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Summary
The concert harp is composed of a soundboard, a cavity with sound holes and 47 strings. When one string is
plucked, a number of normal modes involving the coupled motions of other strings are excited which induce
a characteristic ‘halo of sound’. This phenomenon, called sympathetic vibrations is due to a coupling between
strings via the instrument’s body. This coupling results in multiple spectral components in each partial of the
resulting sound of the instrument. Resolution of Fourier analysis does not permit their identification. A high
resolution Method (ESPRIT), was used to separate the spectral components which are very close one to another.
Some of the measured spectral components in the analysed partials correspond to the response of sympathetic
modes. The eigenfrequencies and mode shapes of these modes were investigated using a simplified model of the
harp based on a waveguide approach in which bending and longitudinal motions of 35 strings connected to an
equivalent beam representing the soundboard are described. Identified experimental sympathetic modes are very
well captured by the model.

PACS no. 43.75.Gh

1. Introduction

The harp is probably one of the oldest string instruments
whose origin goes back to the Prehistory where the first
men were charmed by the sound produced by their bow’s
string. This chordophone was first composed of a few
strings attached on an arched frame on one side and on
a soundboard on the other side. Then, with the increase of
the number of strings, a pillar was added between the neck
and the soundboard to support the strings’ tension. This
kind of harp was particularly used in Europe and marks the
origin of the current concert harp. Nowadays, the concert
harp is composed of 47 strings, from Cb0 (of fundamen-
tal frequency 30.9 Hz) to Gb7 (of fundamental frequency
2960 Hz), attached to the soundboard though an eyelet be-
low which they are knotted. The soundboard is designed
to withstand the stress imposed by the strings, as for the
Camac concert harp used in this study, which is composed
of multiple layers of different materials (aluminium, car-
bon, woods). From an acoustical point of view, the role of
the soundboard is to radiate the sound produced by the vi-
brations of the strings. To some extent, this sound can also
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be amplified by the soundbox and its five sound holes [1].
In spite of mechanical and constructional improvements,
musicians and harp makers alike are annoyed by the feel-
ing produced by the halo of sound when the instrument
is played. When one string is plucked, some others can
also be excited by sympathetic vibrations. Although this
phenomenon is a fundamental characteristic of the instru-
ment’s sound, the instrument maker has to design the harp
so that sympathetic vibrations remain reasonable.

The sympathetic couplings between strings lead to the
aftersound and sometimes to beats. This arises because
some partials of the sound may contain several spectral
components whose frequencies are very close one to an-
other. Two kinds of couplings are involved in this situa-
tion: couplings between different polarizations of a same
string due to the way it is fixed and sympathetic couplings
between different strings via the instrument’s body [2].

Considering the connection point between a single
string and the soundboard as a point, the string/structure
interaction can be described by a 6 by 6 admittance matrix.
In such a description, three translational degrees of free-
dom and three rotational degrees of freedom are involved
[3]. As a consequence, for one single string, each mode
can have up to 6 components, their frequencies being very
close one to another in the string’s response. However, in
practice, 2 components often overshadow the others and
correspond to 2 polarizations of the string. This has been
shown for the guitar [4], the piano and the violin [5]. The
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strong anisotropy of the string/structure interaction (for the
out-of-plane and in-plane directions) is responsible for this
effect. As a consequence, the decay rates of the two polar-
izations of a single string are generally different and lead
to a double decay effect [2].

Piano strings, which are grouped in pairs or triplet have
often served as a model for the study of sympathetic cou-
plings. Such couplings occur because each group of strings
(pair or triplet) is practically tuned in unison. The case of
two strings tuned in unison having the same polarization,
coupled by bridge motion is studied in [2]: normal modes
for this configuration appear in pairs and depend on the
strings mistuning and bridge admittance. It is the presence
of these two coupled modes that is responsible for the phe-
nomena of beats and aftersound. The more complex case
of a pair of piano strings tuned in unison, each of them
having two polarizations has been studied in [6].

