving only the binary variables(ks)s∈S . Ac-
cording to [5], an energy of binary variables arising from a
first-order Markov model can be minimized by computing a
minimum cut on a related graph provided it satisfies the fol-
lowing submodular property:

ψ(0, 1) + ψ(1, 0) ≥ ψ(0, 0) + ψ(1, 1).

To compute the “best” move using a s-t minimum-cut algo-
rithm, the following must therefore hold:

ψ(ûs, ût+d)+ψ(ûs+d, ût) ≥ ψ(ûs, ût)+ψ(ûs+d, ût+d).
(2)

Note that in most cases, the prior modelψ depends only
on the differencêus − ût. This is the case in the model de-
scribed in the previous section. For such prior models, condi-
tion 2 becomes:

ψ(ûs − ût − d) + ψ(ûs − ût + d) ≥ 2ψ(ûs − ût)

which is the definition of the convexity ofψ.
In conclusion, thelocal problem of finding the vectorial

field û
(n+1) located within a single move (i.e.̂u(n+1) ∈

Sd(û(n))) that minimizes the posterior energyE(û(n+1)|u)
can beexactlysolved by computing a minimum cut on a graph
(described in next paragraph) provided that the regulariza-
tion potential is convex and depends only on the difference
ûs − ût.

The model we described in previous section consists of
the sum of a non-convex likelihood term and a convex prior

term. The above property therefore holds for this model and
we give in the next paragraphs an algorithm for approximate
global minimization based on exact local minimizations per-
formed using graph-cuts.

3.2. Graph construction

We build a graphG(V , E), following the method of [5], to
minimize the restriction of the energy to allowed moves of
stepd:

arg min
(ks)

s∈S

∑

s

U(us|û(n)
s +ksd)+β

∑

(s,t)

ψ(û(n)
s +ksd, û

(n)
t +ktd)

(3)
The graphG(V , E) is directed, with nonnegative edge

weights and two terminal vertices: the sourceS and the sink
P. The graph structure and the edge weights are chosen such
that any cut1 has a cost (i.e. sum of the cut edges capacities)
corresponding to the energy to minimize. We create a vertice
for each sites, all connected respectively to the source and
the sink through two edges with capacitycs,1 (resp. cs,0).
Finally, each clique(s, t) gives rise to an edge with capacity
cs,t. The capacities are set according to the additive method
described in [5].

3.3. Approximate global minimization

When non-convex data terms such as Nakagami law de-
scribed in section 2.1 are considered, the global minimization
problem can not be exactly solved without considering each
possible configuration (i.e. building a huge graph). On the
other hand, when all terms are convex, it has been proven
in [3] that a succession of local minimizations leads to the
global minimum. An exploration based on different scalings
of the step is then suggested to speed up convergence.

We follow here an heuristic method that combines theex-
act determination of the best moves, with no guarantee on
how close to the global minimum we get. In the following
section we will illustrate on some real data that the obtained
results are satisfying in practice with a speed adequate forap-
plication use.

In one dimension, a scaling search is performed by look-
ing for the best move with stepsd+

i = L/2i andd−i = L/2i

for i from 1 to the desired precision (i.e. quantization level).
In N dimensions, there are3N − 1 vectorial stepsdi to con-
sider for a given step sizedi:

di ∈ S (di)
def
= {0,−di,+di}N/{0, . . . , 0}.

The joint-regularization algorithm is summarized here:

1: for all s ∈ S do
2: û

(0)
s ← {L/2, . . . , L/2}

1a cut is a partition of the vertices into two disjoint setsS andP such that
S ∈ S andP ∈ P



3: end for
4: n← 0
5: for i = 1 to precision do
6: di ← L/2i

7: for all di ∈ S (di) do
8: û

(n+1) ← arg minû(n+1)∈Sd(û(n))E(û(n+1)|u)
9: n← n+ 1

10: end for
11: end for
Line 8 represents the exact binary energy minimization ob-
tained by computing a minimum cut on a graph build ac-
cording to section 3.2. Note that if we perform unitary steps
di ∈ S (1) until convergence at the termination of our algo-
rithm, exact minimization is then guaranteed for convex ener-
gies [3].

4. JOINT REGULARIZATION OF INSAR IMAGES IN
URBAN AREA

We now consider joint regularization on high-resolution data
acquired over the city of Toulouse, France. The image shown
in figure 1(a) is1200× 1200 pixels extracts from single-pass
interferometric SAR images acquired by RAMSES (ONERA
SAR sensor) in X-band at sub-metric resolution. The am-
plitude image is a 2-look image obtained after averaging the
intensity of the two images of the interferometric pair. The
interferogram has been computed on a3× 3 window and the
coherence over detected shadow-areas set to 0.

From the regularization results of figure 1 it can be noticed
that the noise has been efficiently reduced both in amplitude
and phase images. The sharp transitions in the phase image
that correspond to man-made structures are well preserved.
Joint regularization gives more precise contours than inde-
pendent regularization as they are co-located from the phase
and amplitude images (minimum cost images have transitions
that occur between the same neighboring pixels). Small ob-
jects also tend to be better preserved by joint-regularization
as illustrated in figure 1.

5. CONCLUSION

Speckle noise can be effectively reduced in SAR images
with a Markov Random Field approach. TV minimization
results in smoothed homogeneous regions while preserving
sharp transitions. The Markovian formulation provides a
convenient way to incorporate priors and to perform joint
regularization. We have shown on real data that this can help
to prevent over-regularization effects of objects that arevisi-
ble in different images (such as amplitude and interferometric
phase). Moreover, the contours of the jointly regularized
images are more precise as all information is merged.

The quality of the results could be improved for 3D urban
modeling by introducing more evolved prior knowledge in
combination with contextual interpretation of the urban scene.

Fig. 1. Joint regularization of InSAR images (1200 × 1200
pixels): above noisy phase, below jointly regularized phase.

The MRF model is flexible enough to incorporate higher level
prior models. Including radar geometric deformations com-
pensation in the regularization process could be an interesting
step toward successful use of the regularized images.

6. REFERENCES

[1] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,”IEEE Trans. on
PAMI, vol. 26, no. 2, pp. 147–159, 2001.

[2] J. M. Bioucas-Dias and G. Valad ao, “Phase unwrapping
via graph cuts,”IEEE Transactions on Image Processing,
vol. 16, no. 3, pp. 698–709, 2007.

[3] J. Darbon,Composants logiciels et algorithmes de min-
imisation exacte d’́energies d́edíees au traitement des im-
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