Similar couplings exist in string instruments which do
not have pairs of strings tuned in unison. This has been il-
lustrated for the American five-string banjo: in [7], this in-
strument is modelled by an assembly of one-dimensional
sub-systems in which waves propagation occur, allowing
the time-domain response to be computed. It is shown that
when all the strings are incorporated to the model, the de-
cay time is shorter than when only one string is consid-
ered. This is explained by the presence of sympathetically
driven strings, even if it is difficult to find out how sympa-
thetic vibrations occur in this model.

For the kantele, which is a Finnish plucked five-string
instrument, sympathetic vibrations have also been identi-
fied in [8]. Through the experimental analysis of the to-
tal amount of energy transferred from one string to all the
others, it was shown that the transfer of energy is more
pronounced between strings which have simple harmonic
relationships.

In a previous paper [9], it was shown that the sympa-
thetic phenomenon is due to the presence of particular
modes, called sympathetic modes, in the modal basis of
the system. These modes have been both theoretically and
experimentally identified on a simple academic configura-
tion close to the harp: two strings tuned to the octave and
connected to a beam were considered and the modes of this
assembly were investigated. The aim of the present paper
is to investigate the sympathetic modes in the response of
a real concert harp.

In the first part, a time domain analysis based on a ‘High
Resolution’ method is carried out to identify closely-
spaced frequency components present in the fundamental
of a single string when plucked. Note that ‘High Reso-
lution’ techniques are suitable for the spectral analysis of
signals having very close spectral components, which can-
not be separated using a Fourier analysis because of a lack
of resolution. In the second part, the sympathetic vibra-
tions were investigated through the use of a physical model
of a simplified concert harp. In the final part, a compari-
son between theoretical and experimental results give an
explanation of the origin of the sympathetic phenomenon
in the instrument.

Figure 1. Schematic representation of the experimental setup.

Table I. Characteristics of the experimental configurations. String
24 corresponds to Cb2 of fundamental frequency 246.92 Hz,
string 31 to Cb3 (123.59 Hz), string 35 to Fb3 (82.37 Hz), string
38 to Cb2 (61.52 Hz) and string 42 to Fb1 (41.08 Hz). All fre-
quencies correspond here to measured frequencies on tuned in-
strument.

Conf. Description

(1) All strings free to vibrate
(2) All strings damped except string 31
(3) String 31 stopped during oscillations
(4) Strings 24, 31, 35, 38 and 42 stopped during

oscillations
(5) Strings 31 and 24 stopped during oscillations
(6) Strings 31 and 35 stopped during oscillations
(7) Strings 31 and 38 stopped during oscillations
(8) String 31 and 42 stopped during oscillations

2. Experimental investigation of the harp’s
sympathetic modes

2.1. Experimental setup

To highlight the presence of sympathetic modes in the con-
cert harp, the following experimental protocol was used:
the harp was plucked in a normal way and an accelerom-
eter mounted on the soundboard at point A was used to
measure the induced vibrations (see Figure 1). Point A is
located on the inner surface of the soundboard, between
the Db3-string and the Cb3-string, respectively labelled 30
and 31. The plucked string was string 31 with the other
strings either damped or stopped during oscillations. Eight
experimental configurations presented in Table I were used
to investigate the sympathetic vibrations. The set of strings
involved in these configurations is chosen such that the
fundamental of string 31 coincides with partials of lower
strings.
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Figure 2. Accelerometer signals measured at point A for the eight
experimental configurations defined in Table I.

The induced vibrations were sampled at 4096 Hz and
the decay recorded for 8 seconds. Selected strings were
stopped by the harp player a few seconds after plucking
string 31. The resulting signals for the eight experimental
configurations are shown in Figure 2. These signals high-
light a fact well-known by the harpists: stopping of a string
plucked does not necessarily imply a fast decrease of the
sound level. Indeed, as shown in configurations (3), (5),
(6), (7) and (8), the end signal amplitude is of the same
order of magnitude that in the free-strings configuration.

2.2. Method used for the extraction of modal pa-
rameters

2.2.1. Introduction: limit of the Fourier analysis
String 31 was plucked with all other string free to vibrate
and the Fourier spectrum of the accelerometer’s signal at
point A is shown in Figure 3. Several modes of the coupled
system are excited to produce the harp sound. This spec-
trum is composed of partials which are quasi harmonic.
Using an appropriate selective filter, one can zoom-in on
the spectrum in the vicinity of the first partial and plot its
corresponding time waveform as shown in Figure 4. This
figure clearly shows that several sinusoidal components
are present in the vibratory signal. The free decay of the
response of the instrument after plucking measured by the

Figure 3. Spectrum of the signal measured at point A when string
31 is plucked.

Figure 4. Time waveform and spectrum of the first partial of the
vibratory signal measured at point A when string 31 is plucked.
All strings are free to vibrate.

accelerometer, corresponds to the superposition of several
modes whose frequencies are very close one to another.
However, the zoomed spectrum does not have the resolu-
tion to separate these modes. This illustrates the limita-
tions of Fourier analysis. The presence of closely-spaced
modes is a common characteristic in many stringed instru-
ments. Various methods have been applied to musical in-
struments to resolve this fine structure, such as techniques
based on the Hilbert transform [4, 10] or High Resolution
methods [4, 11, 12].

For the identification of modes with close frequencies
in the first partial, we choose to use a High Resolution
method: the ESPRIT algorithm (Estimation of Signal Pa-
rameters via Rotational Invariance Techniques) [13]. A
brief description of this technique and the specificity of
its implementation in our context are given in paragraphs
2.2.2 to 2.2.4. An application to the harp’s signals is then
presented in section 2.3.

2.2.2. The ESPRIT method
Subspace-based High Resolution methods such as the ES-
PRIT algorithm are of major interest for estimating mix-
tures of complex exponentials, because they overcome
the spectral resolution limit of the Fourier transform and
provide very accurate estimates of the signal parameters.
These methods consist in splitting the observations into a
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set of desired and a set of disturbing components, which
can be viewed in terms of signal and noise subspaces.
In this framework, the ESPRIT algorithm is based on a
particular property of the signal subspace, referred to as
the rotational invariance. This property permits to extract
the model parameters from the eigenvalues of a so-called
spectral matrix, which is obtained from the estimated sig-
nal subspace.

The noiseless Exponential Sinusoidal Model (ESM) de-
fines the discrete signal x(t) as a sum of complex exponen-
tials:

x(t) =
K�
k=1

ake
δktej(2πfk+ϕk ), t ∈ [0,N − 1], (1)

where each frequency fk ∈ [− 1
2 ,

1
2 ] is associated to a real

magnitude (ak > 0), a phase (ϕk ∈ [−π, π]) and a damp-
ing or amplification factor (δk ∈ R). The whole number K
is the number of complex exponentials, also called model
order, and N is the number of the signal’s samples. By
defining the complex amplitudes αk = akejϕk and the com-
plex poles zk = eδk+j2πfk , which are supposed to be dis-
tinct, the signal model x(t) can be re-written in the follow-
ing form:

x(t) =
K�
k=1

αkz
t
k. (2)

For any time t, the data vector x(t) = [x(t), ..., x(t+n−1)]T

of dimension n > K belongs to the K-dimensional signal
subspace spanned by the Vandermonde matrix

Vn =

���
1 1 · · · 1
z1 z2 · · · zK
...

...
...

zn−1
1 zn−1

2 · · · zn−1
K

��� .

It can be noted that this Vandermonde matrix satisfies
the following rotational invariance property: V↑ = V↓D,
whereD = diag(z1 . . . zK ),V↓ is the matrix extracted from
V by deleting the last row, and V↑ is the matrix extracted
from V by deleting the first row.

In practice, the measured signal s(t) is corrupted by an
additive noise: s(t) = x(t)+w(t), where w(t) is assumed to
be white. Although matrix V is unknown, the signal sub-
space can still be estimated as the principal eigensubspace
of the correlation matrix R̂ss of the measured signal, de-
fined as follows:

R̂ss =
1

N − n + 1
SSH , (3)

where

S =

���
s(0) s(1) · · · s(N − n)
s(1) s(2) · · · s(N − n − 1)

...
...

. . .
...

s(n − 1) s(n) · · · s(N − 1)

��� (4)

is the n× (N−n+1) Hankel data matrix which involvesN
successive samples of the signal and the exponent H is the
hermitian conjugate. Thus the n ×K matrix W formed by
the K first principal eigenvectors of R̂ss is an orthonormal
basis of the signal subspace.

Since the matrices W and V span the same subspace,
there exists a K ×K non-singular matrix G such that V =
WG. It can then be noted that W satisfies an invariance
property similar to that of the Vandermonde matrix: W↑ =
W↓Φ, where the K × K matrix Φ = GDG−1, referred to
as the spectral matrix, is similar to the diagonal matrix D.
In particular, the eigenvalues of Φ are the complex poles
zk.

Finally, the ESPRIT algorithm consists of the following
steps:
1. compute the signal subspace basis W by means of an

eigenvalue decomposition,
2. compute the spectral matrix Φ by means of the least

squares method:

Φ = W+
↓W↑, (5)

where the symbol + denotes the Moore-Penrose pseu-
do-inverse,

3. estimate the complex poles zk as the eigenvalues Φ.
It is proved that the best performance in terms of statistical
efficiency is obtained for a proper dimensioning of the data
matrix S: n = N/3 or n = 2N/3 [12].

In a second stage, the complex amplitudes αk, grouped
in a K × 1 vector denoted α, are obtained thanks to the
least squares method:

α = [VN ]+s. (6)

In equation (6), s denotes the vector containing N succes-
sive samples of the signal and VN is the N × K Vander-
monde matrix defined by the poles estimated by the ES-
PRIT method. Parameters ak and ϕk are directly deduced
as the modulus and phase of the complex amplitudes αk.

2.2.3. Estimation of the number of components
The main difficulty of the method consists in evaluat-
ing the number K of components present in the signal.
The technique commonly used is the over-estimation of
this number and the discrimination of spurious results
by means of an indicator such as the components en-
ergy or the error between the measured signal and the
model. Other more effective methods exist for estimating
the model order K such as the ESTimation ERror (ES-
TER) method [12, 14] also used in the study. It consists in
the computation of an inverse error function,

J : p �→ 1

� E(p) �2
2

, (7)

where

E(p) = W↑(p) −W↓(p)Φ(p) (8)

for all possible orders 0 < p < n − 1. For determining the
value ofK, we choose the greatest value of p for which the
function J (p) reaches a maximum which is greater than
a threshold chosen arbitrarily above the noise level con-
tained in the signal.
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Figure 5. Summary of the implementation of the ESPRIT method
on the studied partial.

2.2.4. ESPRIT method implementation
In order to minimize the computational time and increase
the results accuracy [12], the ESPRIT method implemen-
tation is carried out according to the following proce-
dure: after centering the studied partial around the null
frequency, a finite impulse response (FIR) filter selects the
frequency range containing the partial to analyse. The fil-
ter is chosen with a linear phase to keep the signal wave-
form. The filter is known to have a finite transitory re-
sponse which corresponds to the length of its impulse re-
sponse. The first filtered signal points belonging to this
transitory phase are thus removed from the processing af-
terwards [4]. The filtered and centered signal is highly
decimated to limit the computational time of the ESPRIT
method. After the estimation of the model order by the ES-
TER method, as previously explained in section 2.2.3, the
ESPRIT algorithm is then applied. The final validation of
the model order is performed using a comparison between
the measured and synthesized signals. An illustration of
the method implementation is shown in Figure 5.

Note that in the Exponential Sinusoidal Model, the sig-
nal is assumed to be complex. For a musical sound, the
signal is real and can be written as follows:

x(t) =
K�
k=1

Akeδkt cos(2πfkt + ϕk), (9)

which can be re-written with exponential terms:

x(t) =
K�
k=1

Ak

2
eδktej(2πfkt+ϕk )

+
K�
k=1

Ak

2
eδkte−j(2πfkt+ϕk ). (10)

Because of the filtering in the spectrum around the studied
partial, the studied signal corresponds to the first part (with
positive frequency) of the equation (10). In order to find
the real amplitude of the measured signal, the amplitude
Ak obtained by the ESPRIT method has to be multiplied
by two.

2.3. Results

The implemented ESPRIT method, as previously ex-
plained, is applied to the signals measured on the concert
harp in its final part, between 4s and 8s. The different ex-
perimental conditions are described in Table I and the at-
tention is focused on the first partial of string 31. The es-
timated components found for this partial are gathered in
Table II. The model order stretches from 0, for configura-
tion (4), to 4, for configuration (1). The observed modal
frequencies and damping were computed from 5 measure-
ments to estimate uncertainty. In Table II, the components
are classified in such a way that their amplitude are in
descending order from top to bottom. Moreover, they are
aligned to facilitate the cognition of missing components.

The repeatability uncertainties for different parameters
are extremely small, lower than 1% for the frequencies
and around 10% for the damping factors. Nevertheless, for
some components the uncertainty can be important as for
the last component of the (1) configuration. This can hap-
pen for weakly excited modes with a weak signal-to-noise
ratio.

When the instrument is not modified ((1) and (3) to (8)
configurations) the components’ parameters slightly vary,
less than 0,5% for the frequencies and, a maximum of 30%
of variation in the damping factors. This shows that the
stopped string does not modify the vibratory behavior of
the instrument. Nevertheless, when paper is added to damp
all strings except string 31, in configuration (2), the fre-
quency and damping of the plucked string are modified
and a slight shift in frequency is caused, but not enough to
allow the identification of the components’ nature. Thanks
to the developed experimental protocol and the identifica-
tion method, the components present in the first partial are
obtained. The estimated modal parameters are stable in all
eight experiences. These results are compared in the fol-
lowing section to the predicted modes of one simplified
harp model.

3. Theoretical study of the harp’s sympa-
thetic modes

3.1. Description of the model

The vibrations of the concert harp used in our measure-
ments were investigated in a previous paper [1] using an
experimental modal analysis. At low frequencies, six con-
secutive modes were identified from 24 Hz to 181 Hz. For
all modes, mode shapes were symmetric relative to the
string plane and with the bending of the soundboard sim-
ilar to the first mode shape of a beam clamped at both
ends. Thus, although the soundboard is a complex assem-
bly, consisting of a sandwich of several layers of different
wood glued together reinforced by a central aluminum bar
and two lateral stiffeners in wood, the soundboard can be
described by using an equivalent beam clamped at both
ends. The typical first bending mode at 152.2 Hz is shown
in Figure 6-A. Its corresponding mode shape can schemat-
ically be described as an important deflection in the lower
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Table II. Frequencies and damping factors of identified components in the first partial of the accelerometer signals in the eight experi-
mental configurations defined in Table I. The reported uncertainty is an uncertainty with a 95% confidence interval.

Configurations
(1) (2) (3) (4) (5) (6) (7) (8)

123.59±0.01 123.54±0.01
-0.68±0.02 -0.57±0.01

123.34±0.01 123.35±0.00 123.34±0.00 123.34±0.00 123.30±0.01
-0.15±0.03 -0.11±0.01 -0.11±0.01 -0.11±0.01 -0.10±0.01

123.08±0.00 123.09±0.01 123.08±0.00 123.08±0.00 123.09±0.01

C
om

po
ne

nt
s

-0.26±0.01 -0.21±0.01 -0.22±0.03 -0.21±0.02 -0.22±0.07

123.78±0.02 123.71±0.03
-0.15±0.12 -0.54±0.06

two thirds of the soundboard between the two clamped
points, one at the pillar level and the other one at the 11-
string level. For the treble strings, the rigidity of the sound-
board is increased by the proximity of the edges of the
soundbox, explaining the absence of movement at low fre-
quencies. Thus, the beam length is limited to the distance
between the harp’s pillar and the 11th string. We therefore
model the soundboard as a 1m-long beam on which 35
strings are attached as shown in Figure 6-B.

The mechanical properties of the equivalent beam and
of each string have to be determined: for the strings, most
parameters are directly measured on the harp [15] except
for the Young’s modulus and the density which are sup-
posed to equal the data given in [16] and [17]. Values of
the tension are computed from the fundamental frequency
of the tones, by considering the strings as rigidly fixed at
both ends, in such a way that the string’s mode frequency
corresponds to the one directly measured on the harp. For
the equivalent beam, the determination of its parameters
is more complicated since the geometrical parameters are
directly measured on an isolated soundboard, allowing the
evaluation of a mean density (ρ = 553 kg/m3). The area of
the cross-section A and the second moment of area J were
measured at different positions along the axis. Averages
values of these two parameters are thus retained to char-
acterize the equivalent beam (Aeq = 38.3 cm2 and Jeq =
38.9 cm4). Finally, the Young’s modulus E (E = 5.9 GPa)
of the equivalent beam was adjusted to give the first ob-
served bending mode of the beam at 150 Hz in the beam-
35 strings assembly. This was the fourth mode shown in
Figure 6A. We refer to this simplified model as the simpli-
fied harp.

3.2. Harp’s sympathetic modes

The normal modes of vibration of the simplified harp
were computed using the transfer matrix method, appro-
priate for modeling assemblies of one-dimensional sub-
structures. The computation was based on a wave-guide
model for each sub-structure of the beam-strings assem-
bly. The different steps of the method are developed in de-
tails in [9]. Eigenfrequencies were obtained by identifying
the singularities of a characteristic matrix labeled RR (see

Figure 6. (A) Modal shape associated to the fourth mode and de-
scription of the vibratory profile in the central axis of the sound-
board. (B) Model of the concert harp: beam-35 strings assembly.

equation (30) in [9]). Each drop of the logarithm of matrix
RR’s determinant corresponds to an eigenfrequency.

The normal modes of the simplified harp were com-
puted in the frequency range [0-500 Hz] in steps of
0.01 Hz. The logarithm of matrix RR’s determinant is
shown in Figure 7 in the frequency range [110-160 Hz],
exhibiting well defined, closely spaced eigenfrequencies.
Among the 151 modes found in the range [0-500 Hz], ex-
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Table III. Eigenfrequencies and Kinetic Energy Ratio for each sub-structure (strings 42, 38, 35, 31, 24 and the beam). KER expressed
in % and rounded to the nearest whole number.

Frequency KER (%)
Mode (Hz) string 42 string 38 string 35 string 31 string 24 Beam

26 122.95 0 99 0 1 0 0
27 123.29 97 1 0 2 0 0
28 123.59 0 0 0 100 0 0
33 149.91 0 0 1 0 0 73

Figure 7. Logarithm of the determinant of the characteristic ma-
trix RR as function of frequency. Each drop corresponds to an
eigenfrequency of the beam-strings assembly.

Figure 8. Mode shapes associated to modes 26, 27, 28 and 33.
The number indicated below the harp’s arm points out the string
number.

amples of four modal shapes are presented in Figure 8.
These shapes illustrate normal modes of the harp involv-
ing the coupled vibrations of strings which share partials
having closely similar frequencies. To classify modes of
the assembly, we define a criterion called Kinetic Energy
Ratio (KER)

KERj(k) =

� lk
0
ρkΨT

j (x)Ψj(x) dx

�
r

� lr
0
ρrΨT

j (x)Ψj(x) dx

. (11)

In this equation ρ is the mass per unit length of the sub-
structure, Ψj is the mode shape of mode j and x is the
generic space variable. The KER corresponds to the ratio
of kinetic energy of one sub-structure k (of length lk) di-
vided by the total kinetic energy of the structure. Its value
is a percentage and allows us to identify the relative im-
portance of each sub-structure displacement field. In the
study, this percentage is rounded to the nearest whole num-
ber. Thus, for a given mode, a null value of the KER of a
sub-structure indicates that this sub-structure is inactive.
Values of KER on each sub-structure are used to classify
the modes into four groups [9]: beam modes, string modes,
string-string modes, and beam-string modes.

In Table III, the predicted eigenfrequencies and KER
for modes 26, 27, 28 and 33 are reported. For the three
first modes, the KER is significant only for four sub-
structures: the beam and strings 31, 38 and 42. String
31 (Cb3 note of fundamental frequency 123.59 Hz) cor-
responds to the upper octave of string 38 (Cb2 note at
fundamental frequency 61.52 Hz). String 42 (Fb1 at fun-
damental frequency 41.08 Hz) is an octave and a fifth be-
low string 31. The uncoupled frequencies of the strings
are harmonically related in the ratio 1, 2 and 3. For modes
26 to 28, the KER for the beam is extremely small, show-
ing that mode shapes are dominated by the string’s mo-
tion, allowing the definition of these modes as string-string
modes or sympathetic modes [9]. According to the modal
superposition principle, if string 31 is plucked, all normal
modes participate to the response. Vibrations of strings 38
and 42, which are involved in the modes 26 and 27 are
thus induced. Such motions correspond to sympathetic vi-
brations. Note that for the modes 26 to 28, modifications
of the characteristics of the equivalent beam only slightly
modify the KER distribution, not altering our conclusions.

4. Discussion

When string 31 of the concert harp is free to oscillate
(configuration (1) in Table I), 4 sinusoidal components
are identified in the first partial. When string 31 vibrate
with all other strings damped (configuration 2), only two
of these 4 components remained. These two components
have close frequencies, separated by only 0.19 Hz, but
have very different damping factors and amplitudes. This
arises because the two polarizations of transverse string vi-
bration are excited by the harp player depending on how
the string is plucked, involving different initial amplitudes
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Table IV. Comparison between experimental and theoretical re-
sults obtained from the vibratory model of the concert harp for
String 31 mode and Sympathetic modes 31-42 and 31-48.

Modal frequency
Experimental Theoretical Error

String 31 123.59 Hz 123.59 Hz
123.78 Hz

31-42 123.34 Hz 123.29 Hz 0.04 %

31-38 123.08 Hz 122.95 Hz 0.11 %

(showed by the difference of energy of each component).
As for the piano, one of the polarizations (with its plane
of polarisation perpendicular to the soundboard) can trans-
mit energy to the soundboard, implying a rapidly decaying
component at the plucking moment while the string vibra-
tion parallel to the flat surface of the soundboard is weakly
coupled to the soundboard [2]. Complete modelling of the
strings’ modal behavior requires that both polarizations of
string vibrations have to be taken into account. In our sim-
plified harp model, only one polarization is considered.

When a particular string is stopped during the oscilla-
tions, any modes involving large amplitude vibrations of
that string will be quickly damped. In configurations (3),
string 31 stopped during oscillations, (5), strings 31 and
24 stopped during oscillations, and (6), strings 31 and
35 stopped during oscillations, the same components are
present, showing that modes involving the vibrations of
strings 24 and 35 do not participate in the first partial of the
instrument response. By stopping strings 31 and 38, one
vibrating component disappears and by stopping strings
31 and 42, another one is absent from the instrument’s re-
sponse. With configurations (7) and (8), we can deduce
that strings 38 and 42 participate in the sound radiated by
the instrument.

When the harpist plucks string 31, four modes are set
into vibrations at the same time: two modes involving
string 31 (one mode per polarization at 123.59 Hz and
123.78 Hz), one mode involving the fundamental of string
31, coupled to the second partial of string 38 (123.08 Hz)
and one mode involving strings 31 coupled to the third par-
tial of string 42 (123.34 Hz). These last two modes are thus
the sympathetic modes. The stopping of string 31 does not
necessary lead to the weakening of these modes, proving
that for these modes the kinetic energy in strings 42 and
38 is more important than in string 31. Moreover, these
results show that sympathetic modes associated with the
weakly coupled transverse vibrations of string 31 are not
visible in the response. Such modes will only be weakly
excited, not allowing them to emerge from the noise

Our experimental results can be compared to those ob-
tained from the theory. In our simplified harp model, the
value of the string’s tension is evaluated in such a way
that the string’s mode’s frequency corresponds to the mea-
sured value of the partial (123.59 Hz in the studied ex-
ample). To do so, the beam-strings model is computed as
many times as necessary to meet the correct frequencies.

The comparison between the eigenfrequencies of the the-
oretical and experimental coupled modes is presented in
table IV. Since the target value for the fitting procedure is
123.59 Hz, this value is the same for theoretical and exper-
imental results. For sympathetic modes 31-42 and 31-38,
their eigenfrequencies are measured at 123.34 Hz and at
123.08 Hz. It should be noticed that the theoretical eigen-
frequencies of these modes are found at 123.29 Hz and at
122.95 Hz, coinciding almost perfectly with experimen-
tal results. Apart from the fact that the vibratory model of
the concert harp does not take the two polarizations of the
string into account, results obtained from the model are
in very good agreement with those obtained from experi-
ments, thus validating the use of our simplified model of
the beam-35 strings assembly of the concert harp.

5. Conclusion

The numerous strings of the concert harp induce sympa-
thetic vibrations, which are responsible for the halo of
sound in the decay of the plucked note. This character-
istic is important and constitutes a signature of the sound
of the instrument. In this paper, experimental and theoreti-
cal investigations have been carried out to understand this
phenomenon. The following conclusions can be drawn.

a) Normal modes of the string-soundboard assembly in-
clude contributions from the upper partials of simply re-
lated lower strings. Such modes explain the existence of
sympathetic string vibrations. Using a wave-guide model
of a simplified harp, the eigenfrequencies and mode shapes
of such modes can be accurately determined. This model
describes bending and longitudinal motions in the strings,
connected to an equivalent beam representing the sound-
board and allows the modal basis of the strings-beam as-
sembly to be computed.

(b) In the time domain, sympathetic vibrations gener-
ate multiple components in the string’s partials. Resolu-
tion of the Fourier analysis does not permit their identifi-
cation. This identification is performed using the ESPRIT
method, which is a High Resolution method. The determi-
nation of the number of elementary spectral components,
which is the main difficulty in the implementation of High
Resolution methods is successfully performed using the
ESTER method.

(c) Several components contribute in the first partial of
string 31: two of them correspond to the string having two
different polarizations. Other components correspond to
sympathetic modes. In the analysed example, two sympa-
thetic modes are involved. Their number and their eigen-
frequencies are very well captured by the proposed model.

Although the model of the instrument suits the identifi-
cation of sympathetic modes, it can be extended in order
to take into account two polarizations per strings. More-
over, from an experimental point of view, the analysis of
partials of higher order, where other phenomena such as
octave vibrations can be present, could also be performed.
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